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Parts and Structure in Computer Vision




he correspondence problem

» Model with P parts
» Image with N possible assignments for each part
» Consider mapping to be 1-1

S - Image

NP combinations!!!




he correspondence problem
* 1 -1 mapping

— Each part assigned to unique feature
As opposed to:

 1—Many

Bag of words approaches
— Sudderth, Torralba, Freeman '05
— Loeff, Sorokin, Arora and Forsyth ‘05

Conditional Random Field
- Quattoni, Collins and Darrell, 04




History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, '00, '03, ‘04, ‘05
Felzenszwalb & Huttenlocher ’00, 04, ‘08
Crandall & Huttenlocher ‘05, '06

Leibe & Schiele '03, '04

Many papers since 2000



Sparse representation

+ Computationally tractable (10° pixels > 107-- 102
parts)

+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Connectivity of parts

Complexity is given by size of maximal clique in graph

Consider a 3 part model
— Each part has set of N possible locations in image
— Location of parts 2 & 3 is independent, given location of L
— Each part has an appearance term, independent between parts.

Shape Model

Variables

Factors

Factor graph
3
S(L) | S(L,2) S(L,3) A(L) A2) |A)
N
Shape Appearance




Different connectivity structures

Fergus et al. '03 Crandall et al. ‘05 ) Felzenszwalb‘ &
Fei-Fei et al. ‘03 Fergus et al. '05 Crandall et al. ‘05 Huttenlocher ‘00
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from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006



Some class-specific graphs

* Articulated motion
— People
— Animals

» Special parameterisations
— Limb angles Q

A
;

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]




Hierarchical representations

Pixels = Pixel groupings > Parts 2> Object

Multi-scale approach
increases number of low-
level features

Amit and Geman ‘98
Bouchard & Triggs '05

Felzenszwalb,
McAllester »
& Ramanan ‘08 O

Images from [Amit98,Bouchard05,Felzenszwalb’08]



Stochastic Grammar of Images

S.C. Zhu et al. and D. Mumford
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low to model location?

 Explicit: Probability density functions
 Implicit: Voting scheme

 Invariance
— Translation
— Scaling
— Similarity/affine
— Viewpoint



Explicit shape model

e Cartesian

— E.g. Gaussian distribution
— Parameters of model, wand =

— Independence corresponds to zeros in X

— Burl et al. '96, Weber et al. ‘00, Fergus et al. '03

* Polar
— Convenient for
invarianc
rotation

—
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Implicit shape model

» Use Hough space voting to find object
* Leibe and Schiele '03,'05

Learning

» Learn appearance codebook

— Cluster over interest poi
training images

» Learn spatial distributions
— Match codebook to training images
— Record matching positions on object
— Centroid is given

X X
Spatial occurrence distributions

Recognition Interest Points Matched Codebook Probabilistic
Entries
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Multiple view points
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Hoiem, Rother, Winn, 3D LayoutCRF for Multi-
View Object Class Recognition and
Segmentation, CVPR ‘07

enpainls

o mput
images

model " . v
(coddebook, !
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Thomas, Ferrari, Leibe, Tuytelaars,
Schiele, and L. Van Gool. Towards
Multi-View Object Class Detection,
CVPR 06



Appearance representation

« SIFT « Decision trees
— . . [Lepetit and Fua CVPR 2005]

/ ——
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detectors
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||| ||| I|||||I| Figure from Winn &

Shotton, CVPR ‘06



Background clutter

* Explicit model

— Generative model for clutter as well as foreground
object




Efficient search methods

* Interpretation tree (Grimson '87)

— Condition on assigned parts to
give search regions for
remaining ones

— Branch & bound, A*
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Parts and Structure Summary

» Correspondence problem
« Efficient methods for large # parts and # positions in image
« Challenge to get representation with desired invariance

Future directions:

« Multiple views

« Approaches to learning

« Multiple category training



Questions 2
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Visual Recognition of
Gestures and Actions

Rémi Ronfard
INRIA Rhone-Alpes

remi.ronfard@inria.fr

Montpellier, April 2015


mailto:remi.ronfard@inria.fr

Survey the most useful and promising techniques for
real-life applications of face, gesture and full-

body action recognition.

Examine how those different classes of methods can
be adapted to achieve invariance with respect
to viewing directions and performing styles.



