#### Ensembles flous en traitement d'images et vision

Isabelle Bloch

Isabelle.Bloch@enst.fr

http://www.tsi.enst.fr/~bloch

Ecole Nationale Supérieure des Télécommunications - CNRS UMR 5141 LTCI

Paris - France



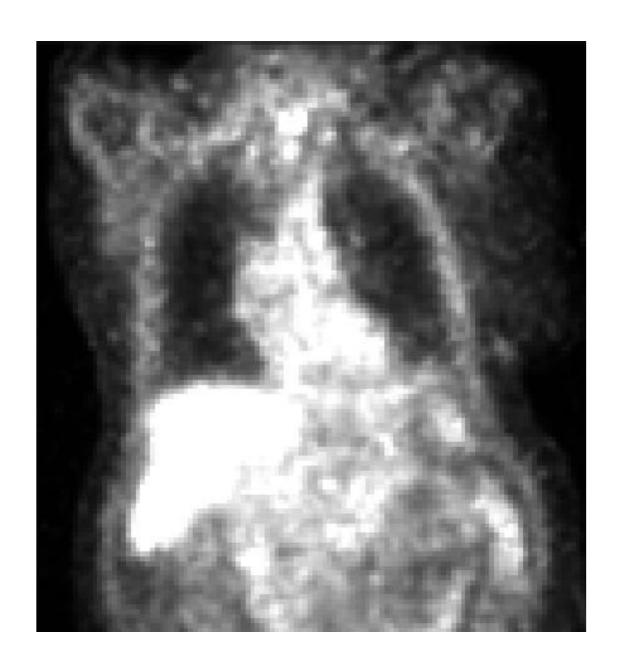
#### Intérêt du flou en traitement d'images

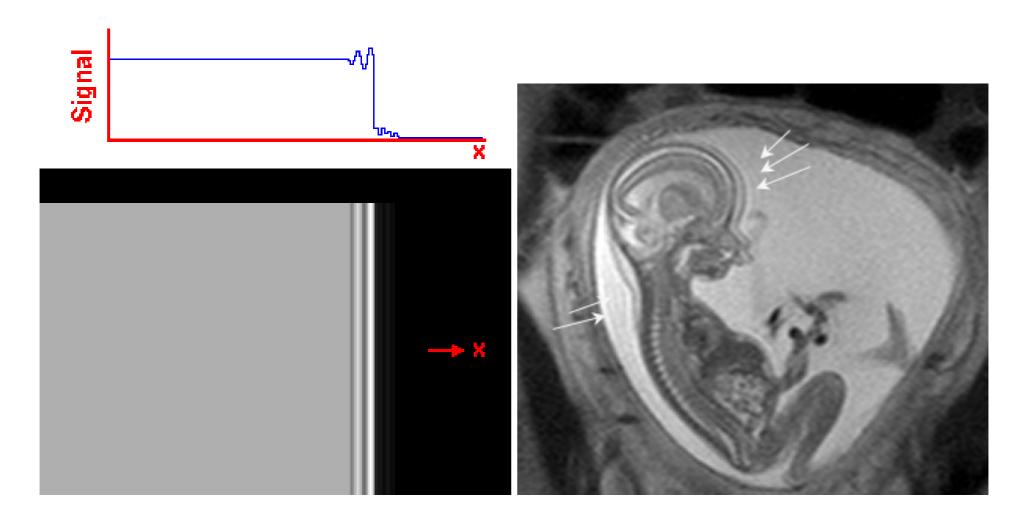
- Représentation de l'information spatiale dans les images
  - avec son imprécision
  - à différents niveaux (local, régional ou global)
  - sous différentes formes (numérique, symbolique, quantitative, qualitative)
- Représentation d'informations très hétérogènes, extraites directement des images ou issues de connaissances externes
- Généralisation aux ensembles flous des opérations pour manipuler l'information spatiale
- Souplesse des opérateurs de combinaison (fusion)

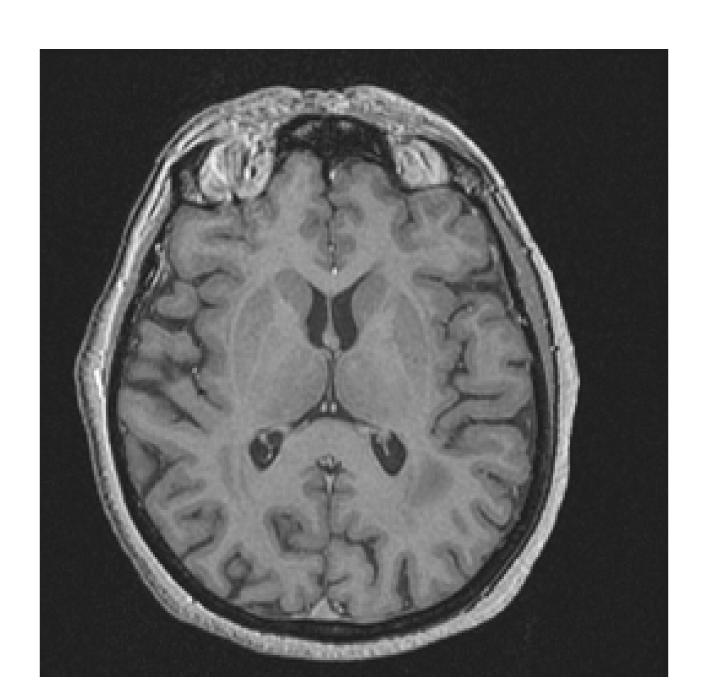
#### Deux approches

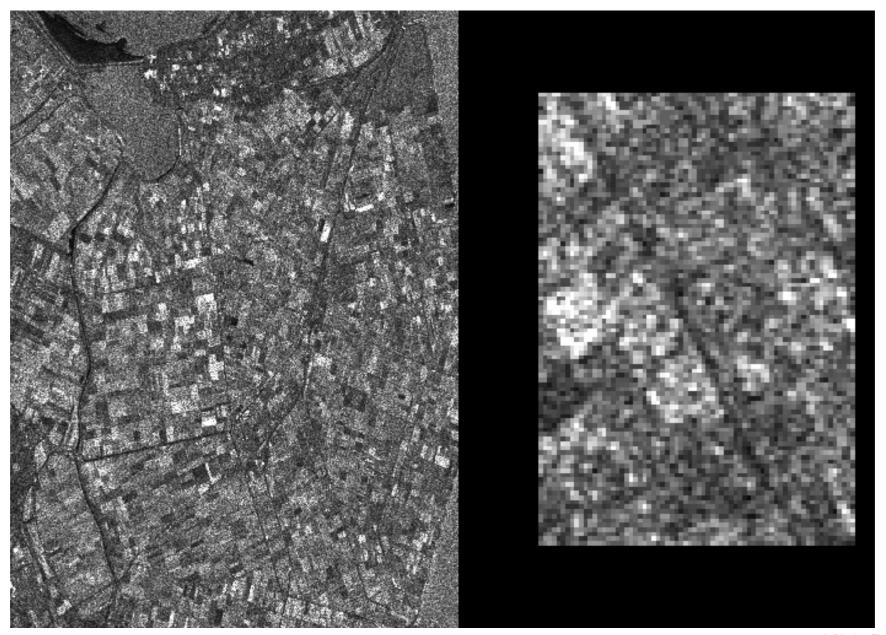
- Raisonnement sur des attributs flous.
- Raisonnement sur des régions ou objets flous

