Ensembles flous en traitement d'images et vision

Isabelle Bloch

Isabelle.Bloch@enst.fr

http://www.tsi.enst.fr/~bloch

Ecole Nationale Supérieure des Télécommunications - CNRS UMR 5141 LTCI

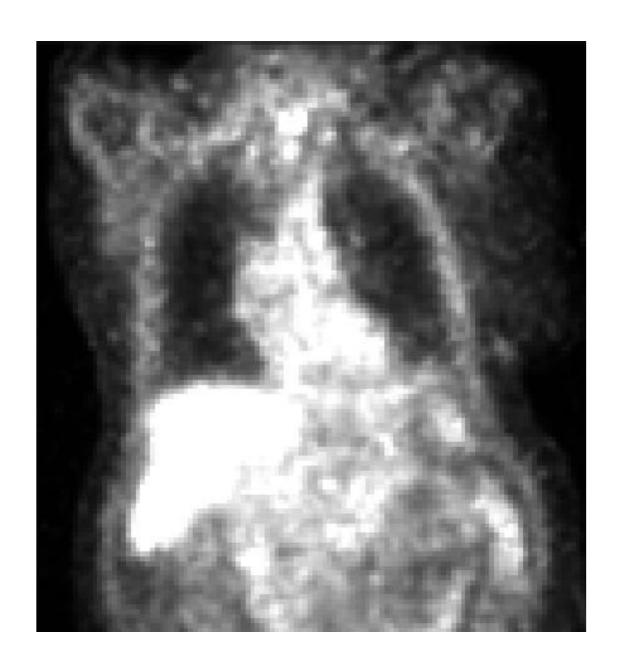
Paris - France

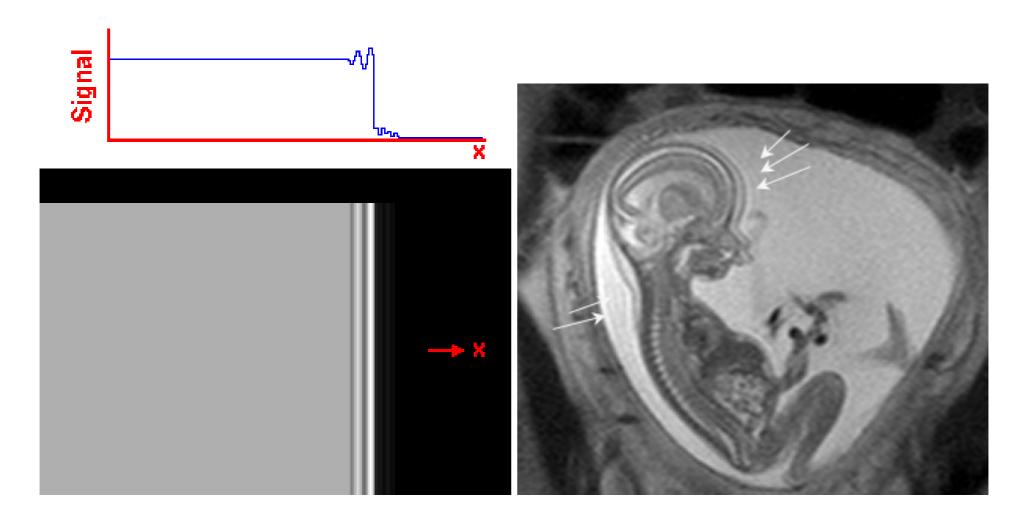
Intérêt du flou en traitement d'images

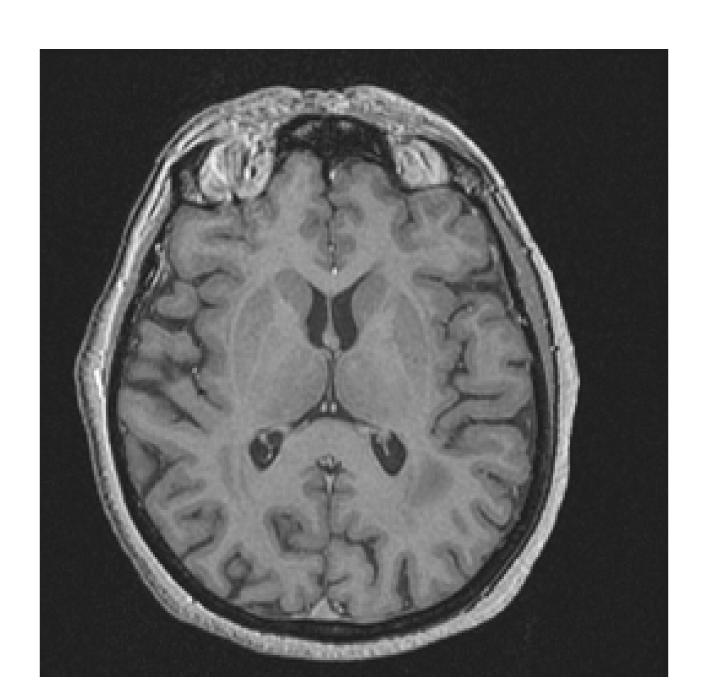
- Représentation de l'information spatiale dans les images
 - avec son imprécision
 - à différents niveaux (local, régional ou global)
 - sous différentes formes (numérique, symbolique, quantitative, qualitative)
- Représentation d'informations très hétérogènes, extraites directement des images ou issues de connaissances externes
- Généralisation aux ensembles flous des opérations pour manipuler l'information spatiale
- Souplesse des opérateurs de combinaison (fusion)

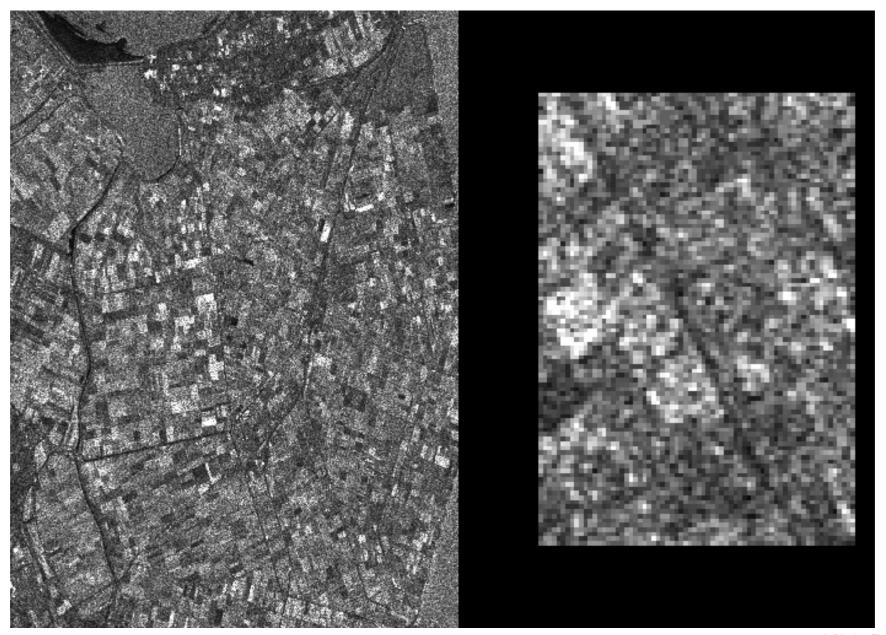
Deux approches

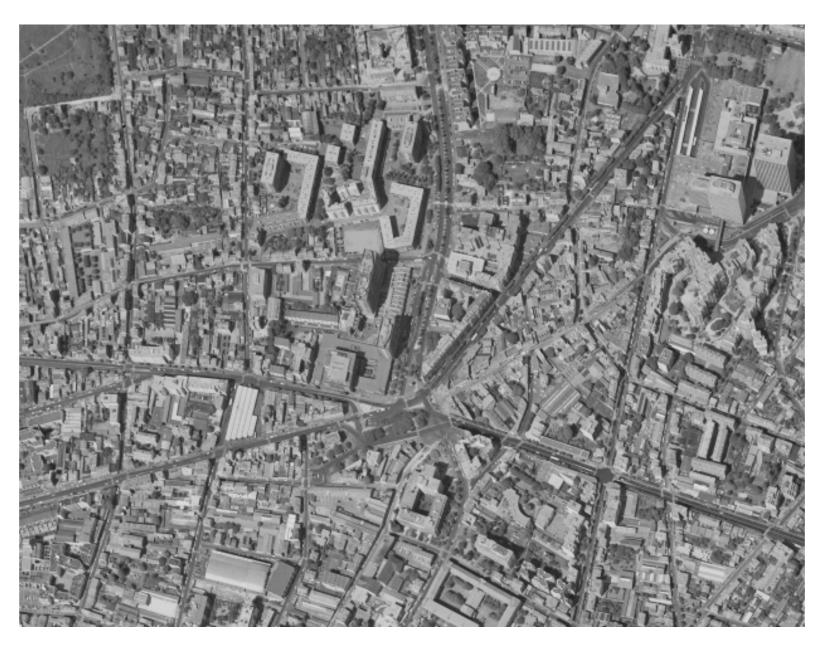
- Raisonnement sur des attributs flous.
- Raisonnement sur des régions ou objets flous



