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Introduction

Particle Filters : two words
Filter : a procedure that estimates parameters (state) of a system.

Particles : a set of randomly chosen weighted samples used to
approximate a pdf.

Estimation
Estimation is the process by which we infer the value of a quantity of
interest, x, by processing data that is in some way dependent on x.
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Introduction

State estimation or filtering has many applications

Estimating communication
signals from noisy
measurements

Predicting economical data

Tracking of aircraft positions
from radar

Tracking of people or cars in
surveillance videos

Mobile robotics

etc.
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Introduction

Goals of this presentation :

State the problem

Introduce the key ideas

Show examples of applications in computer vision
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Introduction

The problem
Find the best estimate x̂ for a parameter x given a set of k measurements
Z1:k = {z1, . . . , zk }.

State estimation is based on probability theroy.

One of the ’most important’ results in probability theory is Bayes
Rule :

P(A |B) =
P(B |A)P(A)

P(B)

posterior =
likelihood × prior

evidence
=> simple but powerful !
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Introduction

Using Bayes rule, the posterior pdf is given by

p(x|Z1:k ) =
p(Z1:k |x)p(x)

p(Z1:k )

∝ η × p(Z1:k |x)p(x)

p(x|Z1:k ) : the posterior pdf
p(Z1:k |x) : the likelihood function
p(x) : the prior distribution

"‘The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed, and

the value of the thing expected upon its happening."’
Thomas Bayes (1702-1761)
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Introduction

Maximum Likelihood Estimation
If we have no prior knowledge about the parameter x :

p(x|Z1:k ) ∝ η × p(Z1:k |x)

Then, the estimate x̂ is given by the value of x which maximizes the
likelihood function :

x̂ML = arg max
x

p(Z1:k |x)

Maximum A-Posteriori Estimation
In many cases we have some prior knowledge on x represented by p(x) :

p(x|Z1:k ) ∝ η × p(Z1:k |x)p(x)

Then, the estimate x̂ is given by the value of x which maximizes the
posterior distribution :

x̂MAP = arg max
x

p(Z1:k |x)p(x)
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Introduction

MMSE Estimation
Another key technique for estimating the value of a random variable x is
the minimum mean squared error estimation :

x̂MMSE = arg min
x̂
E{(x̂ − x)T (x̂ − x)|Z1:k }

It is easy to show that :
x̂MMSE = E{x|Z1:k }

Recursive Estimation
If the measurements are obtained sequentially over time, we could use the
previous estimate of x as the prior knowledge.

p(x|Z1:k ) =
p(Z1:k |x)p(x|Z1:k−1)

p(zk |Z1:k−1)
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Introduction

We can distinguish three estimation problems :

Filtering : estimate the current state x(k) given all the data availabe
up to and including z(k).

Smoothing : estimate some past value of x(l), l < k , given all the
data availabe up to and including z(k).

Prediction : estimate some future value of x(l), l > k , given all the
data availabe up to and including z(k).
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What Is A Particle Filter ?

Recursive filter

Sequential update of previous estimate
⇒ faster online data processing as opposed to batch processing

Approximate method

It is impossible to obtain analytic solutions to non-linear and
non-Gaussian estimation problems
⇒ particle filters provide approximate solutions
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What Is A Particle Filter ?

Particle filter is :

a technique for implementing recursive Bayesian filter by Monte Carlo
sampling.

the idea is to represent the posterior density by a set of random
particles with associated weights ;

and compute estimates based on these samples and weights
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Applications in Computer Vision

Visual Tracking

Particle filters were first introduced to the computer vision community
by the famous CONDENSATION paper of Isard and Blake.
⇒ real-time contour tracking

M. Isard and A. Blake, CONDENSATION - conditional density propagation
for visual tracking, Int. J. Computer Vision, 29, 1, 5–28, (1998)

A lot of work has been published on contour extraction and tracking since
then.
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Applications in Computer Vision