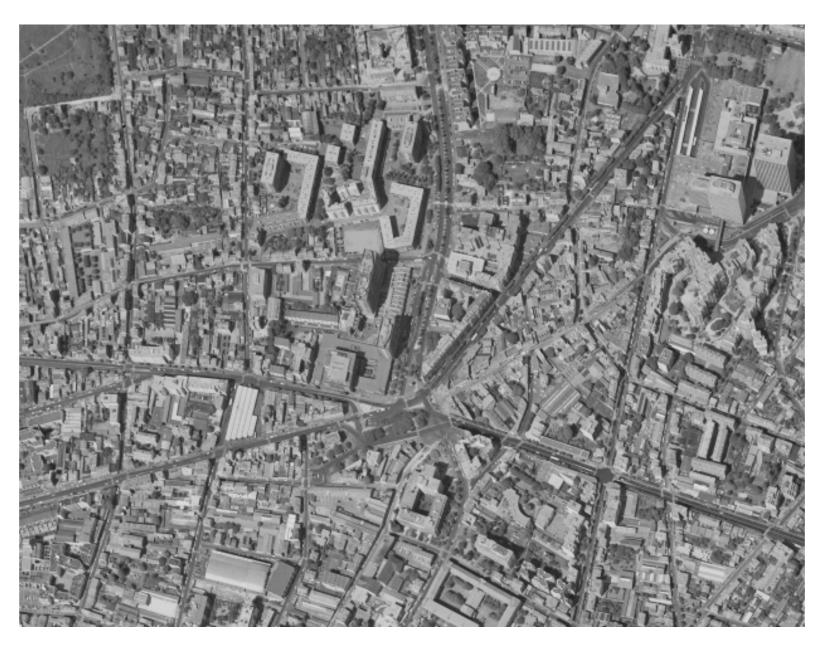






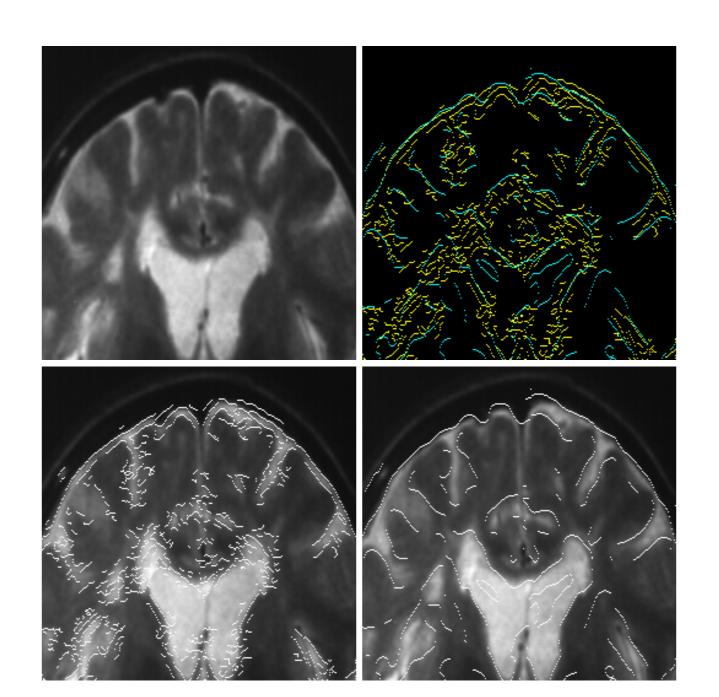






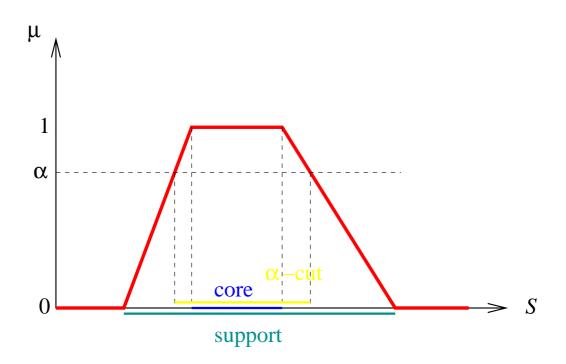






#### **Définitions : ensembles flous**

- Espace S (image, caractéristiques, etc.)
- Ensemble flou :  $\mu: \mathcal{S} \to [0,1] \mu(x)$  = degré d'appartenance de x à  $\mu$
- Support :  $Supp(\mu) = \{x \in \mathcal{S}, \mu(x) > 0\}$  Noyau :  $\{x \in \mathcal{S}, \mu(x) = 1\}$
- $\alpha$ -coupe :  $\mu_{\alpha} = \{x \in \mathcal{S}, \mu(x) \geq \alpha\}$
- Cardinal :  $|\mu| = \sum_{x \in \mathcal{S}} \mu(x)$  (pour  $\mathcal{S}$  fini)
- Convexité :  $\forall (x,y) \in \mathcal{S}^2, \forall \lambda \in [0,1], \mu[\lambda x + (1-\lambda)y] \geq \min[\mu(x), \mu(y)]$
- Nombre flou : ensemble flou convexe sur  $\mathbb{R}$ , s.c.s., unimodal, de support compact. Exemple : ensembles flous LR.



## **Opérations de base (Zadeh, 1965)**

- Egalité :  $\mu = \nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x) = \nu(x)$
- Inclusion :  $\mu \subseteq \nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x) \leq \nu(x)$
- Intersection :  $\forall x \in \mathcal{S}, (\mu \cap \nu)(x) = \min[\mu(x), \nu(x)]$
- Réunion :  $\forall x \in \mathcal{S}, (\mu \cup \nu)(x) = \max[\mu(x), \nu(x)]$
- Complémentation :  $\forall x \in \mathcal{S}, \mu^C(x) = 1 \mu(x)$
- Propriétés :
  - cohérence avec les définitions binaires
  - $\mu = \nu \Leftrightarrow \mu \subseteq \nu \text{ et } \nu \subseteq \mu$
  - la complémentation floue est involutive :  $(\mu^C)^C = \mu$
  - l'intersection et la réunion sont commutatives et associatives
  - l'intersection et la réunion sont idempotentes et mutuellement distributives
  - l'intersection et la réunion sont duales par rapport à la complémentation :

$$(\mu \cap \nu)^C = \mu^C \cup \nu^C$$

•  $(\mu \cup \nu)_{\alpha} = \mu_{\alpha} \cup \nu_{\alpha}$ , etc.

MAIS: 
$$\mu \cap \mu^C \neq \emptyset$$
,  $\mu \cup \mu^C \neq S$ 

## Définitions : théorie des possibilités

Mesure de possibilité : fonction  $\Pi$  de  $2^{\mathcal{S}}$  dans [0,1] telle que :

- 1.  $\Pi(\emptyset) = 0$
- 2.  $\Pi(S) = 1$
- 3.  $\forall I \subseteq N, \forall A_i \subseteq \mathcal{S}(i \in I), \ \Pi(\cup_{i \in I} A_i) = \sup_{i \in I} \Pi(A_i)$

Mesure de nécessité :  $\forall A \subseteq \mathcal{S}, \ N(A) = 1 - \Pi(A^C)$ 

- 1.  $N(\emptyset) = 0$
- **2**. N(S) = 1
- 3.  $\forall I \subseteq N, \forall A_i \subseteq S(i \in I), \ N(\cap_{i \in I} A_i) = \inf_{i \in I} N(A_i)$

#### Quelques propriétés :

- $\max(\Pi(A), \Pi(A^C)) = 1$ ,  $\min(N(A), N(A^C)) = 0$
- $\Pi(A) \ge N(A)$
- $N(A) > 0 \Rightarrow \Pi(A) = 1, \quad \Pi(A) < 1 \Rightarrow N(A) = 0$
- $N(A) + N(A^C) \le 1$ ,  $\Pi(A) + \Pi(A^C) \ge 1$

Distribution de possibilité : fonction  $\pi$  de  $\mathcal S$  dans [0,1] avec la condition de normalisation  $\sup_{x\in\mathcal S}\pi(x)=1$ 

Cas fini :  $\Pi(A) = \sup\{\pi(x), x \in A\}$ 

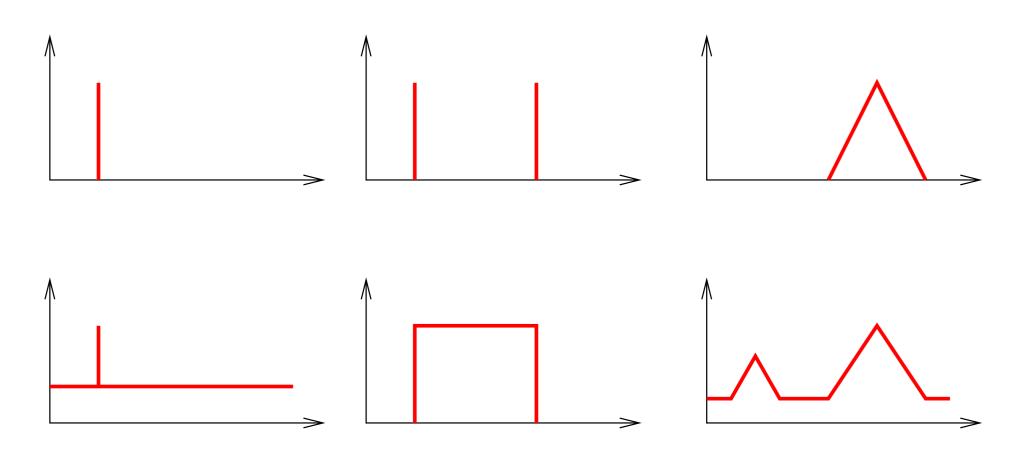
Inversement :  $\forall x \in \mathcal{S}, \ \pi(x) = \Pi(\{x\})$ 

$$N(A) = 1 - \sup\{\pi(x), x \notin A\} = \inf\{1 - \pi(x), x \in A^C\}$$

## **Sémantique**

- degré de similarité (notion de distance)
- degré de plausibilité (qu'un objet dont on ne connaît qu'une description imprécise soit bien celui qu'on cherche à identifier)
- degré de préférence (classe floue = ensemble des "bons" choix), proche de la notion de fonction d'utilité

# Représentation de différents types d'imperfections



## Opérations ensemblistes générales

#### Complémentation floue

fonction c de [0,1] dans [0,1] telle que :

- 1. c(0) = 1
- 2. c(1) = 0
- 3. c involutive :  $\forall x \in [0,1], c(c(x)) = x$
- 4. c strictement décroissante

Forme générale des complémentations continues :  $c(x) = \varphi^{-1}[1 - \varphi(x)]$  avec  $\varphi: [0,1] \to [0,1], \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi$  strictement croissante.