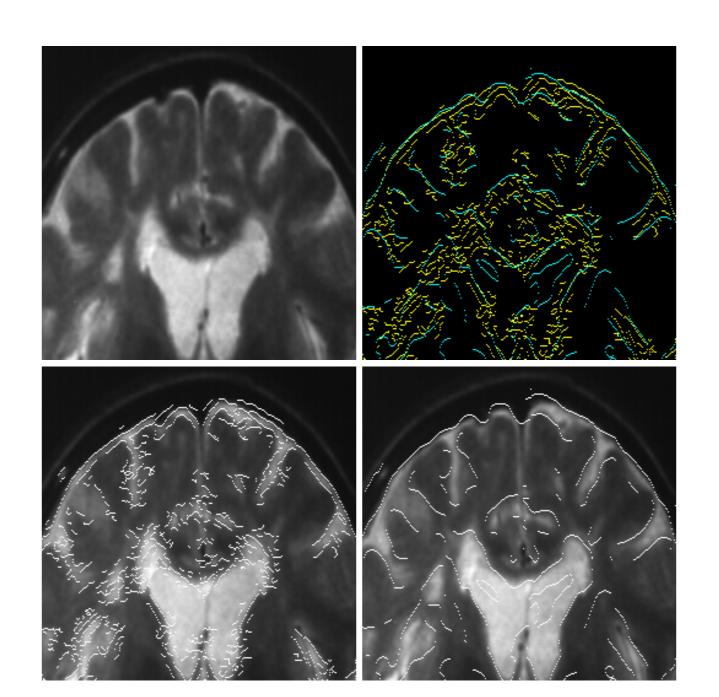






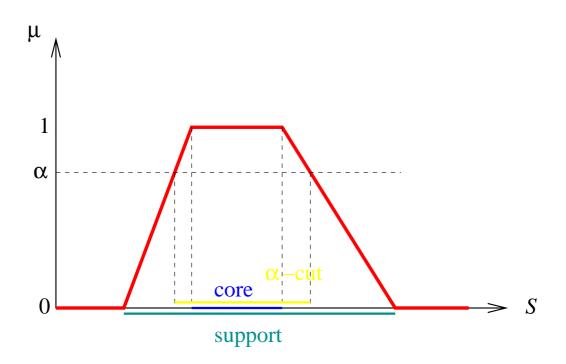






Définitions : ensembles flous

- Espace S (image, caractéristiques, etc.)
- Ensemble flou : $\mu: \mathcal{S} \to [0,1] \mu(x)$ = degré d'appartenance de x à μ
- Support : $Supp(\mu) = \{x \in \mathcal{S}, \mu(x) > 0\}$ Noyau : $\{x \in \mathcal{S}, \mu(x) = 1\}$
- α -coupe : $\mu_{\alpha} = \{x \in \mathcal{S}, \mu(x) \geq \alpha\}$
- Cardinal : $|\mu| = \sum_{x \in \mathcal{S}} \mu(x)$ (pour \mathcal{S} fini)
- Convexité : $\forall (x,y) \in \mathcal{S}^2, \forall \lambda \in [0,1], \mu[\lambda x + (1-\lambda)y] \geq \min[\mu(x), \mu(y)]$
- Nombre flou : ensemble flou convexe sur \mathbb{R} , s.c.s., unimodal, de support compact. Exemple : ensembles flous LR.



Opérations de base (Zadeh, 1965)

- Egalité : $\mu = \nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x) = \nu(x)$
- Inclusion : $\mu \subseteq \nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x) \leq \nu(x)$
- Intersection : $\forall x \in \mathcal{S}, (\mu \cap \nu)(x) = \min[\mu(x), \nu(x)]$
- Réunion : $\forall x \in \mathcal{S}, (\mu \cup \nu)(x) = \max[\mu(x), \nu(x)]$
- Complémentation : $\forall x \in \mathcal{S}, \mu^C(x) = 1 \mu(x)$
- Propriétés :
 - cohérence avec les définitions binaires
 - $\mu = \nu \Leftrightarrow \mu \subseteq \nu \text{ et } \nu \subseteq \mu$
 - la complémentation floue est involutive : $(\mu^C)^C = \mu$
 - l'intersection et la réunion sont commutatives et associatives
 - l'intersection et la réunion sont idempotentes et mutuellement distributives
 - l'intersection et la réunion sont duales par rapport à la complémentation :

$$(\mu \cap \nu)^C = \mu^C \cup \nu^C$$

• $(\mu \cup \nu)_{\alpha} = \mu_{\alpha} \cup \nu_{\alpha}$, etc.

MAIS:
$$\mu \cap \mu^C \neq \emptyset$$
, $\mu \cup \mu^C \neq S$

Définitions : théorie des possibilités

Mesure de possibilité : fonction Π de $2^{\mathcal{S}}$ dans [0,1] telle que :

- 1. $\Pi(\emptyset) = 0$
- 2. $\Pi(S) = 1$
- 3. $\forall I \subseteq N, \forall A_i \subseteq \mathcal{S}(i \in I), \ \Pi(\cup_{i \in I} A_i) = \sup_{i \in I} \Pi(A_i)$

Mesure de nécessité : $\forall A \subseteq \mathcal{S}, \ N(A) = 1 - \Pi(A^C)$

- 1. $N(\emptyset) = 0$
- **2**. N(S) = 1
- 3. $\forall I \subseteq N, \forall A_i \subseteq S(i \in I), \ N(\cap_{i \in I} A_i) = \inf_{i \in I} N(A_i)$

Quelques propriétés :

- $\max(\Pi(A), \Pi(A^C)) = 1$, $\min(N(A), N(A^C)) = 0$
- $\Pi(A) \ge N(A)$
- $N(A) > 0 \Rightarrow \Pi(A) = 1, \quad \Pi(A) < 1 \Rightarrow N(A) = 0$
- $N(A) + N(A^C) \le 1$, $\Pi(A) + \Pi(A^C) \ge 1$

Distribution de possibilité : fonction π de $\mathcal S$ dans [0,1] avec la condition de normalisation $\sup_{x\in\mathcal S}\pi(x)=1$

Cas fini : $\Pi(A) = \sup\{\pi(x), x \in A\}$

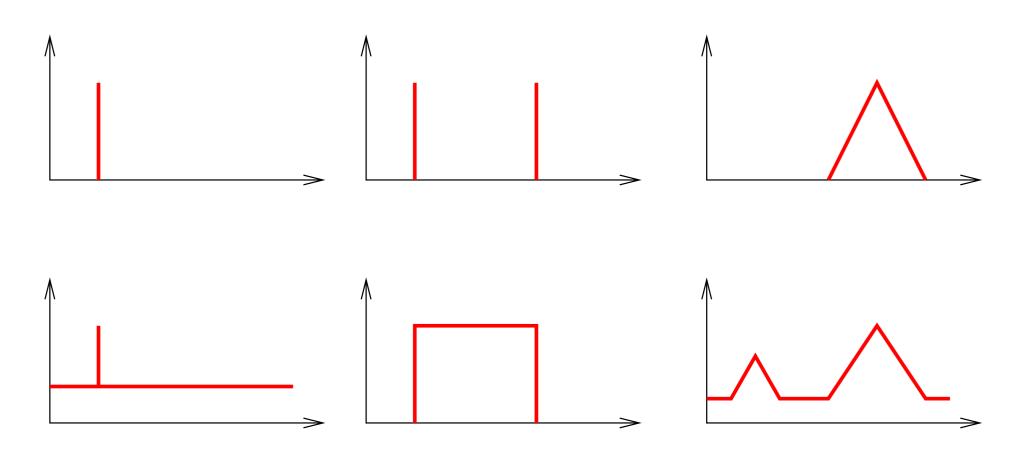
Inversement : $\forall x \in \mathcal{S}, \ \pi(x) = \Pi(\{x\})$

$$N(A) = 1 - \sup\{\pi(x), x \notin A\} = \inf\{1 - \pi(x), x \in A^C\}$$

Sémantique

- degré de similarité (notion de distance)
- degré de plausibilité (qu'un objet dont on ne connaît qu'une description imprécise soit bien celui qu'on cherche à identifier)
- degré de préférence (classe floue = ensemble des "bons" choix), proche de la notion de fonction d'utilité

Représentation de différents types d'imperfections



Opérations ensemblistes générales

Complémentation floue

fonction c de [0,1] dans [0,1] telle que :

- 1. c(0) = 1
- 2. c(1) = 0
- 3. c involutive : $\forall x \in [0,1], c(c(x)) = x$
- 4. c strictement décroissante

Forme générale des complémentations continues : $c(x) = \varphi^{-1}[1 - \varphi(x)]$ avec $\varphi: [0,1] \to [0,1], \, \varphi(0) = 0, \, \varphi(1) = 1, \, \varphi$ strictement croissante.