OUTLINE

* History and applications
Gesture recognition - a machine learning problem
> What is a gesture ! What does it look like ?

e Spatial structure of gestures and actions
> Face, hands and feet, full body
o Actor invariance
° View invariance
» Temporal structure of gestures and actions
o Templates, grammars and histograms
o Tracking, segmentation and recognition



History and applications
* What is a gesture ?
* How can the computer use gesture !

* How can the computer recognize gesture ?



Different classes of gestures

* Gestures are movements of the human body
> With a communicative goal
> Or part of goal-directed action

* Action changes the world
e Gesture communicates

* Visual analysis of gesture and action
> Detect and track human body parts
> Recognize their gestures and actions



Different classes of Gestures

* Gestures as poses * Single body part
> Counting with fingers - Hand gestures
> Making faces : :
o o Facial expressions
> Pointing
* Gestures as movements * Multiple body parts
> Yes, no > Hand gestures

> Come here, go away
> From here to there

o

Clapping hands

(0]

Scratching head

[e]

Blowing a kiss

o

Are you crazy ?



Examples

e Source: Real-time
Detection
a n d
Interpreta
tion of 3D
Deictic
Gestures

¢ J. Richarz, T. Plotz
and G. A
Fink,
| C PR
2008.




Gesture Measurement

 Visual measurements * Physical measurements
o Markers o Accelerometers
o Local features o Gravitometers
> Body parts o RFID tags
> Shape o Laser scanners

(¢]
(¢]

Radars, Lidars

Time-Of-Flight (TOF)
cameras

Color and texture

(¢]

Motion

(¢]

 From one or more cameras
(binocular, trinocular
and multiview
stereo)



Applications —reading sign language

* Source: Buehler et al. Oxford University, 2010



Gesture-based remote controls

* First proposed by Bill Freeman

* Now using Time-of-Flight Camera,
allowing people to turn up
the volume by moving
their hand in a circle,
switch the channel by g
swiping to the right, pause
by extending their hands
in a “stop” gesture, and so
on.

* Source: Softkinetic-Optrima



Teaching robots by demonstration

ceGesture

* Visual

recogniti
on and
imitatio
n

gesture
t (o)
motor
comman

ds

wCK Robotic Medule

Remote Control »

Object Detecticn® o

16 Degree of Freedom o

* Full-Duplex dropdown

Quick & Simple »
UART serial communication

Joied Asseenbly
« Intelligent Robot Controller

* PC Conmection

* Speaker System
¢ Sound Detection

* Accelerabion Sensor &

Bluetocth Communication

* Comes with Rotosavyy Chvistmas Edion 09 Robots
Opsonad Accessones



Minority Report gesture Interface

° l[ohn Underkoffler helped
Steven Spielberg
design a futuristic
human computer
interface for a movie
that takes place in the
year 2054.

* Now introducing G-Speak by
Oblong



http://tangible.media.mit.edu/people/john.php
http://tangible.media.mit.edu/people/john.php
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Other sensors and applications

e

* Gesture-Based Interface to
Windows by
Andrew Wilson
and Nuria Oliver,
Microsoft
Research e m

* Microsoft Kinect (NATAL)

-
™
' "X
. = . .
X res a res

KINECT




Binocular and trinocular stereo

PANASONIC 3D CAMERA COMPUTER
THEATRE at MIT



Speech vs gesture

e Phonemes ) .
* Visemes and Kinemes

o Facial Action Units
> Body Action Units

* Phonetics

cMel-Cepstrum

Coefficients . .
* Visual representations

o Actor invariance

o Speaker invariance

o View-invariance

o Temporal resolution
* Language models

* Multiple contexts
> Phonemes to words

o Gesture lexicons

> Word to word statistics ,
o Gesture profiles



gesture in dialogue (mcneil, 1992)

e Communicative * Non-communicative

> EMBLEM - ADAPTOR
Yes, no, thumbs up TOUCH SELF

’ DEPISLLE TOUCH OBJECT

- ICONIC/METAPHORIC TOUCH OTHER
Representing > GOAL-DIRECTED

o BEAT Raise arm to reach object
Stress and rythm Scratch head to ease pain

Chase a mosquito

- UNVOLONTARY

Embarassment



Body language

e Hand and Mind. What
Gestures Reveal
about thought, David
McNeill, 1992.

* Gesture: Visible Action as
Utterance, Adam
Kendon, 2004.