Medical Image Analysis
Particle filters have been widely used in medical image analysis
⇒ contour tracking, image segmentation

I. Smal et al., Multiple Object Tracking in Molecular Bioimaging by
Rao-Blackwellized Marginal Particle Filtering, Medical Image Analysis, 12 (6), pp.
764–777, (2008)

M. de Bruijne and M. Nielsen, Shape Particle Filtering for Image Segmentation, in
Proc. MICCAI, pp. 168–175, (2004)
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Applications in Computer Vision

Human Computer Interaction
Particle filters are used in HCI for tracking
⇒ face and hand tracking can be coupled with facial expression and
gesture recognition

M. Bray et al., Smart particle filtering for 3D hand tracking, in Proc. AFGR, pp.
675–680, (2004)

M. F. Ho et al., A multi-view vision-based hand motion capturing system, Pattern
Recognition, 44 (2), pp ; 443–453 (2011)
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Applications in Computer Vision

Image Restoration

Particle filters have been used for image enhancement and denoising

N. Azzabou, N. Paragios, and F. Guichard, Image Reconstruction Using Particle
Filters and Multiple Hypotheses Testing, IEEE Trans. on Image Processing, 19, 5,
1181–1190, (2010)

L. Xia, Image restoration based on particle filters, in Proc. ICSP, pp. 1084–1087,
(2004)
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Applications in Computer Vision

Shape correpondence

Particle filters can also be used for shape correspondence

R. Lakaemper and M. Sobel, Correspondences between parts of shapes with
particle filters, in Proc. CVPR, pp. 1–8, (2008)
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Applications in Computer Vision

Robot Navigation

Particle filters are now used as a key technique for localization and
mapping problems in mobile robot navigation.

The Simultaneous Localisation and Map Building (SLAM) problem requires that
the probability distribution P(xk ; m|Z0:k ; U0:k ; x0) be computed for all times k .

S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, The MIT Press, (2006)
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Introduction

Recursive filtering involves a description of our a priori knowledge about
the world :

System dynamics model : how does system state evolves over
time ?
Measurement model : how are measurements related to system
state ?
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Introduction

Notations

System state at time k : x(k)

Measurement at time k : z(k)

All measurements up to time k : Z1:k = {z(1), . . . , z(k)}

System error sources at time k : w(k)

Measurement error sources at time k : v(k)

Control input at time k : u(k)

Models equations
xk = f(xk−1, uk−1) + wk−1, (1)

zk = h(xk ) + vk . (2)
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General Bayesian Framework

General model
We have a system described by some internal state parameters X

We also have a set of measurements Z from some devices.

There is a clock
at each tick, the state changes (system state equation)
at each tick, we get a new observation (measurement equation)

System state is unkown (’hidden’)

We want to recover the state components from observations
=> state estimation problem.
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General Bayesian Framework

We want to get P(Xk |Z1:k )
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General Bayesian Framework

Independence assumptions

Hidden Markov Model

P(Xk |X0, . . . ,Xk−1) = P(Xk |Xk−1) (3)

Observations are conditionally independent given the state

P(Zk ,Zi , . . . ,Zj |Xk ) = P(Zk |Xk )P(Zi , . . . ,Zj |Xk ) (4)
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General Bayesian Framework

Recursive estimation implies two main steps :

Prediction : given measurements z1, . . . , zk−1, what state Xk can we
predict for the k-th tick ? We need to obtain a representation of
P(Xk |Z1 = z1, . . . ,Zk−1 = zk−1).