Exemple: $\varphi(x) = x^n \Rightarrow c(x) = (1 - x^n)^{1/n}$

Opérations ensemblistes générales

Normes triangulaires (intersection floue)

t-norme $t:[0,1]\times[0,1]\to[0,1]$ telle que :

- 1. commutativité : $\forall (x,y) \in [0,1]^2, \ t(x,y) = t(y,x)$
- 2. associativité: $\forall (x, y, z) \in [0, 1]^3, \ t[t(x, y), z] = t[x, t(y, z)]$
- 3. 1 est élément neutre : $\forall x \in [0,1], \ t(x,1) = t(1,x) = x$
- 4. croissance par rapport aux deux variables :

$$\forall (x, x', y, y') \in [0, 1]^4, \ (x \le x' \text{ et } y \le y') \Rightarrow t(x, y) \le t(x', y').$$

De plus : t(0,1) = t(0,0) = t(1,0) = 0, t(1,1) = 1, et 0 est absorbant $(\forall x \in [0,1], t(x,0) = 0)$.

Exemples de t-normes : min(x, y), xy, max(0, x + y - 1).

Opérations ensemblistes générales

Conormes triangulaires (réunion floue)

t-conorme $T:[0,1]\times[0,1]\to[0,1]$ telle que :

- 1. commutativité
- 2. associativité
- 3. 0 est élément neutre
- 4. croissance par rapport aux deux variables

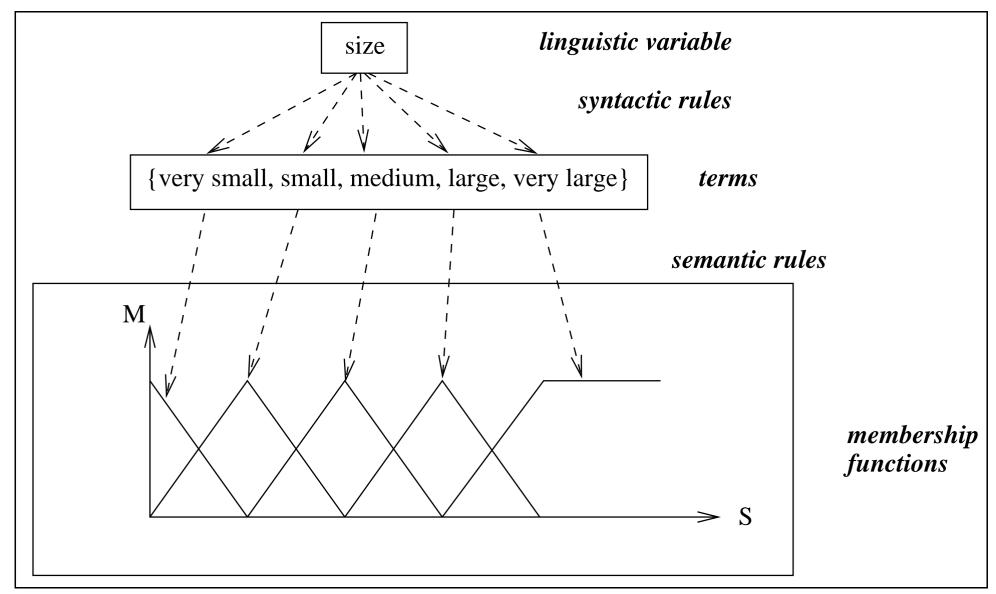
De plus : T(0,1) = T(1,1) = T(1,0) = 1, T(0,0) = 0, et 1 est absorbant.

Exemples de t-conormes : $\max(x, y)$, x + y - xy, $\min(1, x + y)$.

Dualité: $\forall (x, y) \in [0, 1]^2, \ T[c(x), c(y)] = c[t(x, y)]$

Autres opérateurs de combinaison (moyennes, sommes symétriques, etc.) : voir partie sur la fusion

Variable linguistique

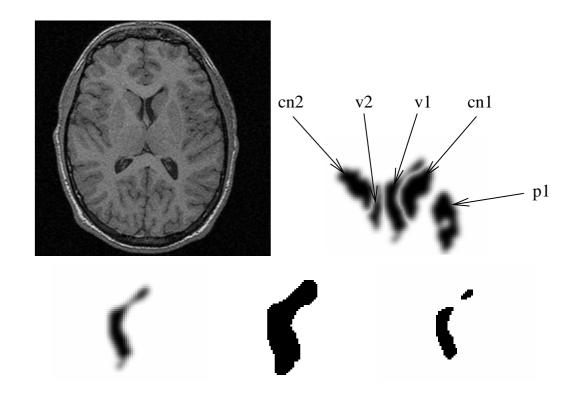


Objets flous spatiaux

 $\mathcal{S}:\mathbb{R}^3$ ou \mathbb{Z}^3 dans le cas discret

$$\mu: \mathcal{S} \to [0,1]$$

 $\mu(x)$ = degré avec lequel x appartient à l'objet flou



Définition des fonctions d'appartenance

- souvent très heuristique
- \bullet à partir de la fonction d'intensité I ou du gradient

$$\mu(x) = F_1[(I(x))]$$

$$\mu(x) = F_2[(\nabla I(x)]]$$

- en fonction de la réponse à un détecteur
- par introduction d'imprécision à la frontière d'une détection binaire

$$\mu(x) = \begin{cases} 1 & \text{si } x \in E^n(O) \\ 0 & \text{si } x \in \mathcal{S} - D^m(O) \\ F_3[d(x, E^n(O))] & \text{sinon} \end{cases}$$

par classification

C-moyennes floues

- ullet X= ensemble d'éléments à classer (définis dans un certain espace de caractéristiques)
- $P = \{C_1, C_2, ..., C_C\}$ = ensemble de classes

Partition floue:

- 1. $\forall x_i \in X, \ \forall C_j \in P, \ \mu_{ij} \in [0,1]$, où μ_{ij} = degré d'appartenance de x_i à C_j
- **2.** $\forall x_i \in X, \ \sum_{j=1}^{C} \mu_{ij} = 1$
- 3. $\forall j \leq C, \ 0 < \sum_{i=1}^{N} \mu_{ij} < N, \text{ où } N = \text{cardinal de } X$

Optimisation de:

$$J_m = \sum_{j=1}^{C} \sum_{i=1}^{N} \mu_{ij}^m ||x_i - m_j||^2$$

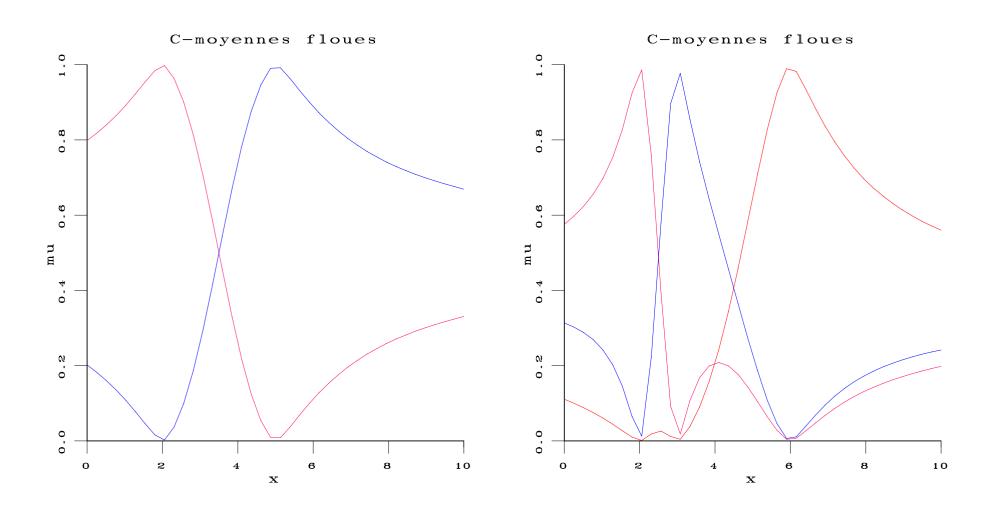
Solution itérative :

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{C} \left[\frac{||x_i - m_j||}{||x_i - m_k||}\right]^{\frac{2}{m-1}}}$$

$$m_j = \frac{\sum_i \mu_{ij}^m x_i}{\sum_i \mu_{ij}^m}$$

Convergence vers un minimum local de J_m

C-moyennes floues : exemple en 1D



C-moyennes possibilistes

Optimisation de:

$$J = \sum_{j=1}^{C} \sum_{i=1}^{N} \mu_{ij}^{m} ||x_i - m_j||^2 + \sum_{j=1}^{C} \eta_j \sum_{i=1}^{N} (1 - \mu_{ij})^{m} ||x_i - m_j||^2$$