* Gesture and Thought, David
McNeill, 2007.



http://www.amazon.fr/s?_encoding=UTF8&search-alias=books-fr-intl-us&field-author=David%20McNeill
http://www.amazon.com/Adam-Kendon/e/B001IXMQSM/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Adam-Kendon/e/B001IXMQSM/ref=ntt_athr_dp_pel_1
http://www.amazon.fr/s?_encoding=UTF8&search-alias=books-fr-intl-us&field-author=David%20McNeill

Tracking and recognition

TRACKING RECOGNITION

Spatial Temporal
Segmentation

Particle Hidden Markov

Filter Models

* Source: Green and Guang, Quantifying and recognizing human
movement patterns form monocular video images, |EEE
Trans. on Circuits and Systems for Video Technology.



Gesture and action recognition

Video

-

Actio.n
Learning
Feature Action
Extraction Segmentation
Action

Classification

l

Action Model
Database




KTH FULL BODY GESTURE DATASET




KECK DATASET (Univ MARYLAND)

Turm left Tum right Altention left Altention right Attention both Stop left Stop right

Stop both Go back Close distance Speed up Come near

Source: Lin, Jiang, Davis, Recognizing Actions by Shape-
Motion Prototype Trees, ICCV, 2009.



INRIA IXMAS Full-body gesture dataset

* |l actions by 10

actors . 1
e 3different poses (m - Serasch bead
® 5 cameras '

h | g i ‘
it 1.1 [, &
he'y S

N
%

- Pckup



Different classes of problems

* Recognize gesture, given © Recognize gesture, given
body part human body trajectory

Ee;giejs?: C;u(z rbioed)s, (human tracking still hard)

part tracking is

hard) . .
- Faces * Recognize gesture, given

- Hands image sequence (hardest)
> Feet



Different classes of problems

* Single actor * Multiple actors

o Train on actor > Train on one actor

> Test on same actor > Test on other actor

* Single view
> Train in one view * Multiple views
o Test on same view o Train in one view

o Test on other view



Machine learning approaches

* TRAINING * RECOGNITION
o Define gestures from > Recognize gestures from
training examples test examples

Same or different actors

(0]

One or more actors

o

Same or different views

o

One or more views

o

o
(0]

Given body parts Same modalities as in

(¢]

Given human tracking training
Given sequence * EVALUATION

o Precision and recall

[e]

o Generalization



The recognition problem

2. Evaluate precision and recall
with testing set of labeled

e Task - Given a test video clip,
does it contain gesture or

action ?

Learn models with training
set of labeled examples.

examples.

e Many approaches for

encoding spatial and

temporal structure of action

* Variations

2.

Given

Given

a test detection
box for an actor,
i's actor
performing
gesture or action
?

a test detection
boxes for a body
part, is body part
performing
gesture or
action!?



The segmentation problem

 Given video clip of gesture or action, where and
when is it happening !

* Given video clip, how many different gestures
and actions ! Where and when are they
happening ?

* Fewer references

> Motion maxima (Marr and Vaina)
o Sliding window and Dynamic Time-Warping

o Semi-Markov Models (HMMs and CRFs) provide a
segmentation as a result of recognition



The viewpoint recognition problem

* Recognize gestures and
actions from
different viewpoints

° How many training viewpoints ?
> How many testing viewpoints ?

* Few approches
o Exhaustive search
> View-invariant features (Perez)
o Transformed Grammars (Frey &
Jojic)
* Few databases - CMU,
IXMAS




Spatiotemporal features

e Temporal histograms

e Image histograms
o Time Bag of Words

> Space Bag of Words

> Color and texture (SIFT) > Oriented Flow (HOF)

> Oriented Gradient (HOG) o Spatio-temporal Interest
o Image templates Points (STIPS)

> Face e Temporal templates

> Hand

> Motion History Images
> Body

e Recognition by parts
o Pictorial structures

e Recognition by parts

o Markov States and Transitions
(HMM)

o Grammars



Taxonomy of learning methods

Body model Image model Spatial
Bag-of-words

Body template Image template Bag of trajectories

Body grammar Image grammar Bag grammar

Bag of body parts Bag of keyframes Bag of events




Spatial structure of gesture

e Body coordinates = Body models
* Image coordinates = Image models

* Unstructured space = Histograms
- spatial bag-of-words (BOW)



