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What is muscle segmentation ?

Axial slice of the thigh of a healthy volunteer (Dixon image)

A non segmented view A manually segmented view



Purposes of muscle segmentation:

To study each muscle selectively, for a better
characterization of neuromuscular disorder.

To access volumetric muscle changes.



From manual to automated segmentation...

Today : segmentation of all
muscles of a human thighiis :

Manual
Extremely long (4 hours)
Tedious

Variable (Inter-operator volume
variability: 3 %)

Why is automatic Segmentation
challenging?

Multi-object, partial contours, no
distinctive texture

Large inter-subject variations

Example of missing contours



Original Research

Comparison of Methods to Assess Quadriceps
Muscle Volume Using Magnetic Resonance Imaging

Antoine Nordez, PhD,'* Erwan Jolivet, PhD,! Ingrid Studhoff, PhD,!-2
Dominique Bonneau, PhD,! Jacques A. de Guise, PhD,? and Wafa Skalli, PhD"

For comparison and volume assessement :

The vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM),
and rectus femoris (RF) muscles of the 10 subjects were manually
outlined for all of the slices by the same investigator Because
substantial fusion may be found between VL and VI on some slices
(3), these two muscles were outlined Together.



® The truncated cone formula [1] (30), which as-

sumes a conical shape of the muscle between avail-
able slices:

e, 7
MV = Ej X (CSA + CSA,,, + JCSA, X CSA,.,) [1]

n—1

Where n is the number of slices used, and e; is the
distance between available slices i and i+1

The Cavalieri formula [2] (18). which assumes an
ideal cylinder shape of the muscle between the
available slices

MV = De, x CSA, [2]

n

A cubic spline interpolation was used for the rela-
tionship between CSA calculated on available slices
and distance from insertion to estimate missing
CSAs. The MV was then calculated using the Cava-
lieri formula [2].

® The deformation of a parametric specific object
(DPSO) method (29), which could be decomposed in
four steps. (i) Each muscle contour obtained on

available slices was modeled as an equivalent el-
lipse. The centroid coordinates, local inertial coor-
dinate systems, width and length were calculated
for each available ellipse. (ii) Changes in these pa-
rameters along the muscle’s principal axis were
modeled using the cubic spline interpolation to es-
timate missing ellipses. Using all available and es-
timated ellipses, the resulting three-dimensional
parametric object was reconstructed. (iii) The sub-
ject-specific volumetric muscle reconstruction (Fig.
1C) was determined by deforming the parametric
object using a nonisotropic algorithm (31) and
available muscle contours. (iv) The MV calculation
was performed on this three-dimensional volumet-
ric muscle reconstruction.
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Figure 3. a-d: Error of vastus lateralis + vastus intermedius (a), vastus medialis (b), rectus_femoris (c), and quadriceps (d) volume
estimations using the truncated cones (diamonds), Cavalieri (squares], interpolation (triangles), deformation of parametric specific
objects (circles) methods as functions of the number of available slices in respect to the MRI reference standard measure. The
significant main interaction (P < 0.001) of the 4 X 19 [method *X number of slices) ANOVA is described. e: A detail of (d).
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Figure 2. a-d: Average error of vastus lateralis + vastus intermedius (a), vastus medialis (b), rectus_femoris (c), and quadriceps
(d) muscle volume estimations using the truncated cones (black shading), Cavalieri (light shading), interpolation (medium
shading), deformation of parametric specific objects (white) methods in respect to the MRI reference standard measure. The
significant main effect (P < 0.001) of method in the 4 x 19 (method x number of slices) ANOVA is presented. *P < 0.05; **P <
0.01; ***P < 0.001; ns: nonsignificant



* The techniques described in this work are dedicated to
muscle volume assessement and does not offer an accurate

segmentation technique.

= Accurate volume estimation requires the manual
segmentation of an important number of slices

Need of accurate segmentation with little intreaction



Fast Musculoskeletal Registration Based on
Shape Matching

Benjamin Gilles and Dinesh K. Pai

Department of Computer Science, University of British Columbia, Canada
{bgilles,pai}@cs.ubc.ca

Automatic muscle group segmentation through the registration of
a model on the image and using as internal forces an average of
rigid local transforms.