Solution itérative :

$$\mu_{ij} = \frac{1}{1 + \frac{||x_i - m_j||^2}{\eta_j}^{\frac{1}{m-1}}}$$

→ Meilleure forme des fonctions d'appartenance

Détermination de η_j

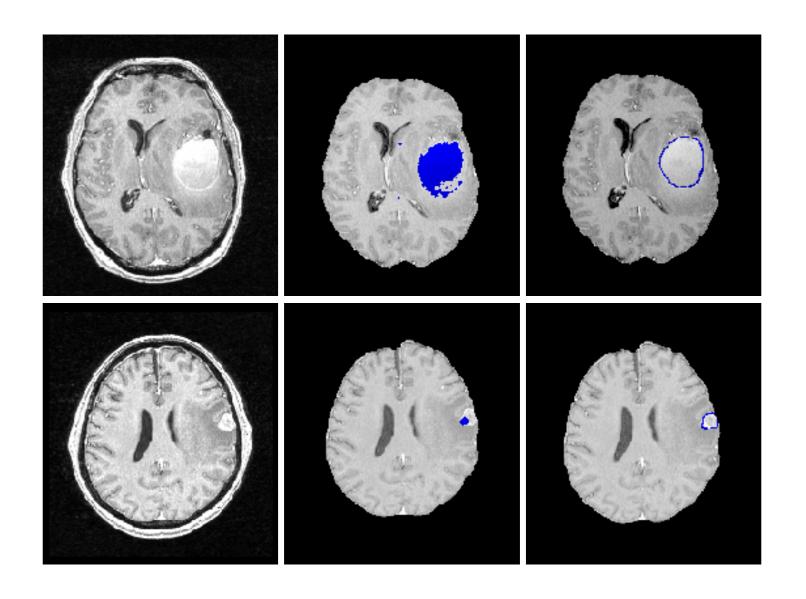
à partir de la dispersion :

$$\eta_j = \frac{\sum_{i=1}^{N} \mu_{ij} ||x_i - m_j||^2}{\sum_{i=1}^{N} \mu_{ij}}$$

 ullet à partir d'échantillons de la classe de $\mu_{ij} \geq lpha$:

$$\eta_j = \frac{\sum_{i \in \{\mu_{ij}\}_{\alpha}} ||x_i - m_j||^2}{|\{\mu_{ij}\}_{\alpha}|}$$

Exemple sur des tumeurs cérébrales



k-plus proches voisins flous

Cas binaire:

$$\mu_i(x) = U[\sum_{j=1}^k \mu_i(x_j)]$$

avec

$$U(t) = \begin{cases} 1 & \text{si } t > \frac{k}{2} \\ 0 & \text{sinon} \end{cases}$$

Cas flou:

$$\mu_i(x) = \frac{1}{1 + \exp\left[\frac{1}{b_i}(\frac{k}{2} - t_i(x))\right]}$$

$$t_i(x) = \sum_{j=1}^k \mu_i(x_j) \quad t_i(x) = \sum_{j=1}^k \mu_i(x_j) \exp[-\lambda (\frac{d(x, x_j)}{d_m^i})^2]$$

 b_i : contrôle le flou, par exemple en fonction de l'entropie floue

$$b_i = H(i) = \frac{1}{K} \sum_{x} \left[\mu_i(x) \log(\mu_i(x)) + (1 - \mu_i(x)) \log(1 - \mu_i(x)) \right]$$

Filtrage et segmentation (opérateurs locaux)

- Approches fonctionnelles
 - minimisation d'un indice de flou
 - fonction de pondération floue dans des filtres classiques
- Techniques à base de règles
 - exemple de lissage :

SI un pixel est *plus foncé* que ses voisins

ALORS *augmenter* son niveau de gris

SINON SI le pixel est *plus clair* que ses voisins

ALORS *diminuer* son niveau de gris

SINON le laisser inchangé

exemple de détecteur de contour :

SI un pixel appartient au contour

ALORS augmenter beaucoup son niveau de gris

SINON diminuer beaucoup son niveau de gris

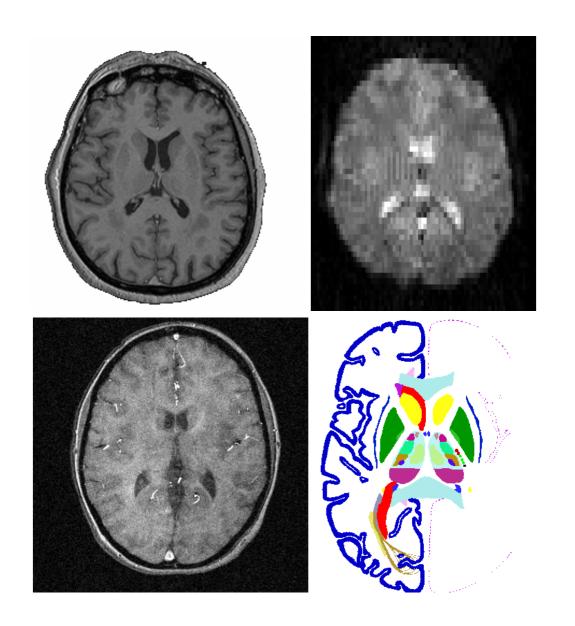
Nécessité de la fusion d'images

- techniques d'acquisition et sources de données multiples
 - un capteur, plusieurs images
 - plusieurs capteurs
 - une image, plusieurs types d'informations
 - images multi-dates, séquences
- phénomènes complexes
- problèmes complexes (détection, reconnaissance, interprétation)
- applications variées

Une définition

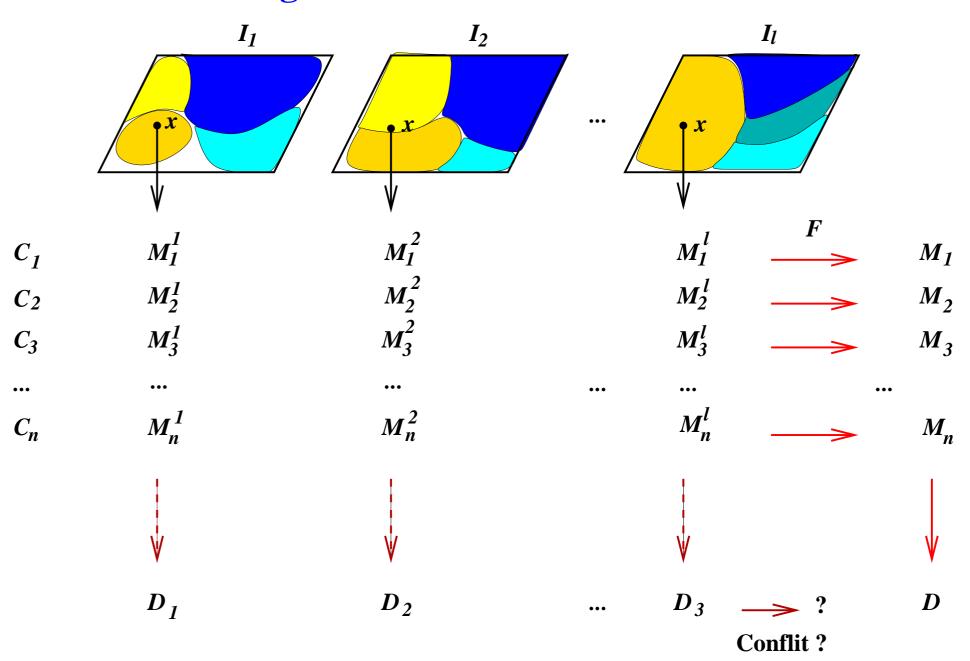
Combinaison d'informations issues de sources différentes dans le but d'améliorer la décision

Variété, hérérogénéité et complexité des informations



Variété, hérérogénéité et complexité des informations

Schéma général



Principales étapes

- 1. modélisation du problème et de l'information
- 2. estimation
- 3. combinaison
- 4. décision

Fusion floue et possibiliste

- imprécision ou imprécision et incertitude
- beaucoup d'opérateurs de combinaison
- grande souplesse dans les modes de combinaison

Fusion floue et possibiliste : modélisation

Modèle flou :

$$M_i^j(x) = \mu_i^j(x)$$

sans contrainte particulière imposée

Modèle possibiliste :

$$M_i^j(x) = \pi_j^x(C_i)$$

$$\Pi_j(\{C_i\}) = \pi_j(C_i), \quad N_j(\{C_i\}) = \inf\{(1 - \pi_j(C_k)), \ C_k \neq C_i\}$$

Opérateurs de fusion floue et possibiliste

- t-normes
- t-conormes
- moyennes
- sommes symétriques
- opérateurs dépendant du conflit exemple :

$$\max[\frac{\min(\pi_1, \pi_2)}{1 - conf(\pi_1, \pi_2)}, \min[\max(\pi_1, \pi_2), conf(\pi_1, \pi_2)]]$$

opérateurs dépendant de la fiabilité des sources - exemples :

$$\min[\pi_1, \max[\pi_2, conf(\pi_1, \pi_2)]]$$
 si π_1 est plus fiable que π_2

$$\max(\pi_j, 1-w_j)$$
 puis fusion conjonctive

- opérateurs dépendant de la fiabilité de chaque source pour chaque classe
- ...