Correction : given the relevant measurement at time k, zk , we need
to compute a representation of P(Xk |Z1 = z1, . . . ,Zk = zk ).
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General Bayesian Framework

We assume that the initial pdf P(X0) is known
Then given a representation of P(Xk−1|z1, . . . , zk−1), we have :

Prediction

P(Xk |z1, . . . , zk−1) =

∫
P(Xk |Xk−1)P(Xk−1|z1, . . . , zk−1)dXk−1

Correction

P(Xk |z1, . . . , zk ) =
P(zk |Xk )P(Xk |z1, . . . , zk−1)∫

P(zk |Xk )P(Xk |z1, . . . , zk−1)dXk

Computing these pdfs is impossible in practice ! (nasty integrals)
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Recursive Bayesian Estimation

Prediction

P(Xk |Z1:k−1) =

∫
P(Xk ,Xk−1|Z1:k−1)dXk−1

=

∫
P(Xk |Xk−1,Z1:k−1)P(Xk−1|Z1:k−1)dXk−1

=

∫
P(Xk |Xk−1)P(Xk−1|Z1:k−1)dXk−1
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Recursive Bayesian Estimation

Correction

P(Xk |Z1:k ) =
P(Z1:k |Xk )P(Xk )

P(Z1:k )

=
P(zk ,Z1:k−1|Xk )P(Xk )

P(zk ,Z1:k−1)

=
P(zk |Xk ,Z1:k−1)P(Z1:k−1|Xk )P(Xk )

P(zk |Z1:k−1)P(Z1:k−1)

=
P(zk |Z1:k−1,Xk )P(Xk |Z1:k−1)P(Z1:k−1)P(Xk )

P(zk |Z1:k−1)P(Z1:k−1)P(Xk )

=
P(zk |Xk )P(Xk |Z1:k−1)

P(zk |Z1:k−1)
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Kalman Filters

If we restrict attention to linear dynamic systems and linear measurement
models, both with additive Gaussian noise
=> all the densities are Gaussians and we can avoide the question of
solving the various integrals.

Model of the system
State equation :

Xt = AtXt−1 + BtUt−1 + wt

Measurement equation :
Zt = CtXt + vt

with wt ∼ N(0,Qt ), vt ∼ N(0,Rt ) and wt⊥vt .
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Discrete Kalman Filters

Importance of Gaussian distribution
Since the system is linear and the distributions are Gaussian, we need
only to know

the conditional mean X̂k = E[Xk |Z1:k ,U0:k−1]

the conditional covariance Pk = Cov(Xk ,Xk |Z1:k ,U0:k−1)

Recursivity
Assume that we know P(xk |Z1:k ,U0:k−1) at some time k

1 Prediction : what can we say about xk+1 before we get the
measurement Zk+1 ?

P(xk+1|Z1:k ,U0:k )

2 Correction : how can we improve our knowledge of xk+1 given the
actual measurement zk+1 ?

P(xk+1|Z1:k+1,U0:k )
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Discrete Kalman Filters

Assume we know x̂k and Pk .

Prediction step

From the state equation :

x̂−k+1 = E[xk+1|Z1:k ,U0:k ]

= Ak x̂k + Bk uk .

From the prior estimate error covariance

P−k+1 = E[(xk+1 − x̂−k+1)(xk+1 − x̂−k+1)T ]

= Ak Pk AT
k + Qk .
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Discrete Kalman Filters

Correction step

Use the measurement equation to make a prediction of the
observation

z−k+1 = Ck+1x̂−k+1.

Given, the actual observation zk+1, correct the state prediction

x̂k+1 = x̂−k+1 + Kk+1(zk+1 − z−k+1).

(zk+1 − z−k+1) is called the measurement innovation or the residual.

Kk+1 is called the Kalman gain and is chosen in order to minimize the
posterior MMSE Pk+1 = E[(xk+1 − x̂k+1)(xk+1 − x̂k+1)T ].
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Discrete Kalman Filters

Optimal Kalman Gain
The a posteriori error covariance matrix is

Pk+1 = E[(xk+1 − x̂k+1)(xk+1 − x̂k+1)T ],

which after a few calculations gives

Pk+1 = (I − Kk+1Ck+1)P−k+1(I − Kk+1Ck+1)T + Kk+1Rk+1KT
k+1.