Exemple:  $\varphi(x) = x^n \Rightarrow c(x) = (1 - x^n)^{1/n}$ 

## Opérations ensemblistes générales

Normes triangulaires (intersection floue)

t-norme  $t:[0,1]\times[0,1]\to[0,1]$  telle que :

- 1. commutativité :  $\forall (x,y) \in [0,1]^2, \ t(x,y) = t(y,x)$
- 2. associativité:  $\forall (x, y, z) \in [0, 1]^3, \ t[t(x, y), z] = t[x, t(y, z)]$
- 3. 1 est élément neutre :  $\forall x \in [0,1], \ t(x,1) = t(1,x) = x$
- 4. croissance par rapport aux deux variables :

$$\forall (x, x', y, y') \in [0, 1]^4, \ (x \le x' \text{ et } y \le y') \Rightarrow t(x, y) \le t(x', y').$$

De plus : t(0,1) = t(0,0) = t(1,0) = 0, t(1,1) = 1, et 0 est absorbant  $(\forall x \in [0,1], t(x,0) = 0)$ .

Exemples de t-normes : min(x, y), xy, max(0, x + y - 1).

## **Opérations ensemblistes générales**

#### Conormes triangulaires (réunion floue)

t-conorme  $T:[0,1]\times[0,1]\to[0,1]$  telle que :

- 1. commutativité
- 2. associativité
- 3. 0 est élément neutre
- 4. croissance par rapport aux deux variables

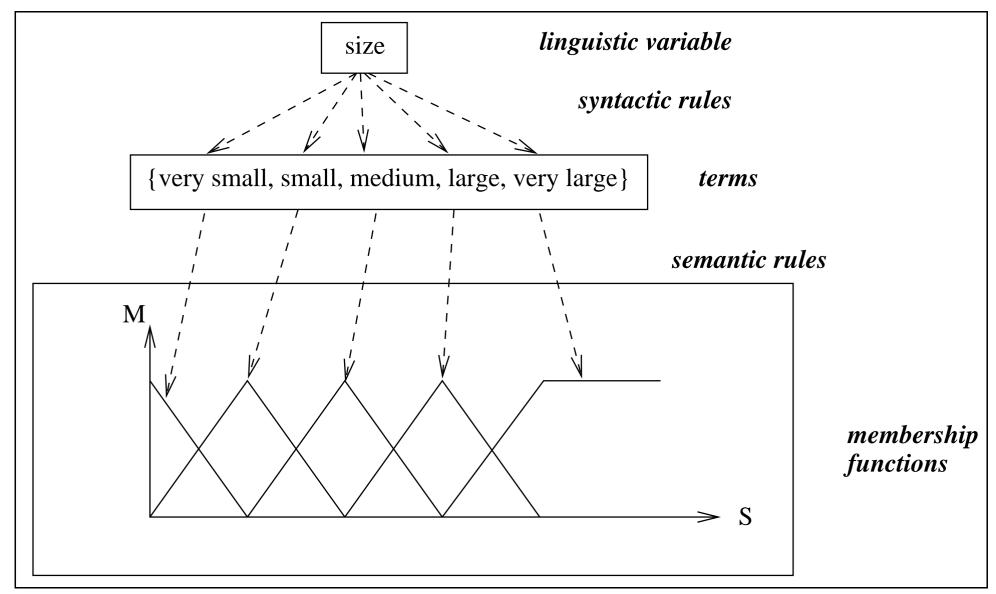
De plus : T(0,1) = T(1,1) = T(1,0) = 1, T(0,0) = 0, et 1 est absorbant.

Exemples de t-conormes :  $\max(x, y)$ , x + y - xy,  $\min(1, x + y)$ .

Dualité:  $\forall (x, y) \in [0, 1]^2, \ T[c(x), c(y)] = c[t(x, y)]$ 

Autres opérateurs de combinaison (moyennes, sommes symétriques, etc.) : voir partie sur la fusion

## Variable linguistique

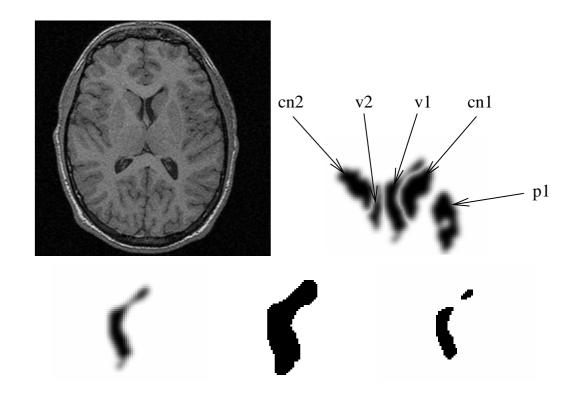


## **Objets flous spatiaux**

 $\mathcal{S}:\mathbb{R}^3$  ou  $\mathbb{Z}^3$  dans le cas discret

$$\mu: \mathcal{S} \to [0,1]$$

 $\mu(x)$  = degré avec lequel x appartient à l'objet flou



## Définition des fonctions d'appartenance

- souvent très heuristique
- $\bullet$  à partir de la fonction d'intensité I ou du gradient

$$\mu(x) = F_1[(I(x))]$$

$$\mu(x) = F_2[(\nabla I(x)]]$$

- en fonction de la réponse à un détecteur
- par introduction d'imprécision à la frontière d'une détection binaire

$$\mu(x) = \begin{cases} 1 & \text{si } x \in E^n(O) \\ 0 & \text{si } x \in \mathcal{S} - D^m(O) \\ F_3[d(x, E^n(O))] & \text{sinon} \end{cases}$$

par classification

#### **C-moyennes floues**

- $^{ullet}$  X= ensemble d'éléments à classer (définis dans un certain espace de caractéristiques)
- $P = \{C_1, C_2, ..., C_C\}$  = ensemble de classes

#### Partition floue:

- 1.  $\forall x_i \in X, \ \forall C_j \in P, \ \mu_{ij} \in [0,1]$ , où  $\mu_{ij}$  = degré d'appartenance de  $x_i$  à  $C_j$
- **2.**  $\forall x_i \in X, \ \sum_{j=1}^{C} \mu_{ij} = 1$
- 3.  $\forall j \leq C, \ 0 < \sum_{i=1}^{N} \mu_{ij} < N, \text{ où } N = \text{cardinal de } X$

#### Optimisation de:

$$J_m = \sum_{j=1}^{C} \sum_{i=1}^{N} \mu_{ij}^m ||x_i - m_j||^2$$

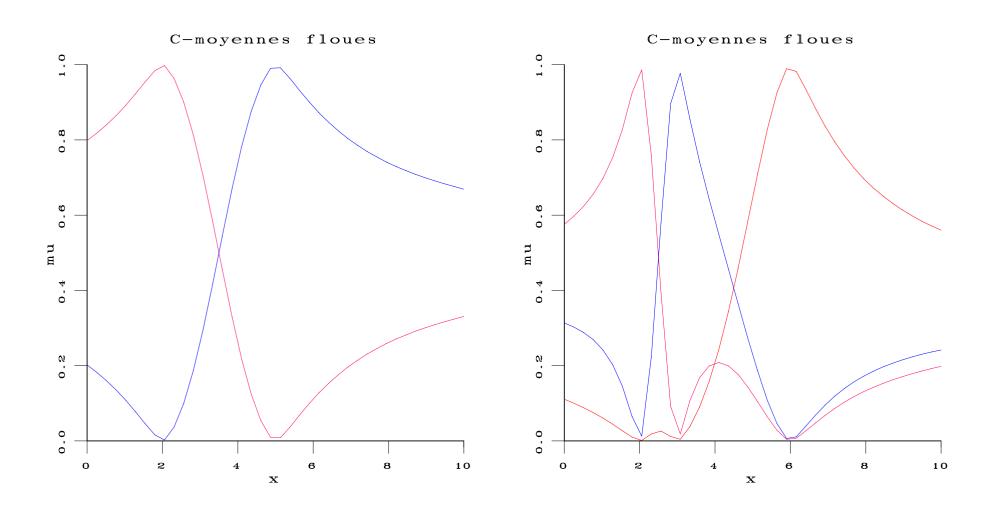
#### Solution itérative :

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{C} \left[\frac{||x_i - m_j||}{||x_i - m_k||}\right]^{\frac{2}{m-1}}}$$

$$m_j = \frac{\sum_i \mu_{ij}^m x_i}{\sum_i \mu_{ij}^m}$$

Convergence vers un minimum local de  $J_m$ 

# C-moyennes floues : exemple en 1D



## C-moyennes possibilistes

#### Optimisation de:

$$J = \sum_{j=1}^{C} \sum_{i=1}^{N} \mu_{ij}^{m} ||x_i - m_j||^2 + \sum_{j=1}^{C} \eta_j \sum_{i=1}^{N} (1 - \mu_{ij})^{m} ||x_i - m_j||^2$$