Choix des opérateurs

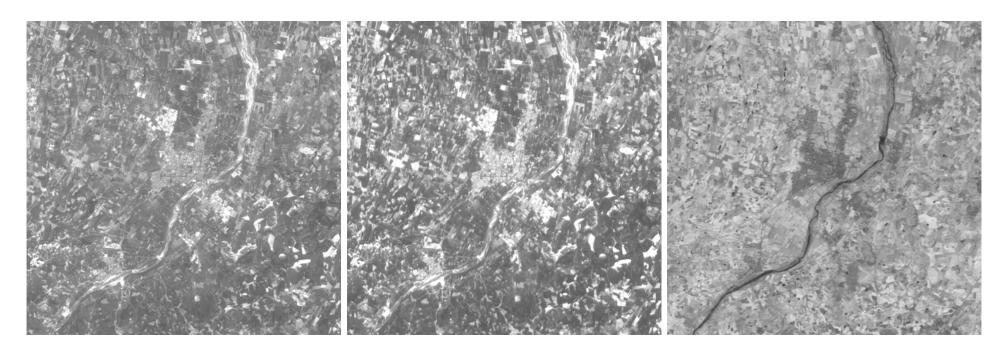
- Comportement :
 - conjonctif $F(x,y) \leq \min(x,y)$
 - disjonctif $F(x,y) \ge \max(x,y)$
 - compromis $x \leq F(x,y) \leq y$ si $x \leq y$, et $y \leq F(x,y) \leq x$ sinon
- Comportement constant ou adaptatif (en fonction des valeurs à combiner) exemple : sommes symétriques associatives (sauf médianes) :
 - conjonctif si $\max(x,y) < 1/2$: $\sigma(x,y) \leq \min(x,y)$
 - disjonctif si $\min(x,y) > 1/2$: $\sigma(x,y) \ge \max(x,y)$
 - compromis si $x \le 1/2 \le y$: $x \le \sigma(x,y) \le y$ (et l'inégalité contraire si $y \le 1/2 \le x$)
- Dépendance d'une information supplémentaire, du contexte
- Propriétés
- Caractère plus ou moins discriminant pour la décision

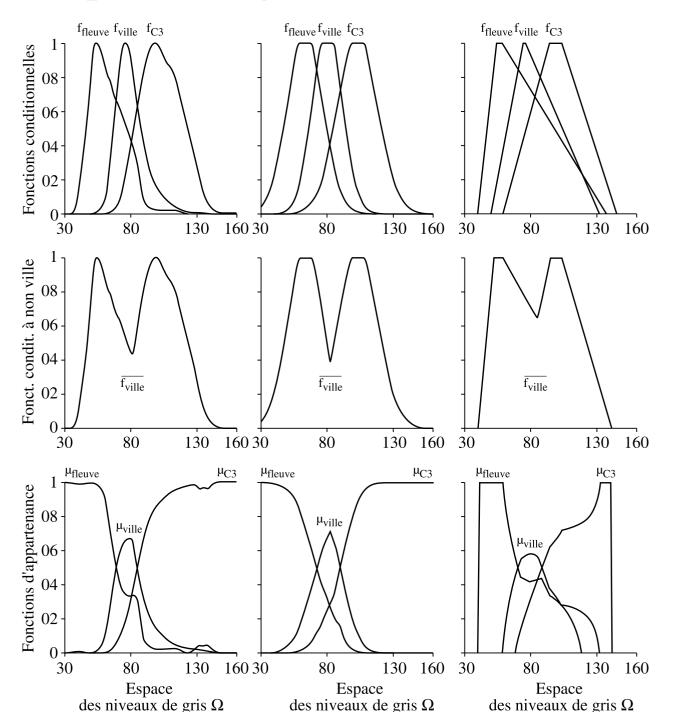
Fusion floue et possibiliste : décision

Règle principale :

$$x \in C_i$$
 Si $\mu_i(x) = \max\{\mu_k(x), 1 \le k \le n\}$

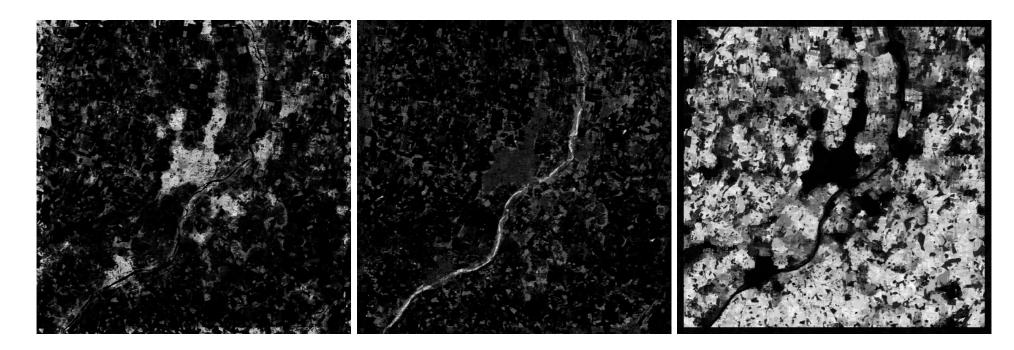
- Qualité de la décision :
 - netteté de la décision : $\mu_i(x) \ge s$
 - caractère discriminant de la décision : $\mu_i(x) \max\{\mu_k(x), k \neq i\} \geq \varepsilon$
- Classe de rejet
- Reclassification en fonction de contraintes spatiales





I. Bloch - Flou - p.29/48

Opérateur adaptatif : $t^{1-\gamma}T^\gamma$ avec $t=\min$ et $T=\max$ $\gamma=H^i(x)$ (conjonction normalisée des degrés d'appartenance en x) :



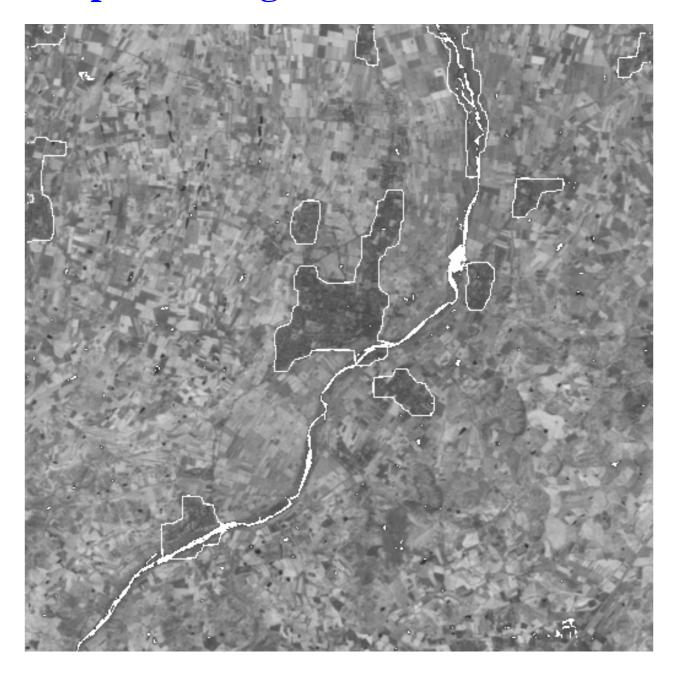


Canal 3

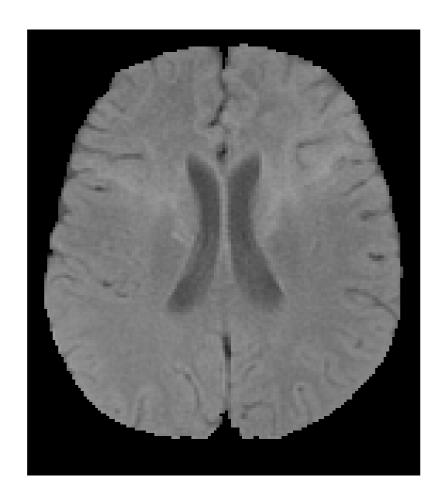
 $H^i(x)$

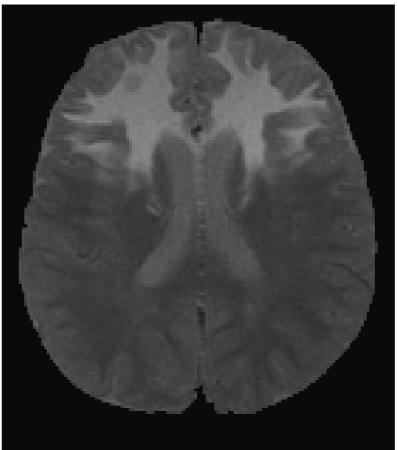
Fusion par t-norme

Fusion adaptative



Exemple en imagerie médicale



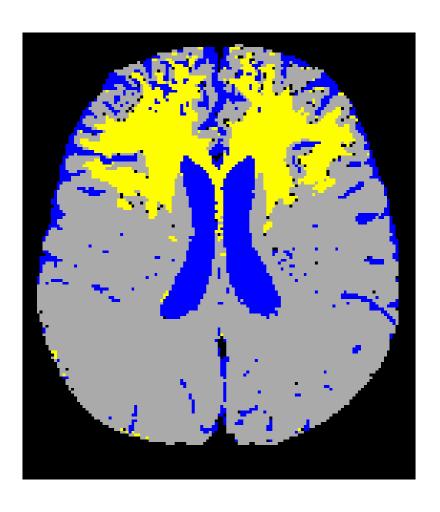


Exemple en imagerie médicale

 μ_v^1 et μ_v^2 : moyenne arithmétique

 μ_c^1 et μ_c^2 : moyenne arithmétique

 μ_c^1 et μ_{path}^2 : somme symétrique $\frac{ab}{1-a-b+2ab}$



Introduction de l'information spatiale

- Au niveau de la modélisation
 - localement :

$$M_i^j(x) = F_i[f_j(y), y \in \mathcal{V}(x)]$$

- primitives (segments, contours, régions) ⇒ information spatiale locale est implicitement prise en compte dans la représentation
- globalement : relations spatiales
- Au niveau de la décision
 - reclassification par majorité absolue