Gilles et al (MICCAI 2008)

Model construction

1- manually segment a
given reference image.




Gilles et al (MICCAI 2008)

Model construction

2- For each vertex of
the mesh, Learn

intensity profile in the
normal direction




Gilles et al (MICCAI 2008)

Shape registration :

1- First rough
registration based on
bone position




Gilles et al (MICCAI 2008)

Shape registration :

1- First rough
registration based on
bone position




Gilles et al (MICCAI 2008)

Shape registration :

2- For each vertex of the
mesh search for :

* The voxel that have
the closest intensity
profile to the reference
one.

* The voxels that have a
maximum gradient

The target point is the
mean of these two
point.




Gilles et al (MICCAI 2008)

Shape registration :

Define external forces as
the forces that will
deform the mesh
toward the target points
defined previously

11l Important
deformation may lead
to a non smooth
contours and to a
solution that not
correspond to the
expected form of a
muscle




Gilles et al (MICCAI 2008)

Shape registration : internal forces

Aims to constrain the deformations of the shape due to external forces and
to keep it similar to the reference one.

Performs a mapping of the model vertex to the target pixels based on local
rigid transforms.

=» To insure smoothness of deformation, the neighboring vertexes in the

reference model are clustered and each cluster is deformed using a rigid
transform to much the target points.



Gilles et al (MICCAI 2010)

Evolution. Vertices receive different goal positions from the different clusters
they belong to. So, we average these positions to produce smooth deformations
(as in [9]) through the fast summation technique: @3 = X3(T )z} /|(i|. The effect
of internal and external forces can now be combined to compute the new model
state. Other forces could be added at this point as done in [5] to enforce, for
instance, volume preservation, smoothing, damping. or non-penetration hetween|
models (e.g. when simulating sliding objects owning separate clusters). When
summing all forces (f = _f’: + f¢). the noise, which corrupts external forces,
has a direct impact on model deformation. In this case, the condition a, <
a; 18 needed to maintain model regularity. Instead. we prefer to apply shape
matching as a post regularization step: f = f* = (Xi(T)x?/|é| — =) where
transforms are estimated between the reference positions & and the current
positions augmented by the external forces (@ + F¢). So instead of adding forces
that penalize undesired particle configurations, we project external forces onto
the shape matching deformation space to filter out the noise. In practice, this
has a stabilizing effect and removes constraints related to foree stiffness. When
a dynamic aspect is desired, the computation of the new positions from f can
be performed using classical integration schemes (such as the implicit Euler
scheme as in [5]). In this paper, as we want to demonstrate the effect of shape



Gilles et al (MICCAI 2008)

matching forces, we do not use velocities to extrapolate results. We rather apply
the simplest relaxation scheme (gradient descent with unitary time step): x(i +
dt) = f + x(t). To summarize, an iteration of our registration process involves:

— Compute external forces f¢ (including any other custom forces)

— Compute shape matching forces f*:
e for each cluster (;, compute T; = argmin}_, . |T=} —x; — f£|?
e average goal positions @3 = X;(T)x] /|(| for each vertex i

— Evolve particle positions: & = &

— (Optionally, update refeh‘ence positions to simulate plasticity: =" = x)



Gilles et al (MICCAI 2008)

Segmentation result

++ among the first
solutions for muscle
segmentation

++ many muscles are
well delineated

-- inspite of a good
contrast some
segmentation error are
observed and they are
due to the model




3D Knowledge-based Segmentation Using
Pose-Invariant Higher-Order Graphs

Chaohui Wang!+2, Olivier Teboul':*, Fabrice Michel!+?, Salma Essafi’?, and

Nikos Paragios!+?

! Laboratoire MAS, Ecole Centrale de Paris, France
2 Equipe GALEN, INRIA Saclay - Ile de France, Orsay, France
4 Microsoft France
chachui.wang@ecp.fr

1- Shape Model is discrete and based on landmarks.

2- Segmentation is equivalent to a registration of set of landMark on
the image to segment.

3- Only one muscle is segmented.