#### Solution itérative :

$$\mu_{ij} = \frac{1}{1 + \frac{||x_i - m_j||^2}{\eta_j}^{\frac{1}{m-1}}}$$

→ Meilleure forme des fonctions d'appartenance

#### Détermination de $\eta_j$

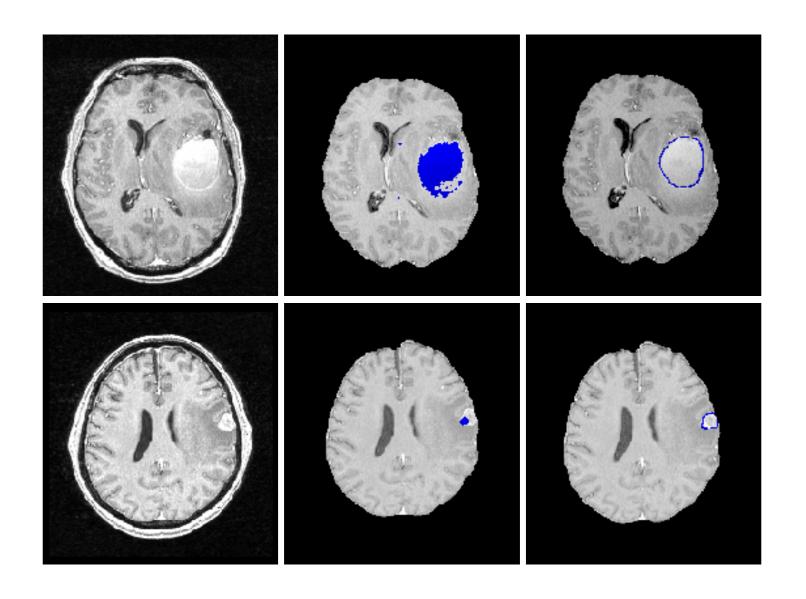
à partir de la dispersion :

$$\eta_j = \frac{\sum_{i=1}^{N} \mu_{ij} ||x_i - m_j||^2}{\sum_{i=1}^{N} \mu_{ij}}$$

 $^ullet$  à partir d'échantillons de la classe de  $\mu_{ij} \geq lpha$  :

$$\eta_j = \frac{\sum_{i \in \{\mu_{ij}\}_{\alpha}} ||x_i - m_j||^2}{|\{\mu_{ij}\}_{\alpha}|}$$

# Exemple sur des tumeurs cérébrales



#### k-plus proches voisins flous

Cas binaire:

$$\mu_i(x) = U[\sum_{j=1}^k \mu_i(x_j)]$$

avec

$$U(t) = \begin{cases} 1 & \text{si } t > \frac{k}{2} \\ 0 & \text{sinon} \end{cases}$$

Cas flou:

$$\mu_i(x) = \frac{1}{1 + \exp\left[\frac{1}{b_i}(\frac{k}{2} - t_i(x))\right]}$$

$$t_i(x) = \sum_{j=1}^k \mu_i(x_j) \quad t_i(x) = \sum_{j=1}^k \mu_i(x_j) \exp[-\lambda (\frac{d(x, x_j)}{d_m^i})^2]$$

 $b_i$ : contrôle le flou, par exemple en fonction de l'entropie floue

$$b_i = H(i) = \frac{1}{K} \sum_{x} \left[ \mu_i(x) \log(\mu_i(x)) + (1 - \mu_i(x)) \log(1 - \mu_i(x)) \right]$$

## Filtrage et segmentation (opérateurs locaux)

- Approches fonctionnelles
  - minimisation d'un indice de flou
  - fonction de pondération floue dans des filtres classiques
- Techniques à base de règles
  - exemple de lissage :

SI un pixel est *plus foncé* que ses voisins

ALORS *augmenter* son niveau de gris

SINON SI le pixel est *plus clair* que ses voisins

ALORS *diminuer* son niveau de gris

SINON le laisser inchangé

exemple de détecteur de contour :

SI un pixel appartient au contour

ALORS augmenter beaucoup son niveau de gris

SINON diminuer beaucoup son niveau de gris

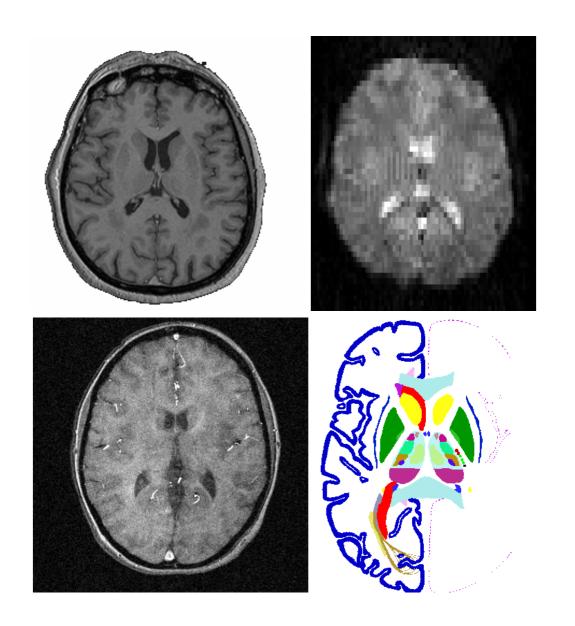
## Nécessité de la fusion d'images

- techniques d'acquisition et sources de données multiples
  - un capteur, plusieurs images
  - plusieurs capteurs
  - une image, plusieurs types d'informations
  - images multi-dates, séquences
- phénomènes complexes
- problèmes complexes (détection, reconnaissance, interprétation)
- applications variées

#### Une définition

Combinaison d'informations issues de sources différentes dans le but d'améliorer la décision

# Variété, hérérogénéité et complexité des informations

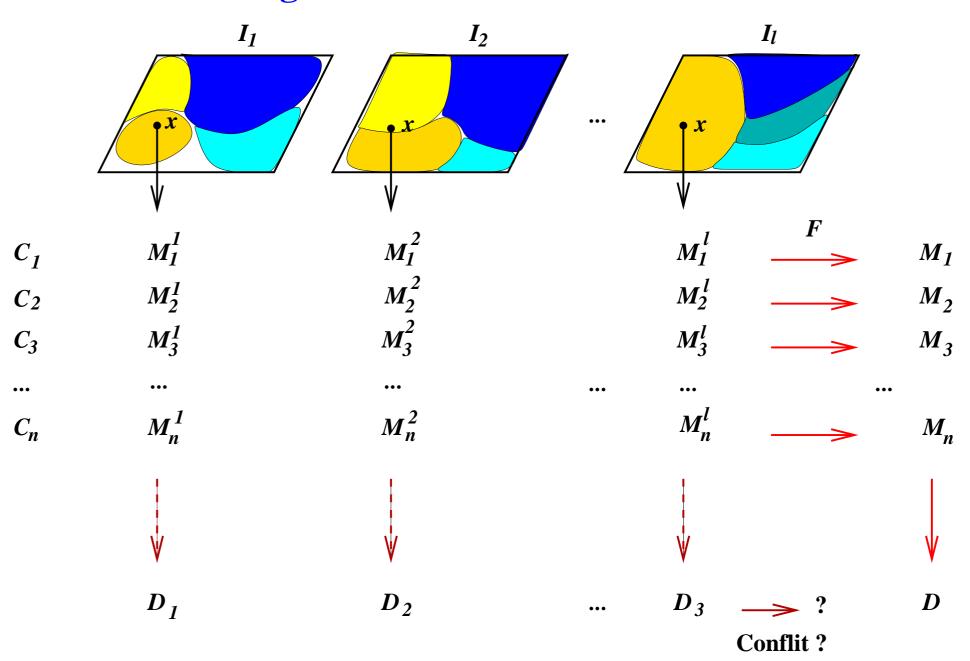


# Variété, hérérogénéité et complexité des informations





## Schéma général



# Principales étapes

- 1. modélisation du problème et de l'information
- 2. estimation
- 3. combinaison
- 4. décision

## Fusion floue et possibiliste

- imprécision ou imprécision et incertitude
- beaucoup d'opérateurs de combinaison
- grande souplesse dans les modes de combinaison

## Fusion floue et possibiliste : modélisation

Modèle flou :

$$M_i^j(x) = \mu_i^j(x)$$

sans contrainte particulière imposée

Modèle possibiliste :

$$M_i^j(x) = \pi_j^x(C_i)$$

$$\Pi_j(\{C_i\}) = \pi_j(C_i), \quad N_j(\{C_i\}) = \inf\{(1 - \pi_j(C_k)), \ C_k \neq C_i\}$$

### Opérateurs de fusion floue et possibiliste

- t-normes
- t-conormes
- moyennes
- sommes symétriques
- opérateurs dépendant du conflit exemple :

$$\max[\frac{\min(\pi_1, \pi_2)}{1 - conf(\pi_1, \pi_2)}, \min[\max(\pi_1, \pi_2), conf(\pi_1, \pi_2)]]$$

opérateurs dépendant de la fiabilité des sources - exemples :

$$\min[\pi_1, \max[\pi_2, conf(\pi_1, \pi_2)]]$$
 si  $\pi_1$  est plus fiable que  $\pi_2$ 

$$\max(\pi_j, 1-w_j)$$
 puis fusion conjonctive

- opérateurs dépendant de la fiabilité de chaque source pour chaque classe
- ...