Taking the trace of Pk+1 and setting its derivative w.r.t. Kk+1 equals to
zero, we obtain the optimal Kalman gain

Kk+1 = P−k+1CT
k+1[Ck+1P−k+1CT

k+1 + Rk+1]−1.

The posterior covariance matrix can then be simplified as

Pk+1 = (I − Kk+1Ck+1)P−k+1.
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Kalman Filters

Algorithm Kalman-Filter(µt−1, Σt−1, ut , zt )

Prediction
1. µ−t = Atµt−1 + Btut

2. Σ−t = At Σt−1AT
t + Qt

Correction
3. Kt = Σ−t CT

t (Ct Σ
−
t CT

t + Rt )
−1

4. µt = µ−t + Kt (zt − Ctµ
−
t )

5. Σt = (I − KtCt )Σ−t

Return µt and Σt

KF recursively predicts and updates the mean µt and the covariance
matrix Σt of the Gaussian pdf.
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Discrete Kalman Filters

In most of our applications, the matrices Ak , Bk and Ck do not vary over
time. So, the Kalman filter equations are simplified as :
Prediction step

x̂−k+1 = Ax̂k + Buk

P−k+1 = APk AT + Qk

Correction step

Kk+1 = P−k+1CT [CP−k+1CT + Rk+1]−1

x̂k+1 = x̂−k+1 + Kk+1(zk+1 − Cx̂−k+1)

Pk+1 = (I − Kk+1C)P−k+1
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Discrete Kalman Filter Algorithm

1. Start : x̂−0 , P−0
2. Compute Kalman gain :

Kk = P−k CT (CP−k CT + Rk )−1

3. Compute state estimate :

x̂k = x̂−k + Kk (zk − Cx̂−k )

4. Update error covariance :

Pk = (I − Kk C)P−k

5. Update prediction and predicted error covariance :

x̂−k+1 = Ax̂k + Buk

P−k+1 = APk AT + Qk

6. Do k = k + 1 and go to step 2.
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Discrete Kalman Filter Example

Estimation of a scalar random constant
Let’s assume that we have the ability to make measurements of the
constant, but the measurement are corrupted by a white noise.

System equation

xk = Axk−1 + Buk + wk

= xk−1 + wk

Measurement equation

zk = Cxk + vk

= xk + vk
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Discrete Kalman Filter Example

% the state-space equations
A = 1; % transition matrix
B = 0; % input matrix: no control input
C = 1; % measurement matrix: noisy measurement is the state
% calculation of noise covariance matrices
R = Meas_Noise^2; % measurement noise cov
Q = Process_Noise^2; % process noise cov
% initialization
x = -0.51234; % true state
% simulation
x_out = zeros(duration,1);
y_out = zeros(duration,1);
Process_Noise = Process_Noise * randn(duration,1);
Meas_Noise = Meas_Noise * randn(duration,1);
for t=1:duration,

x_out(t) = A*x + Process_Noise(t);
y_out(t) = C*x + Meas_Noise(t);

end
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Discrete Kalman Filter Example

We randomly chose a scalar constant z = −0.51234
We assume a very small process noise : Qk = 1e − 5
We assume that measurements are corrupted by a 0.1 noise Rk = 0.01
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Discrete Kalman Filter Code

function [x_out]=discrete_kalman_filter(y, u, x0, P0, A,B,C,Q,R)
T = size(y, 1); %number of observations
[n,m] = size(P0); I = eye(n,m); % form identity matrix
xhat = x0; P = P0; %initialization
x_out = [];
for k=1:T,
% compute Kalman Gain
K = P*C’* inv(C*P*C’ + R);
% estimate state
innovation = y(k) - C*xhat; % innovation vector
xhat = xhat + K*innovation;
x_out = [x_out; xhat’];
% update covariance matrice
P = (I - K*C)*P;
% predict next state and covariance
xhat = A*xhat + B*u;
P = A*P*A’ + Q;

end
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Discrete Kalman Filter Example

Given that Qk = 1e − 5 and Rk = 0.01, we initialize the filter with x̂0 = 0
and P0 = 1.
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Kalman Filters

Extensions of the Kalman Filter

For non-linear dynamic models with Gaussian noises : Extended KF ;
Unscented KF.