Body models

* Detection and/or tracking of body parts
e Labeling of body parts (and actors)
* Movement and pose of body parts

 Pros: gestures are naturally defined in terms of
body parts

e Cons: recognition cannot recover from tracking
or detection errors



Hand tracking

* Color-to-Finger indexing
* Wang and Popovic, MIT Media Lab, 2010




Upper body pose estimation

e Source: Buehler, Oxford Univ.2010




Full body gesture
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Full body gesture
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Image models

* Do not assume body parts can be recognized

* Learn global model of image appearance and
motion

°* Pros: Gestures can be learned from
unsegmented examples; no body part
labeling necessary; fast.

e Cons: Requires multiple models for different
viewpoints, distances and body sizes.



Image Descriptors

* Silhouettes
> Background-subtraction
° Image difference

e Colors and textures
o SIFT images (dim=128)
¢ Oriented Gradients and Flows

> Dense optical flow
° Image of HOG-HOF coefficients (dim=16)

e Self-similarity



Image models for full body gesture




Recognizing hand movements

« A Method for | Pitch Up

Lemporadl P Up/ 5 gpr/]
Geztrl]re Y Left Hand Size Y 9 :

Recognitio ‘
n

e Joshua R. New

eKnowledge
Systems |
Laborator

lYaw ’ » :
Left ”a""\sr.w Right

V4 -
e Jacksonville State ¥ Down / legwn 4 D.Own /
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University
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Hand gestures with image moments
Mo = ) D10y My=Y Y wixy n
Mo =Y YAy My=Y Y yxy

My = z ZX“I(x, y) My, = z 2 )'zl(x, ¥) “ n

* Source: Freeman et al. Computer Vision

for Interactive Computer
Graphics. IEEE CGA, 1998.




Orientation histograms

‘1 if |0(x, y) 32‘0,- 3!(\)"0

2 (D, () - D, (1))} (i) = z




Multiple body parts

* Build templates of Gradient Orientations (HOG)
* Source: Dalal & Triggs, CVPR 2005

Head &

Shoulders _Torso _Lea | Head
Spatial orso
Histograms

Part e Legs

Block




Hog-Hof templates

Input image Consecutive image

. O N

Detection windows

Normalise gamma & colour

Flow field Magnitude of flow

Compute optical flow
Compute differential flow ‘

Differential flow X Differential flow Y
Accumulate votes for
differential flow orientation
over spatial cells

Normalise contrast within Block
overlapping blocks of cells
Overlap

Collect HOGs for all blocks of Blocks
over detection window

Source: Dalal, 2005



Spatial « Bag-of-Word » models

* Discretize image descriptors into a finite lexicon of
« visual words »

* Compute frequency of visual words in entire image

* Object recognition: SIFT
> 128-dimensional descriptor
> At « interest points » or regular grid

e Gesture recognition: HOG-HOF
> 32-dimensional descriptor
o At « spatio-temporal interest points » or regular grid



Spatio-temporal interest points

e Source: Laptey, IJCV 2005




Spatio-temporal interest points

e Source: Laptey, |JCV, 2005




Temporal structure of gesture

Global time-slice = Gesture Templates
Moments in time = Gesture Grammars

Unstructured time = Gesture Histograms
(Temporal Bag-Of-Words)



Temporal structure of gesture

* Source: Kipp et al. Behavior Markup Language

| | 2%
! 1/ /N : _ f |
| | T . o l or Y By
¥V an | ' A
i /t ! i |ﬂ ! i f‘ ! Ii ﬁ i
Stroke Relax End
Stroke-start Stroke-end
o S
A4 Hf‘/
Pre-stroke Hold Post-stroke Hold

(anticipation) (emphasis or continuation)



Temporal structure of gesture

GESTURE — [preparation] [hold] STROKE [hold].

STROKE — main_stroke (after_stroke)*.

GESTURE — {S-GESTURE | H-GESTURE}
S-GESTURE — [preparation] [hold] STROKE [hold]
H-GESTURE — [preparation] hold.

* Source: Kipp. Gesture Generation by Imitation



Gesture Templates

* Body is an N-dimensional articulated structure
° recognize trajectory in N dimensions

e Template matching in N dimensions is hard !