#### Choix des opérateurs

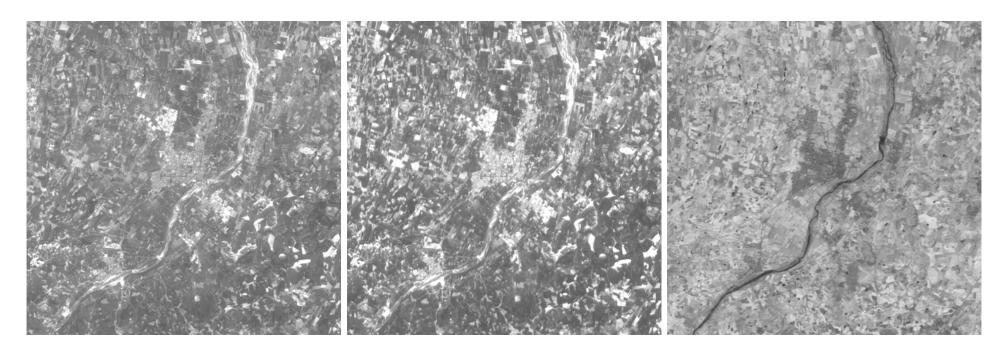
- Comportement :
  - conjonctif  $F(x,y) \leq \min(x,y)$
  - disjonctif  $F(x,y) \ge \max(x,y)$
  - compromis  $x \leq F(x,y) \leq y$  si  $x \leq y$ , et  $y \leq F(x,y) \leq x$  sinon
- Comportement constant ou adaptatif (en fonction des valeurs à combiner) exemple : sommes symétriques associatives (sauf médianes) :
  - conjonctif si  $\max(x,y) < 1/2$ :  $\sigma(x,y) \leq \min(x,y)$
  - disjonctif si  $\min(x,y) > 1/2$ :  $\sigma(x,y) \ge \max(x,y)$
  - compromis si  $x \le 1/2 \le y$  :  $x \le \sigma(x,y) \le y$  (et l'inégalité contraire si  $y \le 1/2 \le x$ )
- Dépendance d'une information supplémentaire, du contexte
- Propriétés
- Caractère plus ou moins discriminant pour la décision

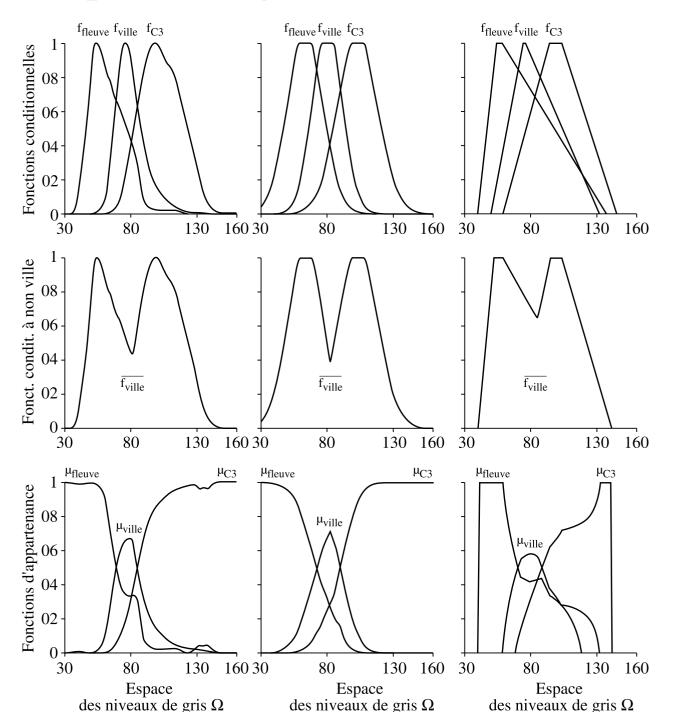
#### Fusion floue et possibiliste : décision

Règle principale :

$$x \in C_i$$
 Si  $\mu_i(x) = \max\{\mu_k(x), 1 \le k \le n\}$ 

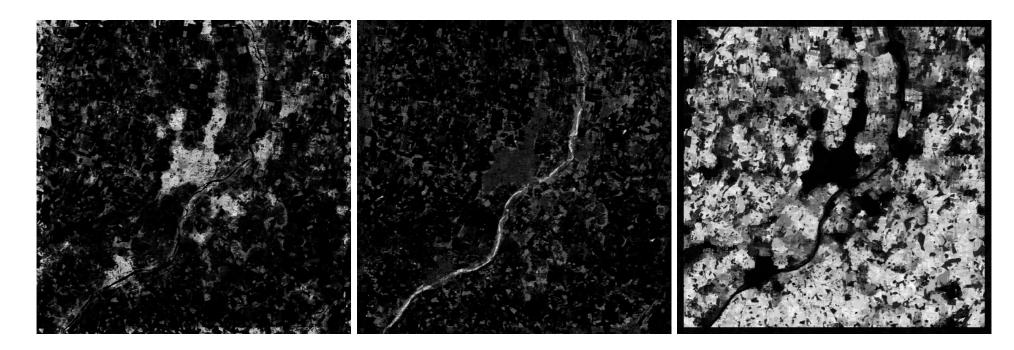
- Qualité de la décision :
  - netteté de la décision :  $\mu_i(x) \ge s$
  - caractère discriminant de la décision :  $\mu_i(x) \max\{\mu_k(x), k \neq i\} \geq \varepsilon$
- Classe de rejet
- Reclassification en fonction de contraintes spatiales





I. Bloch - Flou - p.29/48

Opérateur adaptatif :  $t^{1-\gamma}T^\gamma$  avec  $t=\min$  et  $T=\max$   $\gamma=H^i(x)$  (conjonction normalisée des degrés d'appartenance en x) :



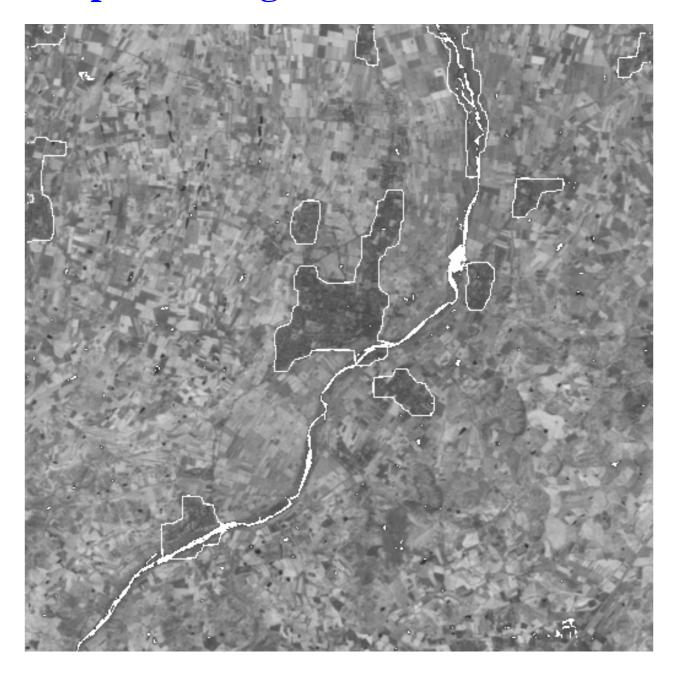


Canal 3

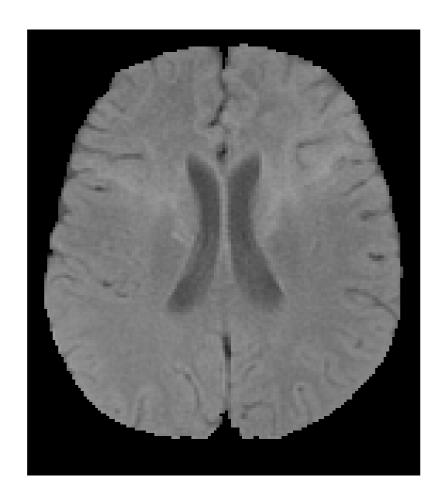
 $H^i(x)$ 

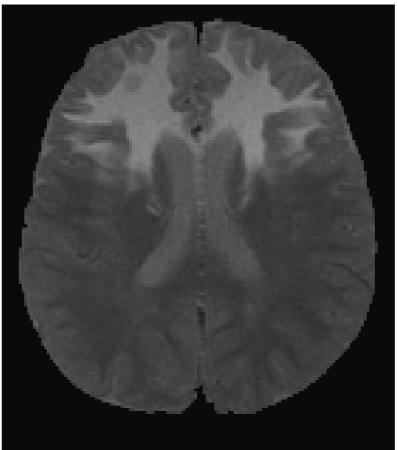
Fusion par t-norme

Fusion adaptative



### Exemple en imagerie médicale



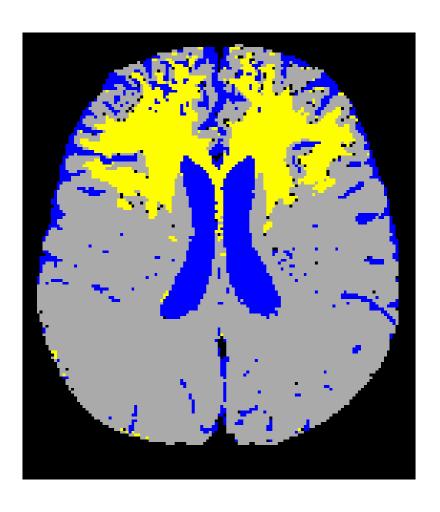


### Exemple en imagerie médicale

 $\mu_v^1$  et  $\mu_v^2$  : moyenne arithmétique

 $\mu_c^1$  et  $\mu_c^2$  : moyenne arithmétique

 $\mu_c^1$  et  $\mu_{path}^2$  : somme symétrique  $\frac{ab}{1-a-b+2ab}$ 



### Introduction de l'information spatiale

- Au niveau de la modélisation
  - localement :

$$M_i^j(x) = F_i[f_j(y), y \in \mathcal{V}(x)]$$

- primitives (segments, contours, régions) ⇒ information spatiale locale est implicitement prise en compte dans la représentation
- globalement : relations spatiales
- Au niveau de la décision
  - reclassification par majorité absolue