For non-linear, non-Gaussian distributions : Particle filters
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Particle Filters

Why particle filters ?

Kalman filter is limited to linear system with Gaussian noise

Extended KF and Unscented KF are limited to Gaussian distributions

Many practical problems show non linear dynamics and non
Gaussian noises

We often find multi-modal distributions

Key Idea
Find an approximate solution using a complex model rather than an exact
solution using a simplified model.
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Particle Filters

Muti-modal distribution

A Gaussian distribution is unimodal and verifies : mode = mean = median
For a multimodal distribution, the mode, mean and median do not coincide.
=> Kalman Filter, clearly, is not suitable for multi-modal distributions.
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Particle Filters

Particle Filters (PF) are a family of methods often called :

condensation algorithms

sequential Monte Carlo methods

bootstrap filters

etc

PF is based on representing the posterior pdf by a set of randomly chosen
weighted samples.
"randomly chosen" ≡ "Monte carlo"
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Particle Filters

Basic Principle

Represent the pdf as a set of weighted
samples

For N → ∞, PF converges (almost
surely) to the true pdf

For N → ∞, PF approaches optimal
Bayesian estimate
Regions of high density

Many particles
Large weight of particles

{xi
0:k } : set of samples.
{w i

k } associated weights,
normalized to

∑
i w i

k = 1

p(x|Z1:k ) =
N∑

i=1

w i
kδ(x0:k −xi

0:k )
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Particle Filters

SIS : Sequential Importance Sampling

The discrete approximation is good if the samples are drawn from the
posterior pdf p(xk |Z1:k ).

But we don’t have an explicit representation of p(.) !

K  : we can sample from another importance density q(.).
Our approximation is still correct, up to normalization, if the particles
are weighted :

w i
k ∝

p(xi
0:k |Z1:k )

q(xi
0:k |Z1:k )

We can choose q(.) freely !
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Particle Filters

SIS : Sequential Importance Sampling
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Particle Filters

SIS : Sequential Importance Sampling

Pseudo-code

A 1 : SIS Particle Filter

[{xi
k ,w

i
k }

N
i=1] = SIS [{xi

k−1,w
i
k−1}

N
i=1, zk ]

For i = 1 : N
Draw xi

k ∼ q(xk |x
i
k−1, zk )

Update weights according to

w i
k ∝ w i

k−1

p(zk |x
i
k )p(xi

k |x
i
k−1)

q(xi
k |x

i
k−1, zk )

End For

Normalize weights to
∑N

i=1 w i
k = 1
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Particle Filters

SIS : Sequential Importance Sampling

Degeneracy problem : after a few iterations, most particles have
negligible weights ; the weights are concentrated on a few particles only !

Solutions :
1 Brute force : many, many samples ! Of course, impractical.
2 Optimal importance density :

q(xk |xk−1, zk )opt = p(xk |xk−1, zk )
and w i

k = w i
k−1

∫
p(zk |x

′
k )p(x′k |x

i
k−1)dx′k

But evaluating an integral over the entire state can rarely be done.

An alternative convenient choice is to take q(xk |x
i
k−1, zk ) = p(xk |x

i
k−1)

↪→ easy to implement, but does not take measurements into account.
3 Resampling

Désiré Sidibé (Le2i) Module Image - I2S April 6th 2011 56 / 110



Particle Filters

SIS : Sequential Importance Sampling

Resampling : eliminate particles with small associated weights and to
concentrate on particles with high weights.