* Dimension reduction and/or simplifications
o Head trajectory
o Hand trajectories
> Head pose

* Segmentation requires sliding window (convolution)
* Multiple templates for speed, duration and intensity



Image model + Gesture Template

* Gesture is defined as a « spatio-temporal
object »

° Image x time
o Space x time

* Examples:
> Motion History Image
> Motion History Volume



Motion history image

Representation and Recognition of Action Using Temporal Templates, Bobick and
Davis, PAMI 2001



Motion History Volumes

Action Recognition *

5 TN
in 3D using voxels T i Y
. - Ni/

Shape from Gt S Ve €yt o T Nt
Silhouettes

+ l’ ‘

Motion History B

Images S

Free Viewpoint Action Recognition using Motion History Volumes. VVeinland,
Ronfard, Boyer, CVIU 2006



http://perception.inrialpes.fr/member.php3?id_auteur=27
http://perception.inrialpes.fr/member.php3?id_auteur=23
http://perception.inrialpes.fr/member.php3?id_auteur=21

Gesture Grammars

* Grammar decomposes gesture into
« states» and states into
observations

e Generative HMM

- P(body part motion and pose|state)
- P(state at t|state at t-1)

e Discriminative CRF
P(state|body part motion and pose)

* Probabilistic Context-free grammar
- Repetition and grouping of states



Markov models

e Probabilistic Finite State Machines
e First-order Hidden Markov Models
* Segment Models

"‘n ‘44

.. Final
g 2 St
~
Sy |— : S.z / >
/A, a5 / a4
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24 35



Conditional Random Fields

l Recognizer ‘

!

Flip Forward ?
Expand ?

e Source: Hidden Conditional Random Fields for Gesture
Recognition by Wang, Quattoni, Morency, Demirdjian &
Darrell, CVPR 2006



Conditional Random Fields

FB SV EV DB PB EH

FB - Flip Back, SV - Shrink Vertically, EV - Expand Vertically, DB -
Double Back, PB - Point and Back, EH — Expand Horizontally.

Green arrows are the motion trajectory of the fingertip and the
numbers next to the arrows symbolize the order of these
arrows.



Image model + Grammar

e Grammar decomposes gesture into « states»
and states into observations

e HMM is a probabilistic state machine
> P(image motion and appearance|state)
o P(state at t|state at t-1)

* CRF conditioned on image observations
P(state|image motion and appearance)

e Controled settings
e Constant viewpoint



Learning of action exemplars

Goal — learn actions in 3D .

. X Motion States
and recognize in 2D g¢—y g, >
Problems

*MHVs cannot be projected to novel Exemplars

views

Ty

*IXMAS actions not all simple Body Orientations

Solutions

° Metric mixture of 3D exemplars \' 1lew transformation

(Toyama & Blake, 2001)

eTransformed HMM for action &
actor pose relative to \ 4
camera (Frey & Jojic,2001) o

&< O Observations

Action Recognition from Arbitrary Views using 3D
Exemplars , Weinland, Boyer, Ronfard , 2007


http://perception.inrialpes.fr/~Weinland/papers/WeinlandBoyerRonfard-ICCV07.pdf

Recognition with action exemplars

3D Exemplar




Recognition with action exemplars

Average 2D

recognition 60%

Average 3D

recognition 90%

Best compromise
with cameras 2+4

Outperformed by
STIPS and self-
similarity (Perez) on
single-view
recognition

Caméra 5
33.6 %

Caméra 4
66.0 %

Caméra 3

54.3 %

Caméra 2
70.0 %

Caméra |
65.4 %
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Temporal Bag of Words

» Histogram of image features over time
- BODY MODELS
- IMAGE MODELS
> SPACE BAG OF WORDS
* Recognition based on distance between
histograms
> Learned histograms
> Observed histogram



Image model + Bag of Words

* Gesture from a single or few « keyframes »
o Still frame
o Keyframe selection during learning and recognition
> Same as ergodic HMM (no temporal structure)

* Gesture from many frames
> Discretize video frames into lexicon of « visual words »
> Compute word frequencies over time
> P(gesture|sequence) = H(words)



Bag-of-Words Sequence Model

Model
Building

codebook

I

111 1&'1'10

20!32}32

211

¥ \

18j21j21
~mrem
3232411

21{28{32

mrr
o] 10[1o)

10{2?%

32i32!1],,

Source: Mori Structured Action Recognition. 2007.