$$x \in C_i \text{ si } |\{y \in \mathcal{V}(x), \ y \in C_i\}| \ge \frac{|\mathcal{V}|}{2}$$

reclassification par règle majoritaire

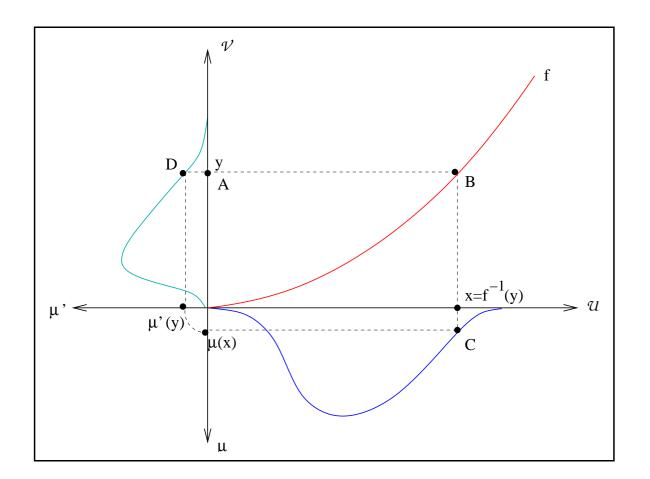
$$x \in C_i$$
 si  $|\{y \in \mathcal{V}(x), y \in C_i\}| = \max_k |\{y \in \mathcal{V}(x), y \in C_k\}|$ 

- Au niveau de la combinaison
  - plus rare et plus délicate
  - information supplémentaire comme source supplémentaire

# Comment étendre une opération ou relation au cas flou ?

Principe d'extension : f de S dans V

$$\forall y \in \mathcal{V}, \ \mu'(y) = \left\{ \begin{array}{ll} 0 & \text{si } f^{-1}(y) = \emptyset, \\ \sup_{x \in \mathcal{S}|y = f(x)} \mu(x) & \text{sinon} \end{array} \right.$$



# Comment étendre une opération ou relation au cas flou ?

#### Utilisation des $\alpha$ -coupes :

$$R(\mu) = \int_0^1 R_B(\mu_\alpha) d\alpha$$

$$R(\mu) = \sup_{\alpha \in [0,1]} \min(\alpha, R_B(\mu_\alpha))$$

$$R(\mu) = \sup_{\alpha \in [0,1]} (\alpha R_B(\mu_\alpha))$$

Principe d'extension fondé sur les  $\alpha$ -coupes :

$$\forall n, R(\mu, \nu)(n) = \sup_{R_B(\mu_\alpha, \nu_\alpha) = n} \alpha$$

# Comment étendre une opération ou relation au cas flou ?

#### Traduction formelle:

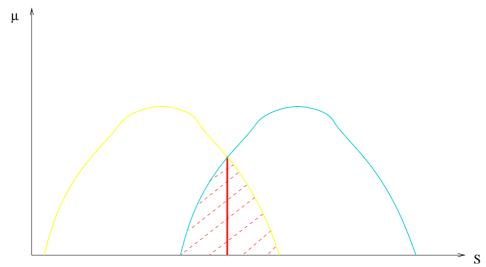
| ensemble $X$                | ensemble flou $\mu$            |
|-----------------------------|--------------------------------|
| complémentaire $X^{\cal C}$ | complémentation floue $c(\mu)$ |
| intersection ∩              | t-norme $t$                    |
| réunion ∪                   | t-conorme $T$                  |
| 3                           | sup                            |
| $\forall$                   | inf                            |

⇒ traduction aisée d'expressions algébriques et logiques

#### **Relations ensemblistes**

Ensembles flous ⇒ une question de degré

• Degré d'intersection :  $\mu_{int}(\mu, \nu) = \sup_{x \in \mathcal{S}} t[\mu(x), \nu(x)]$ 



ou : 
$$\mu_{int}(\mu, \nu) = \frac{V_n[t(\mu, \nu)]}{\min[V_n(\mu), V_n(\nu)]}$$
 avec  $V(\mu) = \sum_{x \in \mathcal{S}} \mu(x)$  (ou  $V(\mu) = \int_{x \in \mathcal{S}} \mu(x) dx$ )

Degré d'inclusion :

$$\inf_{x \in \mathcal{S}} T[c(\nu(x)), \mu(x)]$$

### Mesures géométriques d'objets flous

Surface ou volume : cardinal de l'ensemble flou

Périmètre:

$$p(\mu) = \int_{x \in \mathcal{S}} |\nabla \mu(x)| dx$$

Compacité:

$$c(\mu) = \frac{V(\mu)}{p(\mu)^2}$$

pour des disques flous convexes :  $c(\mu) \geq \frac{1}{4\pi}$   $\Rightarrow$  plus faible compacité est obtenue pour des disques nets

Ou mesures géométriques floues

Forme floue d'une mesure M (surface, périmètre, etc.) :

$$\forall \lambda \in \mathbb{R}^+, \ M(\mu)(\lambda) = \sup_{M(\mu_{\alpha}) = \lambda} \alpha$$

### Morphologie mathématique floue

Dilatation (degré d'intersection) :

$$D_{\nu}(\mu)(x) = \sup\{t[\nu(y-x), \mu(y)], y \in \mathcal{S}\}\$$

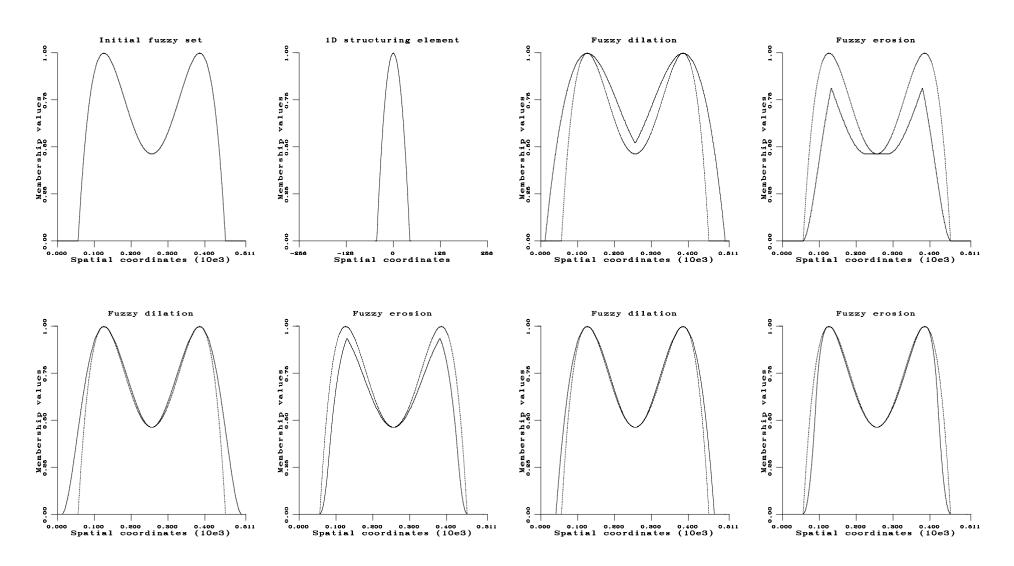
Erosion (degré d'inclusion) :

$$E_{\nu}(\mu)(x) = \inf\{T[c(\nu(y-x)), \mu(y)], y \in \mathcal{S}\}\$$

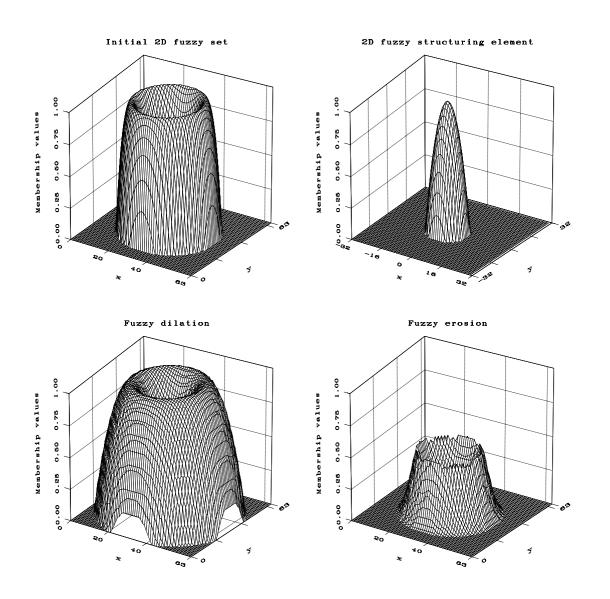
- Ouverture et fermeture par composition
- Propriétés similaires à celles de la morphologie classique