Sample N times with replacement from the set of particles {xi
0:k }

according to importance weights :
⇒ "Survival of the fittest"
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Particle Filters

Sampling and Resampling
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Particle Filters

Generic Particle Filter Pseudo-Code

A 2 : Generic Particle Filter

[{xi
k ,w

i
k }

N
i=1] = PF [{xi

k−1,w
i
k−1}

N
i=1, zk ]

FOR i = 1 : N

Draw xi
k ∼ q(xk |x

i
k−1, zk )

Update weights according to w i
k ∝ w i

k−1
p(zk |x

i
k )p(xi

k |x
i
k−1)

q(xi
k |x

i
k−1,zk )

END FOR

Normalize weights to
∑N

i=1 w i
k = 1

Calculate degeneracy measure : N̂eff = 1∑N
i=1(w

i
k )2

IF N̂eff < NT

Resample

END IF
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Particle Filters

Estimation form particles

Any estimate of a function f(xk ) can be obtained from the discrete pdf
approximation :

E[f(xk )] =
1
N

N∑
i=1

w i
k f(xi

k )

Mean : E[xk ] = 1
N

∑N
i=1 w i

k xi
k

MAP estimate : particle with largest weight

Robust mean : mean within window around MAP estimate
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Particle Filters : Example

A simple example

We want to estimate a parameter x whose evolution is governed by :

xt+1 = 1 + sin(4.10−2πt) + 0.5xt + wt ,

with wt { Gamma(3, 2).

We cannot measure x directly but have access to a set of measurements :

zt =

{
0.2x2

t + vt if t ≤ 30
0.5xt − 2 + vt if t > 30

,

with vt { N(0, σm).
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Particle Filters : Example

A simple example

Gaussian and Gamma distributions : same mean and variance.
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Particle Filters : Example

A simple example
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Particle Filters : Example

A simple example
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Particle Filters : Example

Comparison with the Extended KF
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What is tracking ?

Problem statement
Given a sequence of images

Find the trajectories of objects
over time

Fundamental problem
Surveillance

Vehicle tracking

Human-computer interaction

Motion capture

Robotics

etc.
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What is tracking ?

Why track ?
Segmentation is hard !

Detection and recognition are expensive

If we can predict where the object will be in next frame, then we need
less work detecting or recognizing the object.

Three main steps
Prediction

Matching (data association)

Correction (updating)
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What is tracking ?

Tracking involves two basic problems :

Motion : predicts the limited search region in which the tracked object
is most likely to be in next frame.

Matching : identifies the object within the designed search region.
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What is tracking ?

Example of Face Tracking

Detection involves searching in entire image
=> Can take some time !

Though efficient solutions exist like
Adaboost classifiers, e.g. Viola and Jones
detector for face detection.

Making prediction, reduces the
search area
=> template matching can do
the job efficiently !
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Implicit Assumptions

Physical cameras do not move instantly from one viewpoint to
another.

Objects do not teleport between places around the scene.

Relative position between camera and scene changes incrementally.

We can model objects motion.
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Designing a Visual Tracker

What is the state ?
pose and motion (position, velocity, acceleration, ...)
shape (size, deformation, articulation, ...)
appearance (subspace, colors, ...)

Which image properties should we use ?
intensity, color, texture, motion, edges, ...
template, adaptive appearance, region statistics

What might simplify the problem ?
known/stationary background
use of color (e.g., skin)
multiple cameras (often 2 or 3)
manual initialization
prior knowledge of the number of objects and their types
limited (or no) occlusion
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Tracking Methods

Deterministic methods
Iteratively search for a local maxima of a similarity measure between a
template of the target and the current frame.

Examples :

KLT tracker

Mean-Shift tracker

Probabilistic methods
Use a state-space representation of the moving object to model its
underlying dynamics.
=> The tracking problem is viewed as a Bayesian inference problem.