Spatial + Temporal Bag-of-Words

e Build a discrete lexicon of « motion » words
° in space and in time

* Learn the frequencies of motion words per gesture
o P(word|gesture)

* Recognize most likely gesture from observed word
frequencies over entire video segment (space and
time)

> Pros: Robust to partial observations and occlusions; invariant to

sizes and durations ; very good precision in benchmarks;
good generalization

o Cons: Blind to higher-order spatial and temporal structure; hard to
tune to specific cases



CONCLUSION

Gestures and actions are spatio-temporal patterns
with internal structure and high complexity.

In the spatial domain, actions and gestures can be
represented with body models, with image
models, or with bag of isolated features.

In the temporal domain, they can be represented
with templates, with grammars, or with bags of
isolated features.

By combining the spatial and temporal aspects of
gesture and action, one is faced with a vast
number of possible combinations.



Additional references

A survey of vision-based methods for action
representation, segmentation and recognition.

Daniel Weinland, Remi Ronfard, and Edmond Boyer.

Computer Vision and Image Understanding (CVIU).
Vol. 115, No. 2 (February 2011), pp. 224-241.






Automatic Rush Generation
with Application to Theatre Performances

Vineet Gandhi and Rémi Ronfard
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Motivation

e Recordings theatre is important
e Preserve and present cultural heritage
e Educational, research or professional reasons

e Many organizations actively record theatre
e The theatre on Film and Tape Archive (TOFT) - New York
e French National Institute of Audiovisual (INA) - France
e National Video Archive of Performance (NVAP) - UK

e Theatre for Web

e Watch trailers and pay to watch online
e Digital theatre, INA
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Motivation

e Producing professional quality live performance videos require source video from
multiple viewpoints

e These source videos (rushes) are then edited together to create the final result

High budget and Difficult!

- Multiple synchronized cameras

- Skilled cameramen
- Restricted viewpoints
- Intrusive

1 : :
2-'5 master - No retakes
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Our Approach

e A high resolution static camera replaces the plural camera crew
e Multiple cameras are then generated as a post-process

e Virtual pan, tilt, zoom movements (within original recording)
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Theatre database: Requirements

A (:—i—‘ [
e Cover the entire stage ' Ti:;ﬁ;gr
e Neutral angle :‘ /. ; .
) Ak p g
e Should work in varying light situations \[T 5
e Good depth of field g
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Organization

1. Theatre Database

2. Actor tracking
e Related work
e Detection
e Tracking
® Results

3. Rush Generation

4. Applications
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Actor tracking: Goal

Goal: Identify and determine bounding box of each actor in each frame or indicate
that it is not visible

Kennéth

Theatre [Death of a Salesman, Celestins 2013] Movie [ Rope, Alfred Hitchcock 1948]
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Actor tracking: Challenges

e Occlusions

e Viewpoint and pose changes
e Scale changes

e lllumination changes

e Motion blur

e Distinguishing among actors
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Actor tracking: Related work

Online approaches
e Real-time applications
e Generative [VTD Kwon et al. 2010] [IVT Ross et al. 2008]

e Discriminative [MILTrack Babenko et.al 2009] [SPT Wang
et al. 2011]

e Usually fast, return smooth trajectories
e Require simple initialization
e Fail to consistently track objects over long periods

e Adapt models during tracking - drift

Example of drift in MILTrack
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Actor tracking: Related work

Tracking using generic detectors

e Generic detectors combined using feature tracks

e Viewpoint dependent

e Does not take into account object specific features = low detection recall

e Feature tracks may drift = inaccurate localization at intermediate frames

Who are you? [Sivic CVPR 2009] Generic detectors (Dalal CVPR 2005, Felzenszwalb CVPR 2008)

102




Actor tracking: Related work

TLD tracker [Kalal et al. 2012]

e Learns detector by gathering the weakly labelled training
data during tracking process

e Addresses post failure behaviour
e Sensitive to initialization
e Biased to initial viewpoint

eResults may significantly vary based on the viewpoint
chosen for initialization



Offline approaches

e Interactive offline tracking
[Wei et al. 2009]

e Self paced learning [Supancic
et al. 2013]

e Player tracking [Sullivan et al.
2006]
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Actor tracking : Our approach

Three stage tracking framework:
» Learning > learn separate detector per actor
* Detection - perform individual detection at each frame
* Optimization > combine into smooth trajectories