$$x \in C_i \text{ si } |\{y \in \mathcal{V}(x), \ y \in C_i\}| \ge \frac{|\mathcal{V}|}{2}$$

reclassification par règle majoritaire

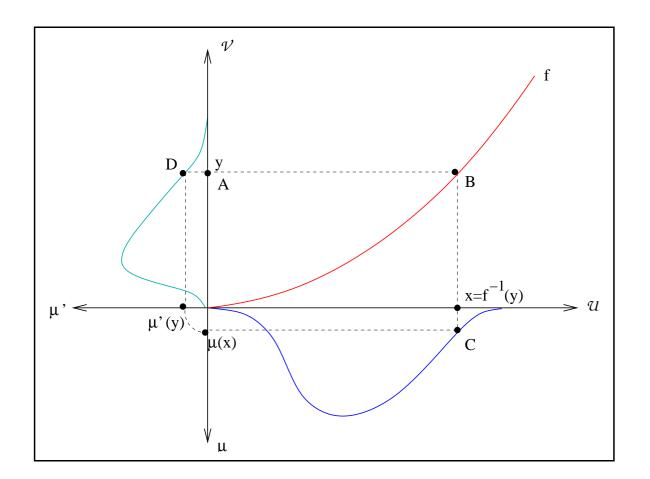
$$x \in C_i$$
 si $|\{y \in \mathcal{V}(x), y \in C_i\}| = \max_k |\{y \in \mathcal{V}(x), y \in C_k\}|$

- Au niveau de la combinaison
 - plus rare et plus délicate
 - information supplémentaire comme source supplémentaire

Comment étendre une opération ou relation au cas flou ?

Principe d'extension : f de S dans V

$$\forall y \in \mathcal{V}, \ \mu'(y) = \left\{ \begin{array}{ll} 0 & \text{si } f^{-1}(y) = \emptyset, \\ \sup_{x \in \mathcal{S}|y = f(x)} \mu(x) & \text{sinon} \end{array} \right.$$



Comment étendre une opération ou relation au cas flou ?

Utilisation des α -coupes :

$$R(\mu) = \int_0^1 R_B(\mu_\alpha) d\alpha$$

$$R(\mu) = \sup_{\alpha \in [0,1]} \min(\alpha, R_B(\mu_\alpha))$$

$$R(\mu) = \sup_{\alpha \in [0,1]} (\alpha R_B(\mu_\alpha))$$

Principe d'extension fondé sur les α -coupes :

$$\forall n, R(\mu, \nu)(n) = \sup_{R_B(\mu_\alpha, \nu_\alpha) = n} \alpha$$

Comment étendre une opération ou relation au cas flou ?

Traduction formelle:

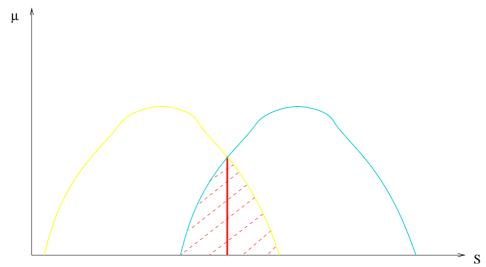
ensemble X	ensemble flou μ
complémentaire $X^{\cal C}$	complémentation floue $c(\mu)$
intersection ∩	t-norme t
réunion ∪	t-conorme T
3	sup
\forall	inf

⇒ traduction aisée d'expressions algébriques et logiques

Relations ensemblistes

Ensembles flous ⇒ une question de degré

• Degré d'intersection : $\mu_{int}(\mu, \nu) = \sup_{x \in \mathcal{S}} t[\mu(x), \nu(x)]$



ou :
$$\mu_{int}(\mu, \nu) = \frac{V_n[t(\mu, \nu)]}{\min[V_n(\mu), V_n(\nu)]}$$
 avec $V(\mu) = \sum_{x \in \mathcal{S}} \mu(x)$ (ou $V(\mu) = \int_{x \in \mathcal{S}} \mu(x) dx$)

Degré d'inclusion :

$$\inf_{x \in \mathcal{S}} T[c(\nu(x)), \mu(x)]$$

Mesures géométriques d'objets flous

Surface ou volume : cardinal de l'ensemble flou

Périmètre:

$$p(\mu) = \int_{x \in \mathcal{S}} |\nabla \mu(x)| dx$$

Compacité:

$$c(\mu) = \frac{V(\mu)}{p(\mu)^2}$$

pour des disques flous convexes : $c(\mu) \geq \frac{1}{4\pi}$ \Rightarrow plus faible compacité est obtenue pour des disques nets

Ou mesures géométriques floues

Forme floue d'une mesure M (surface, périmètre, etc.) :

$$\forall \lambda \in \mathbb{R}^+, \ M(\mu)(\lambda) = \sup_{M(\mu_{\alpha}) = \lambda} \alpha$$

Morphologie mathématique floue

Dilatation (degré d'intersection) :

$$D_{\nu}(\mu)(x) = \sup\{t[\nu(y-x), \mu(y)], y \in \mathcal{S}\}\$$

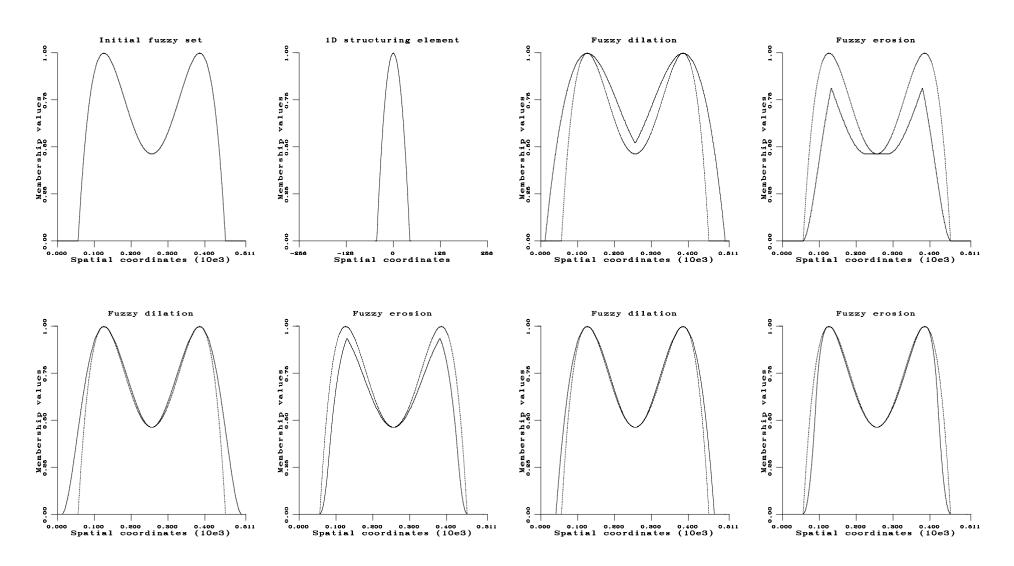
Erosion (degré d'inclusion) :

$$E_{\nu}(\mu)(x) = \inf\{T[c(\nu(y-x)), \mu(y)], y \in \mathcal{S}\}\$$

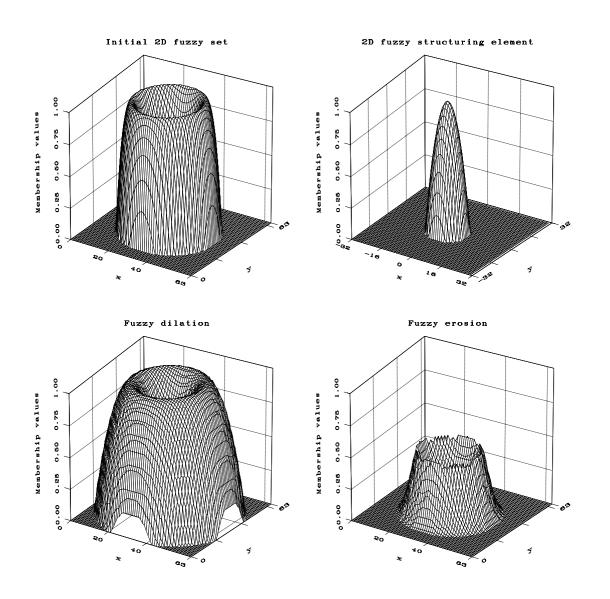
- Ouverture et fermeture par composition
- Propriétés similaires à celles de la morphologie classique