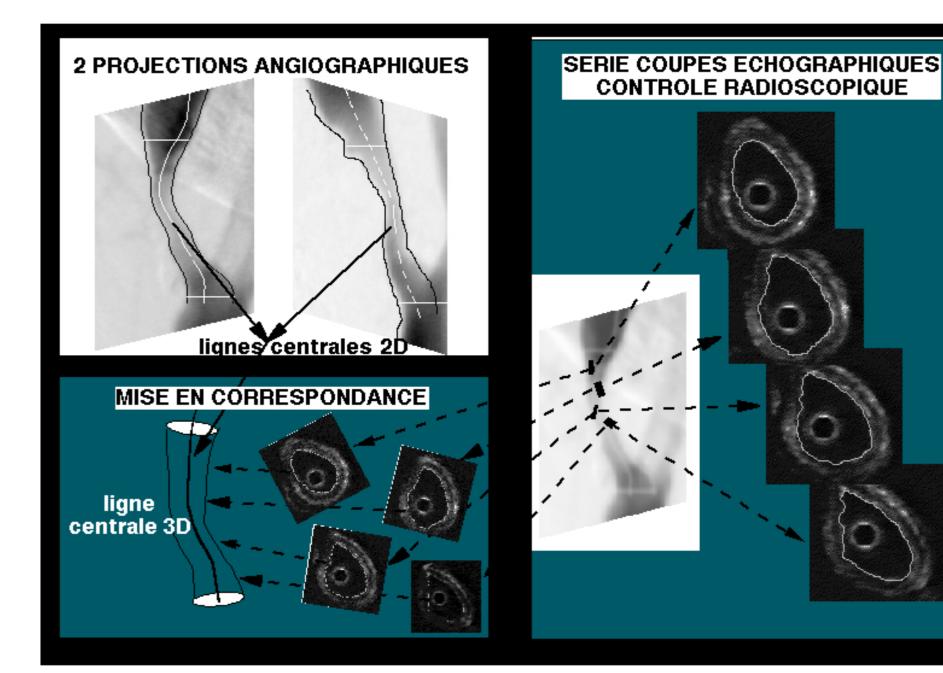
NB: il existe d'autres définitions

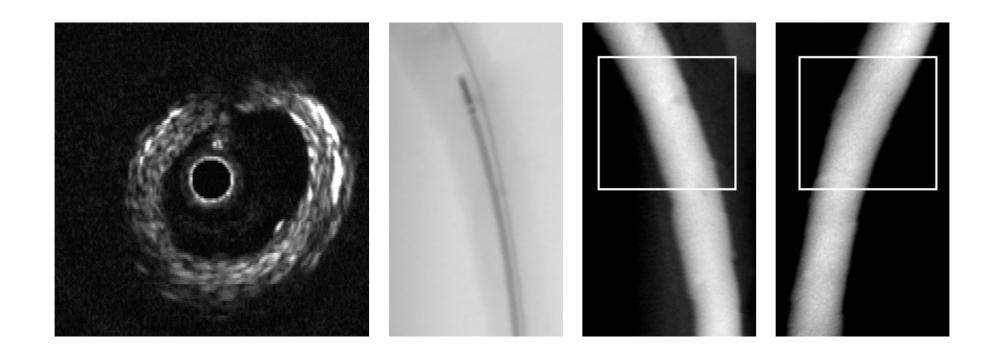
### Exemples de dilatation et érosion floues

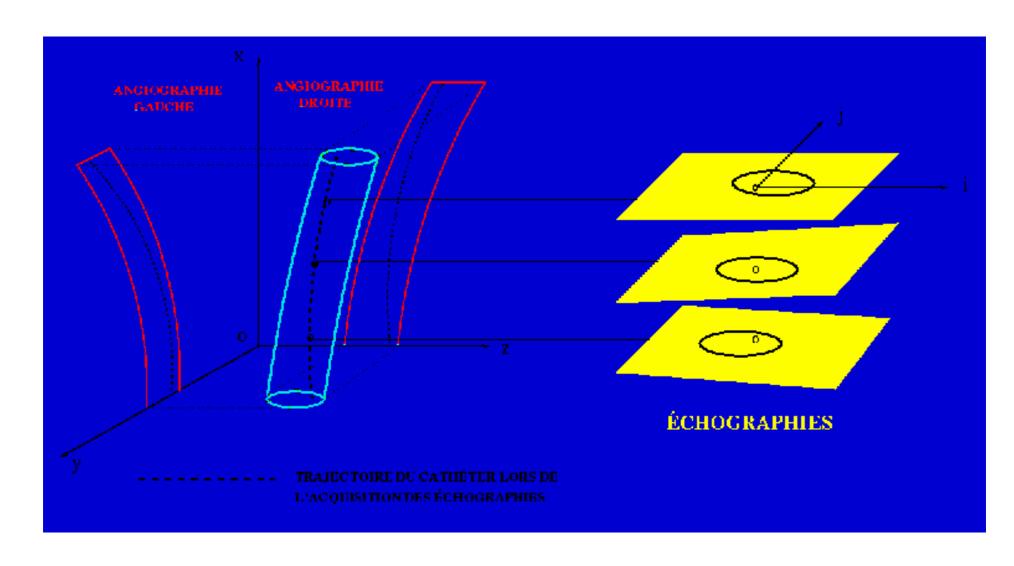


### Exemples de dilatation et érosion floues





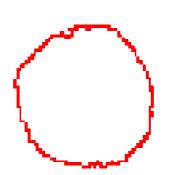


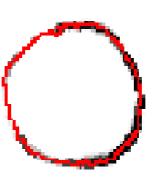


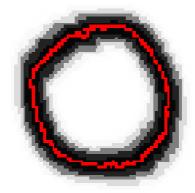
Imprécisions en rotation et en translation :

$$\mu_{V'_f}(x) = \sup\{\nu_1^y(x) \mid y \in V_{bin}\}$$

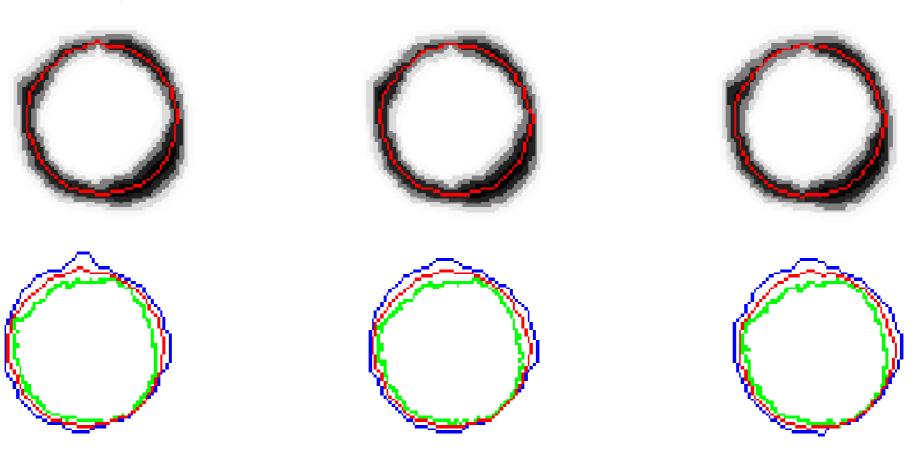
$$V_f = \bigcup \{D_{D_{\nu_2}(\nu_1^x)}(\{x\}) \mid x \in V_{bin}\} = D_{\nu_2}(V_f')$$



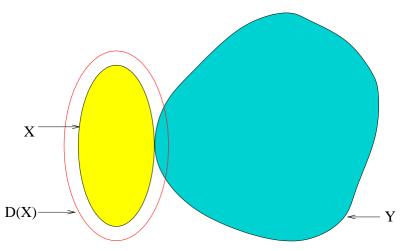




Résultat après fusion et décision :



#### **Adjacence**



En termes morphologiques :

$$X \cap Y = \emptyset$$
 et  $D_B(X) \cap Y \neq \emptyset$ ,  $D_B(Y) \cap X \neq \emptyset$ 

Expression morphologique de l'adjacence floue :

$$\mu_{adj}(\mu, \nu) = t[\mu_{\neg int}(\mu, \nu), \mu_{int}[D_B(\mu), \nu], \mu_{int}[D_B(\nu), \mu]]$$

#### Distances entre ensembles flous

#### Comparaison des fonctions d'appartenance

ullet approche fonctionnelle : distance à partir d'une norme  $L_p$ 

$$d_p(\mu, \nu) = \left[ \sum_{x \in \mathcal{S}} |\mu(x) - \nu(x)|^p \right]^{1/p}$$

$$d_{\infty}(\mu, \nu) = \max_{x \in \mathcal{S}} |\mu(x) - \nu(x)|$$

approche ensembliste

$$d(\mu, \nu) = 1 - \frac{\sum_{x \in \mathcal{S}} \min[\mu(x), \nu(x)]}{\sum_{x \in \mathcal{S}} \max[\mu(x), \nu(x)]}$$

- ...
- adaptées au cas où les deux ensembles flous à comparer représentent la même structure ou une structure issue d'une image et un modèle
  - reconnaissance des formes à partir d'un modèle
  - recherche d'analogies ou similarités entre cas

#### Distances entre ensembles flous

#### Prise en compte de la distance spatiale $d_E$

- approche géométrique
  - espace de dimension n+1
  - fuzzification :  $d(\mu, \nu) = \int_0^1 D(\mu_\alpha, \nu_\alpha) d\alpha$
  - pondération

$$d(\mu, \nu) = \frac{\sum_{x \in \mathcal{S}} \sum_{y \in \mathcal{S}} d_E(x, y) \min[\mu(x), \nu(y)]}{\sum_{x \in \mathcal{S}} \sum_{y \in \mathcal{S}} \min[\mu(x), \nu(y)]}$$