Wang et al (MICCAI 2010)

Model learning : shape

(b) () (d) (e) ()

1- Register all the training image together
2- Find a consistent set of landmarks, between all the training image



Wang et al (MICCAI 2010)

Model learning : shape

(b) e) ()

1- Register all the training image together
2- Find a consistent set of landmarks, between all the training image

How to describe the model :

1- Consider the length of couple of landMarks (pb de scale invariance)



Wang et al (MICCAI 2010)

Model learning : shape

()

(b)

1- Register all the training image together
2- Find a consistent set of landmarks, between all the training image

How to describe the model :

1- Consider the length of couple of landMarks (pb de scale invariance)
2- Consider the normalized length of all triplets of landMark.

Over the training set we can probability distribution function of these distances.



Wang et al (MICCAI 2010)

Model learning : appearance

(b) () (d) (€) (f)

1- In addition to geometrical properties, local appearance properties of each
landmark are learnt.




Wang et al (MICCAI 2010)

Segmentation = a correspondence problem that requires detection for the
model points in the image or finding a set of correspondences for each
landmarks.

1- For a new image to segment
and for each landmark, find the
corresponding one using block

matching technique.

=» If the best much is selected,
we can find many false positive
and the shape model is not
respected.

=>» consider many candidates
that have similar appearance
and then select the ones that
they are close to the shape
model
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Assume we have M landmarks, the matching operation amounts
o di L
to finding the set of label (C;")i<n.r<m  that minimize

E= Z dlff( P.Ic C) + 4 Z pshape model (C ngzf CIE:E

all triplets
Use discrete optimization technique applied to high order Markov field [1].
[1] N. Komodakis, G. Tziritas, and N. Paragios. Performance vs computational efficiency for optimizing

single and dynamic mrfs: Setting the state of the art with primal dual strategies. Comput. Vis. Image
Und. (CVIU), 112(1):14-29, 2008



Wang et al (MICCAI 2010)

Conclusions :

= No segmentation results are provided, the evaluation was expressed in
terms of how resulting landmarks are close to the manually placed landmark.

= Only one muscle is segmented but this techngiue could be easily extended
to deal with several muscle segmentations.

= |tis hard to imagine that a software can find in a consistent manner
landmarks in different volumes, because muscle surface is very homogeneous
and smooth.



Probabilistic Multi-Shape Segmentation of Knee
Extensor and Flexor Muscles

Shawn Andrews!, Ghassan Hamarneh®, Azadeh Yazdanpanah!,
Bahareh HajGhanbari?, W. Darlene Reid?

1 Medical Image Analysis Lab, Simon Fraser University, Canada
{sda56, hamarneh, ayal8} @sfu.ca
2 Department of Physical Therapy, University of British Columbia, Canada
wdreid @mail.ubc.ca, baharehg@interchange.ubc.ca

1- Construct a Model using PCA
2- Align the model to the image using two information
2.1 —image contours obtained using an edge detector
2.2 — intensity model to detect, background, subcuteneous fat and
muscles.



Probabilistic Multi-Shape Segmentation of Knee
Extensor and Flexor Muscles

Shawn Andrews!, Ghassan Hamarneh!, Azadeh Yazdanpanah!,
Bahareh HajGhanbari?, W. Darlene Reid?

1 Medical Image Analysis Lab, Simon Fraser University, Canada
{sda56, hamarneh, ayal8} @sfu.ca
2 Department of Physical Therapy, University of British Columbia, Canada
wdreid @mail.ubc.ca, baharehg@interchange.ubc.ca

Model definition : A probabilistic map that assigns for each pixel the
probability of belonging to one specific muscles.



Andrews et al (MICCAI 2011)

Model construction :
1- realign the different training segmentation using the anatomical images.

2- Apply the ILR transform which is a projection of the probability vector in
a multi-dimensional with real value and lower dimension.

2.1 The ILR Transform

A probabilistic segmentation can be represented as a function g : 2 — S, where 2 is
the image domain and S* is the simplex of all valid R = 12 length probability vectors
(11 muscles and background). If we define a function ¢ : S — RZ~1, bijectively
mapping probability vectors to a vector of real numbers, then we can also represent
probabilistic segmentations by another function 7 = ¢ o g : 2 — RF~! Using this
representation, the space of segmentations, referred to as ILR space, 1s closed under
linear combinations. This allows us to perform PCA on training segmentations without
the need for constraints to ensure our results have valid probabilities. summing to unity.