Key ideas
» Offline > targeting long term tracking
* |Initialized with a small set of representative training samples rather than a single
initial position
* Models learnt at the beginning > non adaptive
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Color blob detector: MSCR features

e Actor’s clothing is stable in color (compared to interest point features)

e We use maximally stable color regions (MSCR) [Forssen CVPR 2007]

Image MSCR features
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Color blob detector: Appearance model

® Constellation model
* Two parts: head and shoulders
* Each actor appearance - visual vocabulary of color blobs C = {y;, 1;, 2.i}

head
Weight (y;)

C, > Mean appearance (i;)
Variance (3;)

Shoulder

(p;) 2 9 dimensional
(color, size, shape, position)
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Color blob detector: Generative model

@ Probability that an observed set of blobs B = {B;} were generated using C = {y;, I;, ¥i}

Pmrerall - H ertk Product over parts
k

Ppart, = Z P(B,-._ C;) Sum over all blobs and clusters in the part
] \
assignment between observed blobs and clusters

P(Bj,mij, Ci) = 7i - my; - exp {_ (hti = BJ')T 2 (i - Bj)}
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Color blob detector: Model construction

e Constrained agglomerative clustering
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Color blob detector: Example models

(h) Willy (1) Biff (i) Happy

(h) Bitf (i) Happy (j) Miss Forsyth

(k) Girl
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Color blob detector: Example models

II

I

(a) Brandon (b) Philip (c) Janet (d) Kenneth

(d) Mrs. Wilson (e) Mrs. Atwater (f) Rupert (g) Mr. Kentley
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Color blob detector: Detection

e Sliding window search accelerated using K-nearest-neighbour (KNN) refinement

A}

.  »

Model (C) Image MSCR features (B) KNN Refined features (B’) Importance map Matched blobs  Matched clusters
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Detection results: Color blob detector

Red: Color blob detector
Yellow: Generic upper body detector [Felzenszwalb CVPR 2008]
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Detection results: Color blob detector




Color blob detector: Results theatre sequences

FBD UBD CBD
Dosl (4 actors, 1788 frames) 48 60) 72

Daos2 (2 actors, 1490 frames) 76 S0 93
Dos4 (4 actors, 1656 frames) 55 66 84
Dos5 (2 actors, 1094 frames) 43 54 81

Average recall




Actor tracking: Optimization

e We minimize following global cost function:

N N
E() = ZEd(St) + Z Eg(st-1, st).
t=1 t=2

e Dataterm Ed

—log(P(s¢.t)) ifsp >0
Ey(si) =
alst) {/\1 if 5, =0

e Smoothness term E,

Dy (l(sg—1,t — 1), l(s¢,t if s, >0,
Es(St—l.St):{ (t(se-1, ). 1(se.1)) ifsp >0,

Ao if s, = 0.

b \2 2 2
Ti—1 — T Yt—1 — Wy_1 — W
g, Uy o2,
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Rush generation

Goal : Given actors tracks simulate virtual camera shots




Rush generation: Related work

Rew bma -

-

AutoAuditorium [Bianchi et al. 1998] | Virtual Videography [Heck et al. 2007]

s
PR

Hybrid PTZ [Carr et al. 2013] Video Stabilization [Grundmann et al. 2011]

N i‘ LML -"»,;.ul—i’
I

T

{2 ¥
-
\
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Rush Generation: What comprises a good camera work?

e Shot composition
e Subjects should not be cut by the image frame
e Subjects must be given more space in the direction they travel
e More space in the direction they look

e Cuttability (keeping the editing in mind)
e Keep camera static
e Screen continuity

e Camera movement
e Camera movement should be motivated
e Apparent actor movement should be consistent
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Rush Generation: Our method

e Cinematographic principles as constraints and penalties

e We solve a constrained convex optimization problem

Input

e The master shot (single static video covering the entire field of view)

e Actor tracks
e Shot specification

Output

e The virtual camera trajectory ¢ = {fx,, fy,, fs }

fx,

fy,

A

( fx.{}y. ;ffs, )
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Rush Generation: Actor tracks

o (bx™, by[™, bs{", bh{* ) for each actor m at time t
* Tracks calculated using our offline tracking algorithm
* Use size to infer depth and ground projections




Rush Generation: Shot specification

e Shot size and list of actors

. V'

FS B MS B Shot sizes [B. Salt. Moving into pictures. 2006]
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Rush Generation: Inclusion region and external actor boundaries

yu,

X,

inclusion region “FS A,B”

inclusion region “MS A” and boundaries of
the nearest actor on the left and the right
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Rush Generation: Optimization — Overall

+

Penalties to avoid
cropping actors

Data term

N

Regularization terms

/

-

minimize| D(§) -/

(L1 (€) + Li3(€))

s

E, keepout (6) T Epullin(f )

+

subject to

M (§) + Mz(f)\

0< fx, — A, fs, < xl,.
xry < fx; + A fs, < W,
0 < fy, — fsy < yu,.