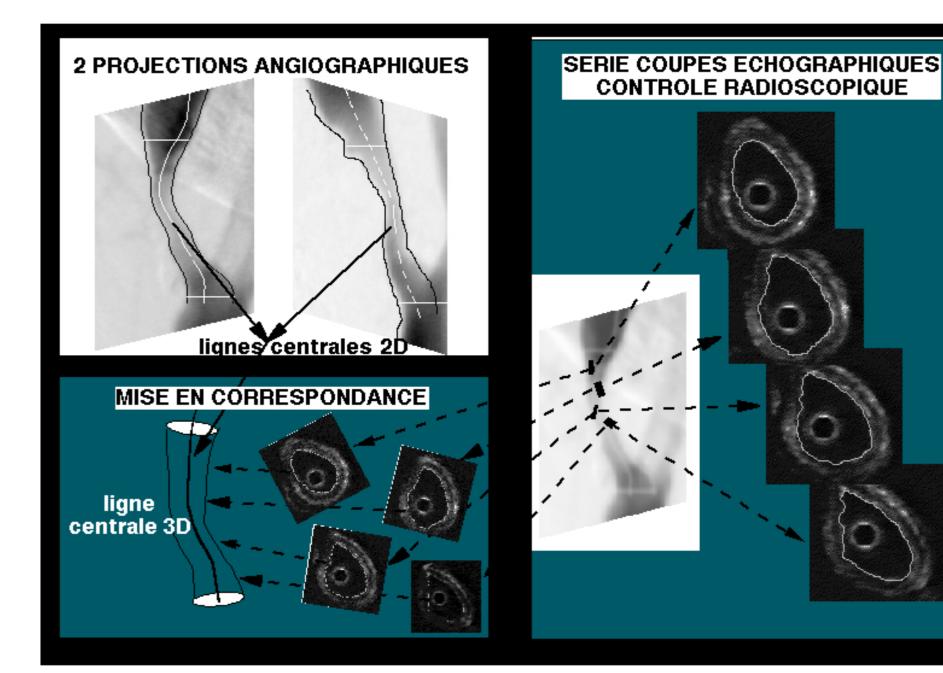
NB: il existe d'autres définitions

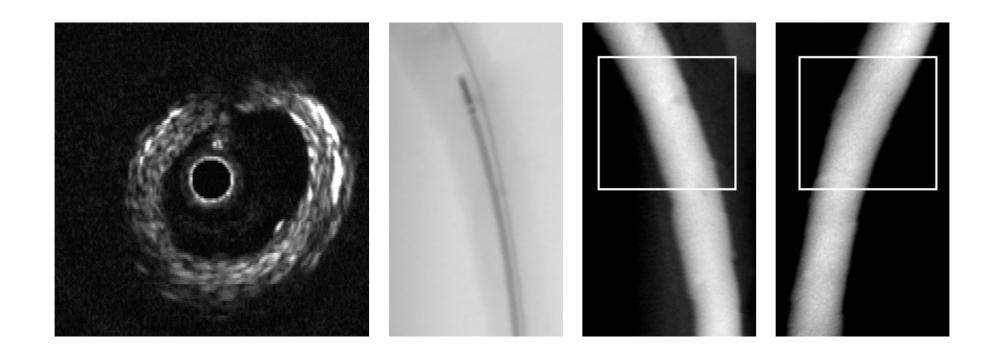
Exemples de dilatation et érosion floues

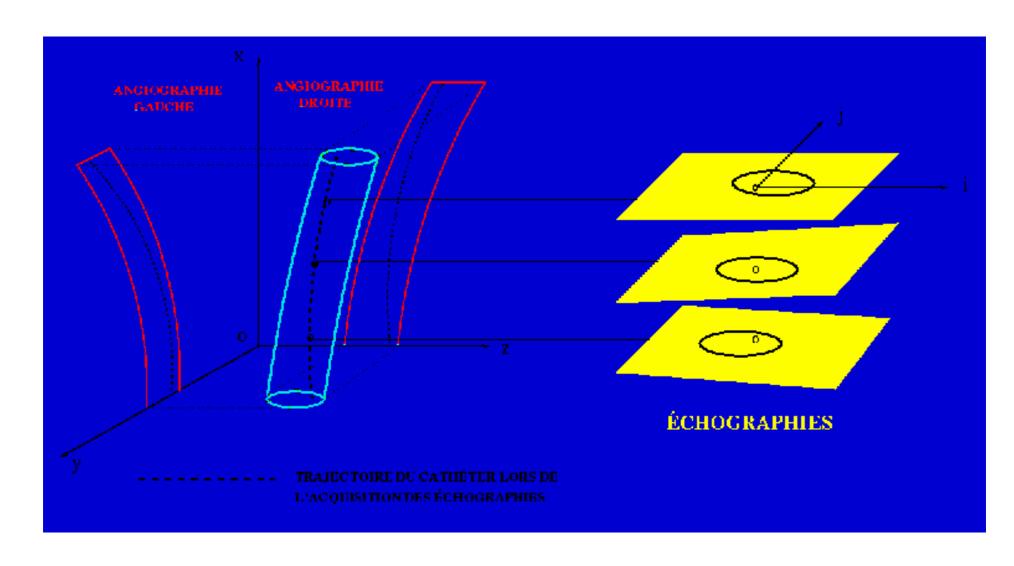


Exemples de dilatation et érosion floues





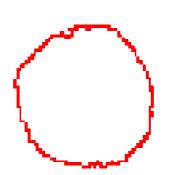


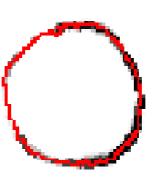


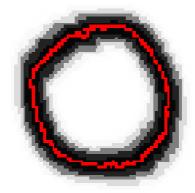
Imprécisions en rotation et en translation :

$$\mu_{V'_f}(x) = \sup\{\nu_1^y(x) \mid y \in V_{bin}\}$$

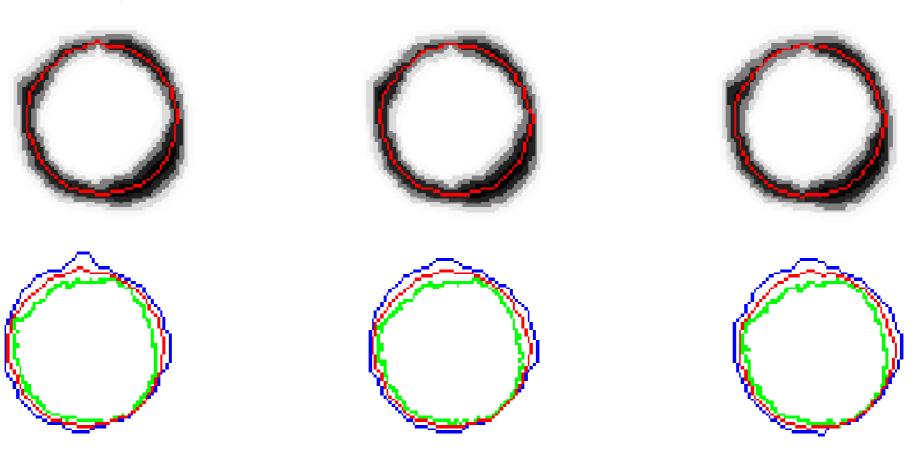
$$V_f = \bigcup \{D_{D_{\nu_2}(\nu_1^x)}(\{x\}) \mid x \in V_{bin}\} = D_{\nu_2}(V_f')$$



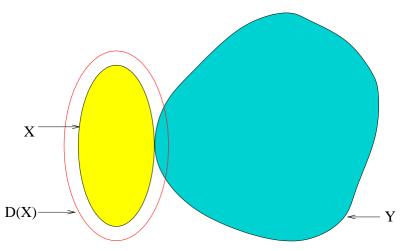




Résultat après fusion et décision :



Adjacence



En termes morphologiques :

$$X \cap Y = \emptyset$$
 et $D_B(X) \cap Y \neq \emptyset$, $D_B(Y) \cap X \neq \emptyset$

Expression morphologique de l'adjacence floue :

$$\mu_{adj}(\mu, \nu) = t[\mu_{\neg int}(\mu, \nu), \mu_{int}[D_B(\mu), \nu], \mu_{int}[D_B(\nu), \mu]]$$

Distances entre ensembles flous

Comparaison des fonctions d'appartenance

ullet approche fonctionnelle : distance à partir d'une norme L_p

$$d_p(\mu, \nu) = \left[\sum_{x \in \mathcal{S}} |\mu(x) - \nu(x)|^p \right]^{1/p}$$

$$d_{\infty}(\mu, \nu) = \max_{x \in \mathcal{S}} |\mu(x) - \nu(x)|$$

approche ensembliste

$$d(\mu, \nu) = 1 - \frac{\sum_{x \in \mathcal{S}} \min[\mu(x), \nu(x)]}{\sum_{x \in \mathcal{S}} \max[\mu(x), \nu(x)]}$$

- ...
- adaptées au cas où les deux ensembles flous à comparer représentent la même structure ou une structure issue d'une image et un modèle
 - reconnaissance des formes à partir d'un modèle
 - recherche d'analogies ou similarités entre cas

Distances entre ensembles flous

Prise en compte de la distance spatiale d_E

- approche géométrique
 - espace de dimension n+1
 - fuzzification : $d(\mu, \nu) = \int_0^1 D(\mu_\alpha, \nu_\alpha) d\alpha$
 - pondération

$$d(\mu, \nu) = \frac{\sum_{x \in \mathcal{S}} \sum_{y \in \mathcal{S}} d_E(x, y) \min[\mu(x), \nu(y)]}{\sum_{x \in \mathcal{S}} \sum_{y \in \mathcal{S}} \min[\mu(x), \nu(y)]}$$