Andrews et al (MICCAI 2011)

Model construction :
1- realign the different training segmentation using the anatomical images.

2- Apply the ILR transform which is a projection of the probability vector in
a multi-dimensional with real value and lower dimension.

3- performing a PCA on the training sample, the shape is parameterized as :

ny)=mne +Ty

4- Shape energy term enforces a Mahalanobis type penalty to allow
components corresponding to eigenmodes of greater variance to vary more

: T 4—1
Eshape(7) =7 A .



Andrews et al (MICCAI 2011)

Registration of the model to the image

1- extract image contours

Slice Intensities Thresholded : Curvature: ¢ Boundary: h
Intensities

Fig. 3: Extracted image information. From left to right, we see for a thigh slice: the intensity
values; the approximation of the muscle regions extracted by intensity thresholding; the curvature
values ¢ and ¢; and the boundary estimate h.

Egpy( )—Zzl— z))|V.nl? (5)

r=1 .Ltﬂ

E'ppy allows the segmentation to have large gradient only on voxels deemed likely to
be part of a boundary, otherwise the gradient is penalized. Note once again that Egpy
1s convex 1n 7 and thus in . Also note that V7 measures the rate of change between
the probabilities of neighboring voxels measured via the Aitchison distance.



Andrews et al (MICCAI 2011)
Registration of the model to the image

I=CHCgouRa FEa1ction of Pixels at Varying Intensities

2. Subcutaneous fat

3. Bone marrow of femur
4, Cortical bone of femur

Class 2
a-""f &
5. Intermuscular fat (Medium)
6. Muscle

Class 3
iLight)

% 02 04 06 0.8
Intensity

Fraction of Pixels
=
h

Fig. I: Regions in the thigh, and the intensity profiles of the thigh MRIs. We see the background
and cortical bone are dark, the muscle is medium, and the fat and bone marrow are light.

As seen in Fig. 1, the different muscle regions have almost identical intensity distri-
butions and textures, but the non-muscle region (fat and bone) has significantly different
intensities. Thus, we create a probabilistic segmentation gg¢. Where voxels with light
or dark intensities are assigned to the non-muscle region with probability 1 and voxels
with medium intensities are assigned probability ﬁ for each of the 11 muscle regions.
We then define an energy term:

Epc(v) = d(npa,n(7))* . 3)



Andrews et al (MICCAI 2011)
Registration of the model to the image

Our energy is a linear combination of the convex energy terms (3). (5). and (6):
E(v)=MEBc(v)+ XEppy(7) + AsEshape () - (7)

Once our energy 1s constructed, we segment a novel image by finding 7, = argmin, E(v).
and taking g,., = &~ (ng + I'v,nin ) as our final probabilistic segmentation.

Results & Validation

Fig. 5: (Color Figure) A comparison between several of the GT segmentations (left side of each
pair) and the segmentations generated by our method (right side of each pair). The left two pairs
are from COPD patients and the right two pairs are from non-COPD patients. DSC scores for

each pair are 0.94, 0.91, 0.95, and 0.93.



Andrews et al (MICCAI 2011)

Results & Validation
Probabilistic Thigh Muscle Segmentation Using Shape Priors 7

L ' 4. !
- i 0.9
t’ . ~ SEE:
4 ! ; 0.8
4 ) d i [
0.7 Mumber of Seeds

200 400 800 800 1000

300 Seeds 500 Seeds 700 Seeds 1000 Seeds Our Method RW DSC vs.
DSC=0.68 DSC=0.88 DSC=0.87 DSC=0.93 DSC=0.95 Number of Seeds

Fig. 6: The areas of mis-segmentation by the RW algorithm with varying numbers of randomly
selected seeds (left) and our algorithm (center), along with a graph showing how the average DSC
of RW changes with the number of seeds used (right).



Segmentation with random walks (Grady, 2006 )

Let’s consider a walker that is
\ \ moving randomly on the
\ \ ground, to progress from one
\ \ position, he had many

/ I 2 \ | \ possibilities.

/ / \ \ The probability of moving to a
/ / specefic position is inversily
proportionnel to the effort
/ / spent to make the step.