Examples :

Kalman filter

Particle filter
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Tracking Methods : Background subtraction

Pros
Simple and easy implementation
Detect all changes

Cons
Detect unwanted changes
Difficult to quantify motion
Difficult to deal with changing background
Désiré Sidibé (Le2i) Module Image - I2S April 6th 2011 75 / 110



Tracking Methods : Regions tracking

State : 2D image location, size of ellipse, velocity
Appearance model : color histogram, elliptical contour
Estimation : search over discrete locations and size, or density estimation

Pros/Cons
fast

good for large variation in shape/appearance

limited fidelity in pose estimation
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Tracking Methods : Appearance-Based Tracking
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Tracking Methods : Motion-Based Tracking

We can better understand the scene if we can find the motions of the
objects/cameras.

Pros/Cons
based on brightness constancy
good for small motion
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Tracking Methods : Probabilistic Tracking

Explicit modeling of the system dynamics : how does the object move
from frame to frame ?

Modeling of states uncertainty : how do we acount for system and
measurement noises ?

Pros/Cons

give good results for complex motion

robust to occlusion

can be slow
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Deterministic Methods

Two popular tracking methods are :

KLT Tracker (1984-1990) for feature points tracking

Mean Shift Tracker (2000) for blob/region tracking
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Optical Flow and Motion Field

Where did each pixel in I1 go to in I2 ?

Motion Field = Real word 3D motion

Optical Flow Field = Projection of the motion field onto the 2D image
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Examples of Motion fields
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Estimating Optical Flow

Goal
Find for each pixel a velocity vector ~u = (u, v), which says :

how quickly is the pixel moving across the image

in which direction it is moving

Zelnik-Manor et al., PAMI 2000

=> Important assumption : image intensity I is constant
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Estimating Optical Flow

Brightness Constancy Equation

I(x, y, t) = I(x + dx, y + dy, t + dt)

= I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt

Which gives
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = 0

Finally, if we divide by dt and denote u = dx
dy and v = dy

dt , we have :

Ixu + Iyv = −It

Problem : one equation, two unknows ! (under-determined system)
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Estimating Optical Flow

The Aperture Problem

Where did the blue point move to ? The aperture problem in practice

Brightness constancy equation provides only the normal component of the
motion flow.
=> We need additional constraints
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Lucas Kanade

Local smoothness

Ixu + Iyv = −It =⇒ [Ix Iy]

[
u
v

]
= −It

If we assume constant velocity (u, v) in small neighborhood
Ix1 Iy1

Ix2 Iy2

Ix3 Iy3
...

...


[

u
v

]
= −


It1
It2
It3
...


We get an over-determined system

Au = b

which we can solve using LLS (Linear Least Squares) method.
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Lucas Kanade

We want to find u that minimizes ‖Au − b‖2

LLS solution is given by
û = (AT A)−1AT b

So, we need the matrix AT A to be invertible.

AT A =

[ ∑
I2x

∑
Ix Iy∑

Ix Iy
∑

I2y

]
=> summation over all pixels in a K × K window (e.g., 5 × 5).

Good Features to Track
Edge→ AT A becomes singular

Homogeneous region→ low gradients ; AT A ≈ 0

High texture→ Good ! AT A has two large eigenvalues.
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KLT Tracker

KLT assumes that the motion is small, if not the case Taylor expansion
doesn’t hold !
=> multi-scale estimation
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KLT Tracker

Multi-scale estimation
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Appearance-Based Tracking
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Mean-Shift Tracker

Motivations
Track non-rigid objects, for which it is hard to specify an explicit 2D
parametric motion model.

Appearances of non-rigid objects can be modeled by color distribution

Mean-Shift
Mean-shift algorithm is an efficient approach to tracking objects
whose appearance is modeled by histograms (not limited to color).