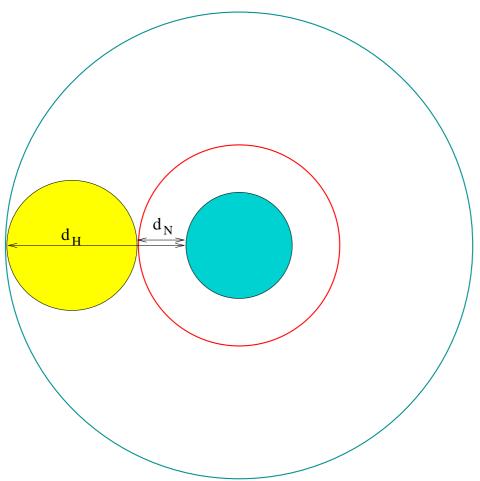
nombre flou

$$d(\mu,\nu)(r) = \sup_{x,y,d_E(x,y) \le r} \min[\mu(x),\nu(y)]$$

approche morphologique

## Distances entre ensembles flous : approche morphologique

Expression de distances (minimum, Hausdorff...) en termes morphologiques (i.e. algébriques)  $\Rightarrow$  traduction aisée vers le cas flou



# Distribution de distance minimum (point le plus proche)

$$d_N(X,Y) = \inf\{n \in \mathbb{N}, X \cap D^n(Y) \neq \emptyset\} = \inf\{n \in \mathbb{N}, Y \cap D^n(X) \neq \emptyset\}$$

Degré avec lequel la distance entre  $\mu$  et  $\mu'$  est inférieure à n (distribution de distance) :

$$\Delta_N(\mu, \mu')(n) = f[\sup_{x \in \mathcal{S}} t[\mu(x), D_{\nu}^n(\mu')(x)], \sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^n(\mu)(x)]]$$

Distance de Hausdorff : équations similaires

# Densité de distance minimum (point le plus proche)

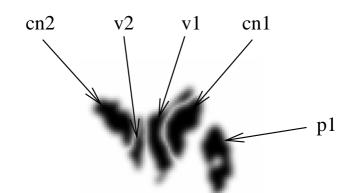
$$d_N(X,Y) = n \Leftrightarrow D^n(X) \cap Y \neq \emptyset \text{ et } D^{n-1}(X) \cap Y = \emptyset$$
 
$$d_N(X,Y) = 0 \Leftrightarrow X \cap Y \neq \emptyset$$

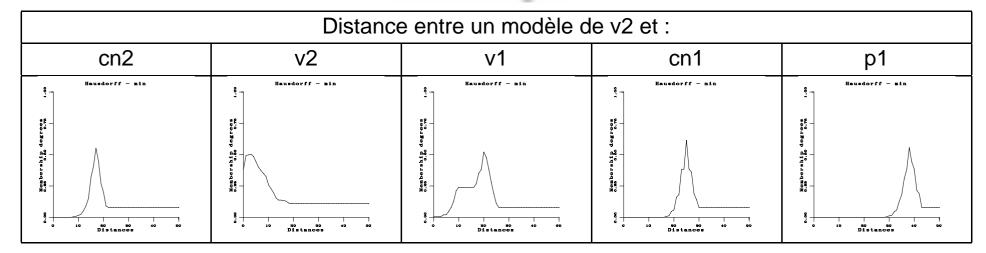
Degré avec lequel la distance entre  $\mu$  et  $\mu'$  est égale à n (densité de distance) :

$$\delta_{N}(\mu, \mu')(n) = t[\sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^{n}(\mu)(x)], c[\sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^{n-1}(\mu)(x)]]]$$
$$\delta_{N}(\mu, \mu')(0) = \sup_{x \in \mathcal{S}} t[\mu(x), \mu'(x)]$$

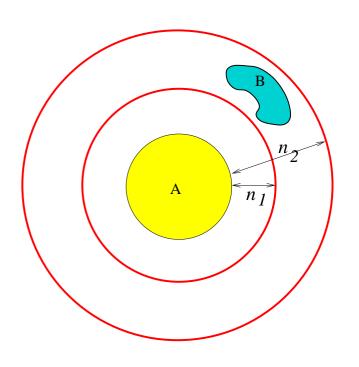
Distance de Hausdorff : équations similaires

### **Distance floue: exemple**





# Représentation spatiale de connaissances sur la distance



- Cas binaire : B doit à une distance comprise entre  $n_1$  et  $n_2$  de  $A \Rightarrow$  région d'intérêt pour B :  $D^{n_2}(A) \setminus D^{n_1-1}(A)$
- Cas flou : distance approximative donnée par un intervalle flou ⇒ deux éléments structurants :

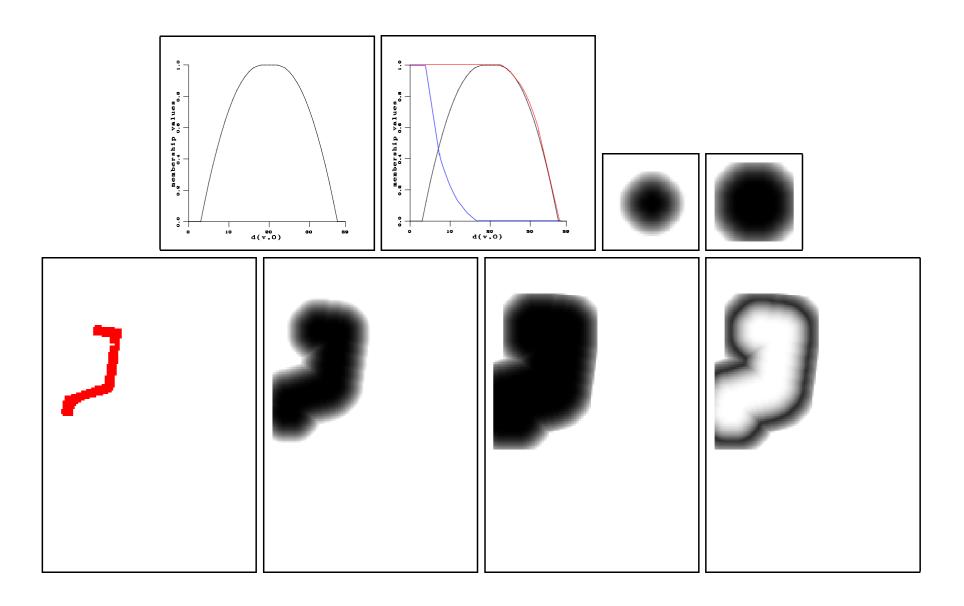
$$\nu_1(x) = 1 - \mu_n(d_E(x,0))$$
 si  $d_E(x,0) \le n_1, 0$  sinon

$$u_2(x) = 1 \text{ si } d_E(x,0) \le n_2, \quad \mu_n(d_E(x,0)) \text{ sinon}$$

#### Région d'intérêt floue :

$$\mu_{distance} = t[D_{\nu_2}(\mu), 1 - D_{\nu_1}(\mu)]$$

# Représentation spatiale de connaissances sur la distance : exemple



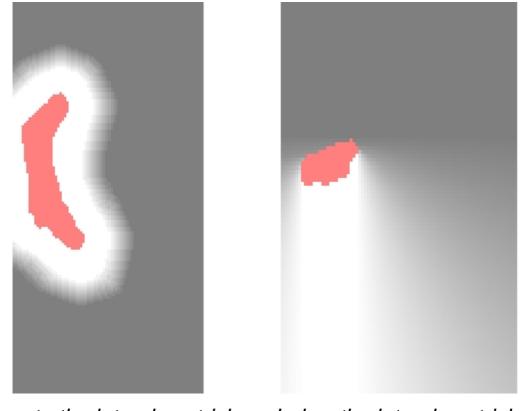
### **Autres relations spatiales**

- direction relative
  - histogramme d'angles
  - projection
  - dilatation directionnelle
- entre
- longe
- entoure
- parmi
- ..

## Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau

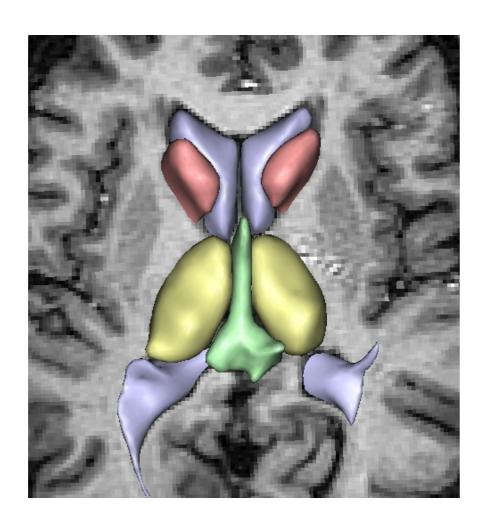


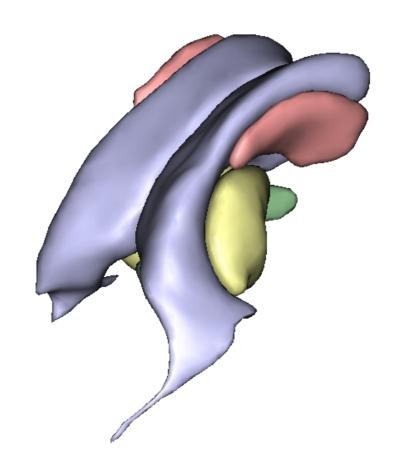
## Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau



close to the lateral ventricle below the lateral ventricle

## Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau





### Exemples dans des cas pathologiques



### Exemples dans des cas pathologiques