The walker will prefer easy path
(flat) then more difficult ones
(bumpy ground)



Segmentation with random walks (Grady, 2006 )

Assume that there are some
\ \ landmarks on the ground.

1 \\ \ Q: What is the probability that

the random walks arrives first
: to the green/red/ purple
/ l landmark ?




Segmentation with random walks (Grady, 2006 )

A : The random walk algorithms



Segmentation with random walks (Grady, 2006 )

Non segmented view with drawn seeds automatic segmentation



Segmentation with random walks (Grady, 2006 )

Graph based formulation

From an image I with N pixels, we build a undirected graph G = (V. £), with V
representing the set of nodes, |V| = N, and £ the set of edges, where the i-th
node v; corresponds to the i-th pixel of image I. We denote the edge connecting
the nodes with indices 7 and j as ¢;;, and 1ts weight as w;; = 0 . Since the
graph 1s undirected, ¢;; and ¢;; denote the same edge and their weight 1s the
same: w;; = w;j;. Lhe set of edges £ 1s only composed of pairs of adjacent pixels,
such that graph G contains only cliques of order 0 and 1. We also denote the
neighborhood of pixel i as N; = {v;/e;; € £}

Given a set of labels S (e.g. the indices of the muscles), segmenting an image
I 1s defined as a graph partitioning procedure, i.e. consisting in assigning a label
s € § to each node v € V. We refer to the assignment of node v; to the label s
as: [ (i) = s.



Segmentation with random walks (Grady, 2006 )

Transition probabilities definition

The transition probabilities are to be set accordingly to the desired properties of
the segmentation. In general — and such is case of in muscle segmentation — one
wishes to segment an image according to the visible boundaries. A boundary in
an 1mage 1s the result of an Iintensity pattern where many side-by-side pixels of
very different intensities form a continuous curve In our probabilistic framework,
this leads to have higher probability transitions for pairs of pixels having different
intensities and lower probability transitions for pixels having similar intensities
(cf. figure |5.1.2). A well-known choice for transition probability is the Gaussian
kernel:

w;; = exp (—;3 (1; — Ijjz) ._ (5.1.8)

where w;; 1s thus defined as the weight for edge ¢;;. Since p;; 1s a probability,
the transition probability is given by:

. (5.1.9)



Segmentation with random walks (Grady, 2006 )

Labelling

In this framework, the global label assignment 1s modeled by a random variable.
We denote the probability of assignment of voxel i to label s as ¥ = Pr (I (i) = s).
In this notation, [ (i) = argmax, =§. We denote the transition probability from
node ¢ to node j as p;;. In general, we have p;; # pj;.

Assume we possess a set Vs of seeds, 1.e. pre-labeled nodes for each label
(typically, manually marked voxels). We denote the set of unknown nodes as Vi,

such that Vy; UVy =V and V; N Vy = 0. For conveniency in the notations, we
denote the sets of indices of the nodes in Vi; and V), as U and M respectively.

Since the label of marked voxels 1s known for certain, their assignment probability
is either 1 or 0

1 1(i) =
Vie M, zf = (i) =s,
0 1(z)#s.

We denote to the probability vector for label s as x®, where x* contains the z;

for each voxel i. Then, without loss of generality, we can assume the variables in
x* are ordered so that we can write:

x5 = [ U ] (5.1.2)

(5.1.1)



Segmentation with random walks (Grady, 2006 )

Objective function :

Yo € Vu, x; = E Dij :;.rrj.

v; ENG
E]%.W (XS) = Z Wi (If - I?)E .
eijEE

Let us define A, the non-normalized transition matrix — also designated as the
affinity matriz:

0 otherwise,

Wiq ] T E
Ay = {” i e € (5.1.10)
and [, the diagonal matrix such that:

Dii = wij. (5.1.11)
J
and L, the unnormalized combinatorial Laplacian matrix

L=D—A. (5.1.12)



Segmentation with random walks (Grady, 2006 )

Objective function

The Random Walks objective functional is defined as:

1
Eiw (x*) = EXSTLXS. (5.1.13)
In the following, we will see that minimizing this functional amounts to solving the
probabilistic Random Walks equation (5.1.3), hence determining the assignment

probabilities. Since w;; = wj; (it is an undirected graph), the entries of L are:

fzk W4 le:j
Li,j = § —W;j if €ij € £, (5114)

0 otherwise.