It finds modes of the appearance’s distribution.
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Mean-Shift : Theory

Intuitive Description

Objective : Find the densest region
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Mean-Shift : Theory

Instead of estimating the pdf

P(X) =
1
n

n∑
i=1

K(X − Xi)

Only estimate the gradient

∇P(X) =
1
n

n∑
i=1

∇K(X − Xi)

Using the kernel form : K(X − Xi) = ck
(∥∥∥X−Xi

h

∥∥∥2
)
, we get

∇P(X) =
c
n

n∑
i=1

∇ki =
c
n

 n∑
i=1

gi

 [∑n
i=1 Xigi∑n

i=1 gi
− X

]
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Mean-Shift : Theory

Simple Mean-Shift procedure :
Compute the mean shift vector m(x)

Translate the Kernel window by m(x)

Iterate until convergence
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Mean-Shift : Tracking

Some Results

Comaniciu et al., PAMI 2002

The method is quite effective
But not scale invariant
Collins (CVPR 2003) has proposed an scale-space adapted
mean-shift
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Particle Filters for Visual Tracking

A Tracking example
The state is defined by the position and the velocity of the object

Xt =


xt

yt

ẋt

ẏt


If we use a first order AR model, then the state-space equations are given
by :

State equation
Xt = AXt−1 + vt−1

Measurement equation
Zt = BXt + wt
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Particle Filters for Visual Tracking

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 and B =

(
1 0 0 0
0 1 0 0

)

and

vt → N(0,Q) Q =


q2

x 0 0 0
0 q2

y 0 0
0 0 q2

ẋ 0
0 0 0 q2

ẏ


wt → N(0,R) R =

(
r2
x 0
0 r2

y

)
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Particle Filters for Visual Tracking

The likelihood function is based on similarity between image features : one
can use color, gradient or any other distinctive feature
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Particle Filters for Visual Tracking

Since color is a distinctive and quite robust feature, each particle is
dscribed by the color distribution of its local image patch,
p(x) = {pu(x)}u=1,...,m given by :

pu(x) = C
Np∑
i=1

k(

∥∥∥∥∥xi − x
h

∥∥∥∥∥2
)δ[b(xi) − u],

where C is a normalizer, δ is the Kronecker function, k is a kernel with
bandwith h, Np is the number of pixels in the region and b(xi) is a
function that assigns one of the m-bins to a given color at location xi .
The kernel k is used to consider spatial information by lowering the
contribution of farther pixels.
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Particle Filters for Visual Tracking

The similarity between two color distributions, p(xt ) and p∗(x0), can
be defined as the Bhattacharyya distance

ρ[p∗, p(xt )] =

1 − m∑
u=1

√
p∗u(x0)pu(xt )


1
2

Each sample xi
t is assigned an importance weight which corresponds

to the likelihood that xi
t is the true location of the object. The weights

are given by the observation likelihood :

w i
t = p(zt |xi

t ) ∝ e−λρ[p
∗,p(xi

t )]
2
.
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Particle Filters for Visual Tracking

For every frame, the weighted mean of the particles (MMSE estimate) or
the particle with largest weight (MAP estimate) can be used as an
estimate of the object’s current state.
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Particle Filters for Visual Tracking

Tracking algorithm

Initialize the state vector for the first frame and get a reference color
model

Generate a set of N particles

For each new frame
Find the predicted state of each particle using the state equation
Compute histogram distance between the reference color model and
the predicted one
Weight each particle based on similarity between color models
Select the state of the target based on the weighted particles (MMSE
or MAP)
Sample the particles for next iteration
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Particle Filters

Pros and Cons of PF

+ estimation of full pdfs
+ non Gaussian and multi-modal
distributions
+ non linear dynamic systems
+ can be parallelized

- degeneracy problem
- high number of particles needed
- can be computationally expensive
- choice of importance density is
crucial

Personal Notes

The principal is quite simple (basically Bayes rule and Markov
models)

Though I did not talk about the math (convergence properties,
complexity issues, etc)

Writing a code that do what is expected can be tricky !

But works well when you succeed !
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Challenges in Visual Tracking

Changing appearance
- Discriminant and adapting features
- Optimal combination of multiple feature modalities
- Binary classification approach

Quantitative evaluation
- There is a need for a standard a complete dataset.

Non conventional sensors
- Tracking beyond the visible spectrum
- Tracking in omnidirectional image sequences is still an open problem
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