/ybtgfyr+f$rSHt:1 .....

Inclusion constraints

- The camera frame should always lie within the master shot

- The inclusion region should be enclosed within the camera frame

Penalties to avoid
apparent motion
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Rush Generation: Optimization — Shot size penalty

e The camera frame should remain close to the inclusion region

/«

N
Z fxt_xt (f}’t_}’t)?'*(fst—st)z)-
t=1

where x; = 2(x/t + Xre), yr = 2(yut + yb¢) and s; = é(ybr — yuy)

e To impose screen continuity, we add an offset (0.17A fs h.)




Rush Generation: Optimization — First order L1-norm regularization

e Avoid non motivated small camera movements

e Long static camera segments > favourable for cutting

We regularize with the L1-norm of the camera velocity

N-1

[

L11(&) =
t=1

(|fxes1 — fxe| + | fyesr — fye| + |fses1 — fse]).
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Rush Generation: Optimization — First order L1-norm regularization

Original signal x,, t= [1: N]

I \ » Staircase artefact
n-1 - _

n
Z(x,—r,)2+AZ|r,,,—r,| : :
t=1 t=1
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Rush Generation: Optimization — Third order L1-norm regularization

e When the camera moves it should move smoothly

e Start with a segment of constant acceleration (ease in) and end with a segment of constant
deceleration (ease out)

We regularize with the L1-norm of the camera jerk

N—3
L13(&) = Z(|fxt*3 — 3fxes2 + 3fxes1 — x|

t=1
+ | fyrs3 — 3fyreo + 3fyeer — e
+ |f$t+3 — 3f$t.._2 + 3f$t+1 — fStI)
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Rush Generation: Optimization — First order L1-norm regularization

Original signal x,, t = [1: N]

!

n n-1
Z(xt - rz)z +AZ [es1 — 7l
t=1 =1

n n-=1 n-3
Z(xt - ,.‘)2 + AZ [resy =1l + 4+ AZ ITes3 = 342 + 314y — 1l
=1 =1 =1

;

=
w
(&




Rush Generation: Optimization — Pull in or keep out penalty

e Avoid chopping actors
e Each actor must either be in or out of the virtual camera window

e Actor included in shot specification = hard constraints

e Other actors may still come in contact with the virtual camera frame
fx.+ Afs,




Rush Generation: Optimization — Keep out penalty

® When the external actor is not touching the inclusion region

We add a penalty £, = |actor N frarw




Rush Generation: Optimization — Pull in penalty

® When a touch event occurs

We add a penalty £, = | actor \ frame\




Rush Generation: Optimization — Apparent motion penalty

@ The apparent motion should be consistent

* First term penalizes camera motion when actors are not moving

N-1
Mi(&) =D ) (X" Bt — Bl ey |fyess — frel+es]” | Fseen — o).
r=1

m

cx, ey, cs{™ are binary vectors = 1 if the actor is static in horizontal direction, vertical
direction or size respectively
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Rush Generation: Optimization — Apparent motion penalty

® Motion direction should be consistent
bx™ = (bx?, - bx]") = actual horizontal actor motion
(bx™ — fx™) > apparent actor motion

Second term M2 penalizes negative values of (bx[® — fx*) bx®
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Rush Generation: Results

Orig ---

o

x
2 3 4 5
6

4
1 2 3 t 136




Rush Generation: Summary

e Rush generation as a convex minimization problem

e Considering composition, cutting and movement

Limitations and Future work
e Separate optimization for each shot specification, may lead to jump cuts
e Future work should explore joint optimization of multiple shots

e Higher resolution master shots (4K or 6K)
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Applications: multi-clip editing

e Generated rushes directly editable as multi-clip




THANK YOU!