“



Segmentation with random walks (Grady, 2006 )

Objective function

We decompose L into sub-blocks for marked and unknown nodes, hence defining
subblocks L. Ly and B:

I _ L B]‘

B" Lu

which allows us to rewrite equation ((5.1.13)) as:

1 1
Epw(x®) = §X§TLUX; + x5 Bx3, + ixﬂLﬁ.fxif, (5.1.17)

By differenciating (5.1.17) with respect to the unknown variables, we obtain:

L[,T}{f}r = _B}{if (5118)



Segmentation with random walks (Grady, 2006 )

Results : it naturally respects weaks boundary

Y




Segmentation with random walks (Grady, 2006 )

Application to muscle segmentation

non segmented view with automatic segmentation
drawn seeds



Segmentation with random walks (Grady, 2006 )

Application to muscle segmentation

a non segmented view manual segmentation



Segmentation with random walks (Grady, 2006 )

Application to muscle segmentation

User interaction: drawing “seeds”
20 min instead of 4 hours
Random Walk computation (< 5 min)

Accuracy of the Random Walk
segmentation: 9o%



RW & Prior Shape Model (Baudin et al MICCAI 2012)

Objective function :

Vo, €V, xi =(1—X\;) Z Pz‘j’ﬂj + X,
UJ:EN.;E

The random walker is guided by the
muscle shape model instead of
seeds.

Mean shape



RW & Prior Shape Model (Baudin et al MICCAI 2012)

Objective function :

Yo, eV, x; = (1—N\;) Z Pij :r:jf + Az,

'Uj'E.'"!'r:i
8 8 8 8 8 sy 1 8 s
ERw tprior (X°) = X TLx® + (x° —x§) Q(x*—x7). (5.2.11)
= x*TLx*+|x* — x5, (5.2.12)

where ||.||, is a weighted norm by Q. Intuitively, the optimal segmentation
minimizing this functional is influenced by both the Random Walk principle
— segmentation along boundaries — and by the prior model — privileging label
assignments consistent with the prior probabilities. Any solution to this problem
is a probability distribution if {zf,}_ is a probability distribution (please refer

to appendix B.3):
Yorg=1=) =1 (5.2.13)




RW & Prior Shape Model (Baudin et al MICCAI 2012)

Weight s of the prior knowledge : constant weight

2
Efw cons (X7) = x* ' LX" + wehape [IX* — x5 ” (5.3.3)

This model simply penalizes the deviation of vector z* from x{ with a uniform
weighting scheme.

The prior assignment probabilities can be obtained by computing the empirical
mean of the assignment probabilities over the training set 7. Since the training
T 1s composed of manually segmented images, the assignment of each pixel is
known and the corresponding assignment probability is either 0 or 1. Retfering to
l; (i) as the assigned label of pixel i in training image k, the binary assignment
probability 1s defined by:

1 if I, (i) = s,
28 = it 1 (7) ‘f (5.3.4)
0 if I (i) # s,

and the corresponding vector 1s denoted as z;. Then, xg 1s computed as:

1
Xn = — Z7. 5.3.5



RW & Prior Shape Model (Baudin et al MICCAI 2012)

Weight s of the prior knowledge : Entropy

Entropy model The previous shape model weights each pixel by the same
amount wshape towards the average probability. However, if we own a confidence
measure of the quality of this prior model, it could be useful to vary the weights in
order to constrain the pixels according to the degree of confidence. For instance,
the entropy

eli) =— Z:rf,i- log (z5;) (5.3.6)

is a measure of how certain the prior model is of the pixel assignment. Indeed,
if pixel 7 was consistently assigned to label s in the training set, then e (i) =~ 0
. Conversely, if pixel 7 has similar assignment probabilities for all the labels,
e (i) ~ log (|S]). Hence, a possible weighting scheme is given by:

[ (3)
ﬂii — Wghape 1— . 5.3.7
shep ( lﬂg|5|) (5.37)