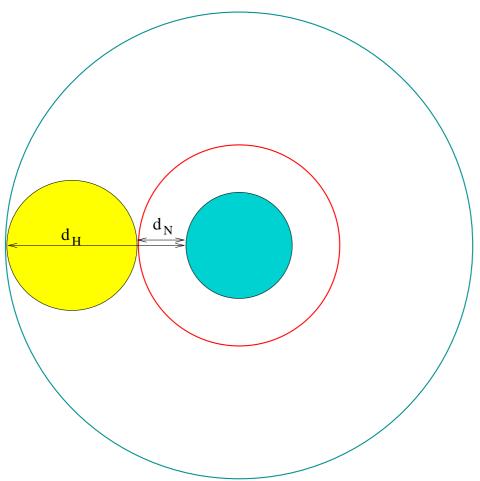
nombre flou

$$d(\mu,\nu)(r) = \sup_{x,y,d_E(x,y) \le r} \min[\mu(x),\nu(y)]$$

approche morphologique

Distances entre ensembles flous : approche morphologique

Expression de distances (minimum, Hausdorff...) en termes morphologiques (i.e. algébriques) \Rightarrow traduction aisée vers le cas flou



Distribution de distance minimum (point le plus proche)

$$d_N(X,Y) = \inf\{n \in \mathbb{N}, X \cap D^n(Y) \neq \emptyset\} = \inf\{n \in \mathbb{N}, Y \cap D^n(X) \neq \emptyset\}$$

Degré avec lequel la distance entre μ et μ' est inférieure à n (distribution de distance) :

$$\Delta_N(\mu, \mu')(n) = f[\sup_{x \in \mathcal{S}} t[\mu(x), D_{\nu}^n(\mu')(x)], \sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^n(\mu)(x)]]$$

Distance de Hausdorff : équations similaires

Densité de distance minimum (point le plus proche)

$$d_N(X,Y) = n \Leftrightarrow D^n(X) \cap Y \neq \emptyset \text{ et } D^{n-1}(X) \cap Y = \emptyset$$

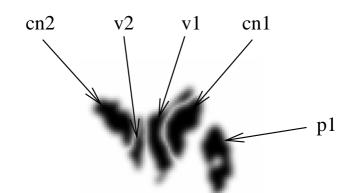
$$d_N(X,Y) = 0 \Leftrightarrow X \cap Y \neq \emptyset$$

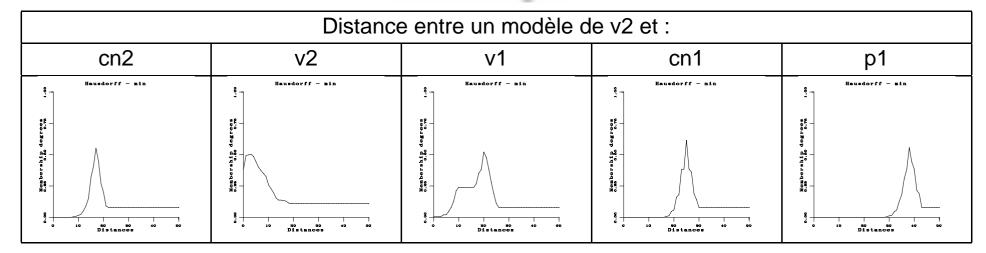
Degré avec lequel la distance entre μ et μ' est égale à n (densité de distance) :

$$\delta_{N}(\mu, \mu')(n) = t[\sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^{n}(\mu)(x)], c[\sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^{n-1}(\mu)(x)]]]$$
$$\delta_{N}(\mu, \mu')(0) = \sup_{x \in \mathcal{S}} t[\mu(x), \mu'(x)]$$

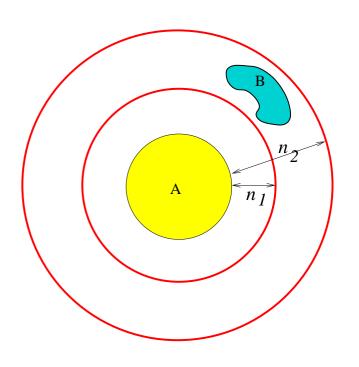
Distance de Hausdorff : équations similaires

Distance floue: exemple





Représentation spatiale de connaissances sur la distance



- Cas binaire : B doit à une distance comprise entre n_1 et n_2 de $A \Rightarrow$ région d'intérêt pour B : $D^{n_2}(A) \setminus D^{n_1-1}(A)$
- Cas flou : distance approximative donnée par un intervalle flou ⇒ deux éléments structurants :

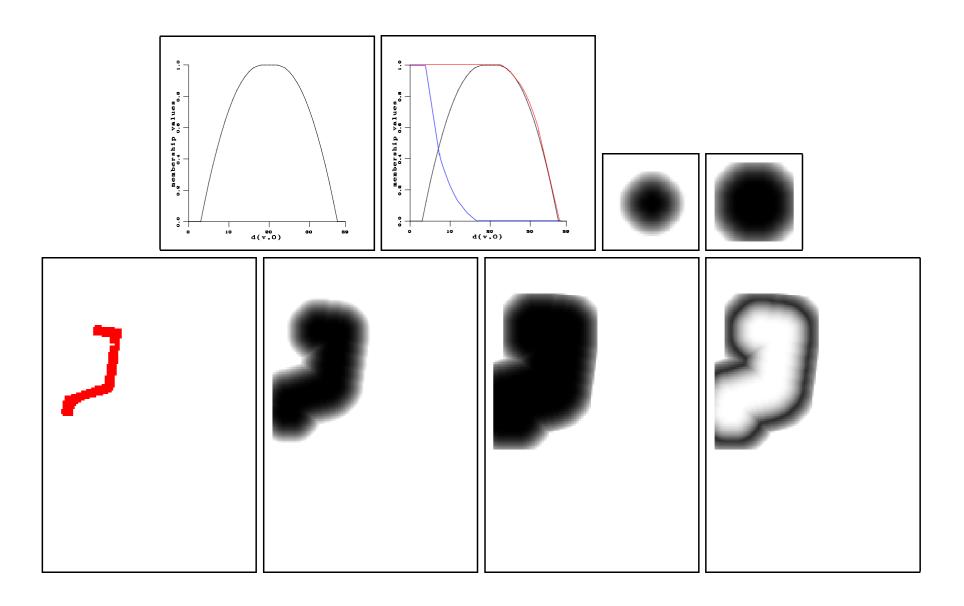
$$\nu_1(x) = 1 - \mu_n(d_E(x,0))$$
 si $d_E(x,0) \le n_1, 0$ sinon

$$u_2(x) = 1 \text{ si } d_E(x,0) \le n_2, \quad \mu_n(d_E(x,0)) \text{ sinon}$$

Région d'intérêt floue :

$$\mu_{distance} = t[D_{\nu_2}(\mu), 1 - D_{\nu_1}(\mu)]$$

Représentation spatiale de connaissances sur la distance : exemple



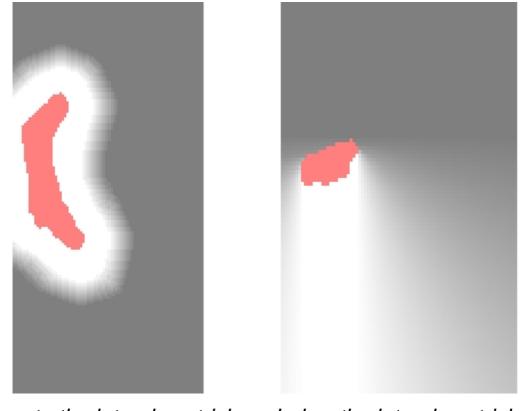
Autres relations spatiales

- direction relative
 - histogramme d'angles
 - projection
 - dilatation directionnelle
- entre
- longe
- entoure
- parmi
- ..

Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau

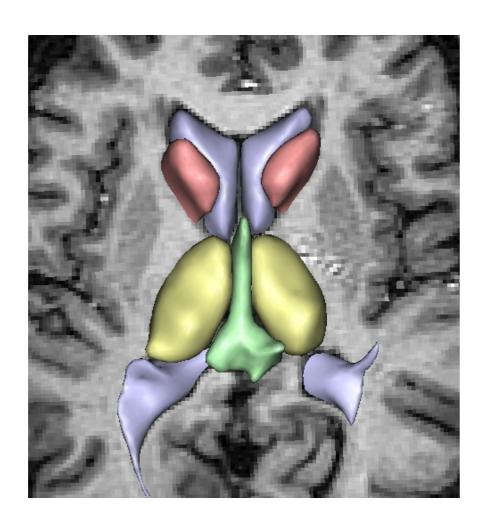


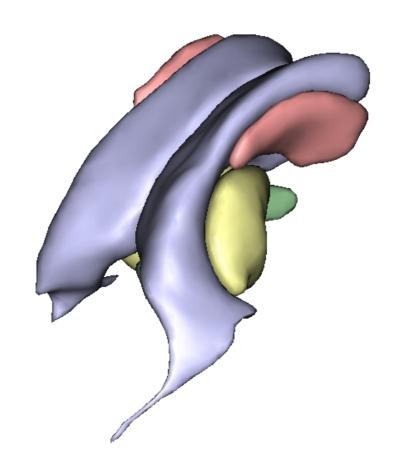
Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau



close to the lateral ventricle below the lateral ventricle

Fusion de relations spatiales pour guider la reconnaissance de structures du cerveau





Exemples dans des cas pathologiques



Exemples dans des cas pathologiques