RW & Prior Shape Model (Baudin et al, MICCAI 2012 )

Weight s of the prior knowledge : Gaussian weights

Gaussian model We observe that the term ||x* — }{SHE in the constant shape
prior functional can be interpreted as the typical log-likelihood functional for
independent Gaussian variables, with mean xg and variance 1:

I = 313 = —log exp (— [Ix* — x5*) . (5.3.8)

Pursuing this Gaussian analogy, we may use the empirical variance as a measure
of confidence: {

In the previous, we may use the empirical estimate of the variance over the

training set:
1
~D . E s 2
0° (i) = —=—= (zp: —20:)" - (5.3.10)
TT1] 2 2 (i —



RW & Prior Shape Model (Baudin et al, MICCAI 2012 )
Weight s of the prior knowledge : Confidence map

Assume we possess such a “confidence map” ¢, with values close to 0 on strong
contours, and values close to 1 in homogeneous regions.| we can set:

2¥ = wepapediag (c) . (5.3.12)

In the following, we propose a simple formula to compute the confidence map,
but many other methods would likely be as effective. Denoting the local variance
at pixel i computed on a patch with radius r as o2 (i) , we propose the folliwing
formula:

c; = exp (—kvc:r,f () - (5.3.13)

where £, 1s a free parameter .



RW & Prior Shape Model (Baudin et al, MICCAI 2012 )

Experimental results

Constant 0.01 L o= {_ I_} 1

4 muscles -
Cmap 0.01
Entropy 0.01 e SR + 4 }____ __‘I
Variance 0.1
o0 o0z o4 06 o8 10

Comparing performances for various weighting schemes. the boxplots are
generated from Dice coefficients for all labels (4 muscle database).
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Experimental results
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Comparison of our method (bottom box) with the “registration” method
(top box) and the method from (Gilles and Pai, 2008) (middle box).
Dataset : subset of the 4 muscle dataset with only 15 test volumes.
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Experimental results
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Experimental results

Fig. 3. Segmentation results obtained with the RW algorithm with shape prior and
confidence map. Segmentation errors are shown in white.
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The random walker is guided
Mean shape and principal by the muscle shape model
variation mode instead of seeds.
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Model construction using PCA

Assume we possess a set T of co-registered segmented training volumes. We
model a segmentation vector x as a random vector X with normal distribution
N (xq,X), for which we possess a number of samples {zz } k=1...|7|- Let us denote
the centered segmentation vectors as x; = zr — Xo . The expression of the
empirical covariance ¥ is given by:

1
Eij = mz(zki_;:ﬁﬂi) (Ekj —;I.?nj), (543)
Ik
The previous can be reformulated in matrix form as
o L x xT (5.4.4)
T N

. [ c
Wlth _{YE — I:Kj_ st X|ﬂ"r|:| .

Then we compute the eigen-decomposition of X:

S =UAU", (5.4.5)
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Model construction using PCA

The matrix U,, determines a shape space, in which the projection of any
segmentation x in the shape space is given by

% = x0 + Un7, (5.4.13)

where 7 1s the coordinate vector of = in the shape space. We expect that = will
a good approximation of a valid segmentation x. For any segmentation, we can

write:
X = xg + U,y + dx, (5.4.14)

where dx 1s the deviation of x from the shape space. If the shape space models
the space of valid segmentation well, then the norm of dx will be small when x
is a valid segmentation.
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Objective function

In order to obtain a segmentation which remains close to the shape space, we
want to minimize the objective function (5.4.2)) with respect to both dx and -,
while keeping dx small. This leads to the following functional:

Erwpea (dx,7) = (dx + Uy +%)" L(dx + U~y + 7) + \ax [[dx|*.  (5.4.15)

where A\gx 1s a hyperparameter setting a constraint on the norm of dx. We
reformulate (5.4.15) as:

Erwpea (¥) = (Ay +x0)" L (Ay +%0) + Aaxy” By, (5.4.16)
with
y = [ %x ] , A=[Igkn U], B= [ I‘IEN g ] . (5.4.17)

where [ 18 the identity matrix of size KN x KN.
The minimum of (5.4.16|) verifies:

(ATEA n Ade) v = AT Ixq. (5.4.18)
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Experimental results
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