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Overview

I Graphical models: basic definitions and applications.

I Credal networks: basic definitions.

I Inference and learning in credal networks.

I Quick break: software packages.

I Formal definitions and computational complexity.

I Applications.

Later
Exact and approximate algorithms for reasoning.
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What is this? Why spend time on such a topic?

I A credal network is a compact representation for a set of
probability distributions.

I It is a based on graphs, so it is easy to draw and to understand.
I It offers a compact and easy language in which to express

complicated situations.

I It is closely related to very
popular statistical models such as
Markov chains, Bayesian networks,
Markov random fields, etc.



The appeal of graph-theoretical models

I Compact and easy language to represent uncertainty.

Expert system: debris flows hazard assessment

I Network developed by the IDSIA team.

I Goal: to support decision making regarding such flows.



Another expert system: detecting intruders



Another application: Facial expression recognition



Yet another application (details later): image segmentation

(c) Segmentation produced by Bayesian network

(d) Segmentation produced by credal network



And an application on knowledge representation

I Description logics are used to create terminologies.

I An example of probabilistic description logic:

P(A) = α1, B v A, C v B t ∃r .D, P(B|A) = α2,

P(C |B t ∃r .D) = α3, P(D|∀r .A) = α4.

I These sentences
encode a large
credal network.
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First, the unstructured approach

I Take 5 random binary variables A,B,C ,D,E assuming values
x and ¬x .

I To specify the joint distribution, we need 25 probability values:

p(a, b, c , d , e), p(a, b, c , d ,¬e), p(a, b, c ,¬d , e), . . .

I We can compute the probability of events by marginalization:

p(a) =
∑

B,C ,D,E

p(a,B,C ,D,E )



Inferences

I Conditional probabilities are obtained by Bayes rule:

p(a|d ,¬e) =
p(a, d ,¬e)

p(d ,¬e)
=

∑
B,C p(a,B,C , d ,¬e)∑

A,B,C p(A,B,C , d ,¬e)

I Drawbacks:
I Exponential number of parameters to elicit.
I Exponential number of terms in the summation to perform

inferences.

I Bayesian networks, Markov random fields, etc, provide a way
to alleviate these issues through graph-theoretical tools.



Why graphs

I Compact.

I Easy to handle, easy to visualize.

I Efficient algorithms.

I Plausible models of causal relations.

I Computer scientists love graphs!



Directed Acyclic Graphs (DAGs)

I Nodes and arcs without directed cycles.

I Arcs define parents, children, descendants,...



Polytrees

I The subjacent graph has no cycles.

I Trees are polytrees with maximum in-degree equals to 1.

(e) Polytree (f) Tree



Markov condition

I Suppose we have a DAG where each variable is independent
of its non-descendants non-parents given its parents (Markov
condition).

I B⊥⊥(C ,E )|A,
I D⊥⊥(A,E )|(B,C ),
I E⊥⊥(A,B,D)|C .



Exercise: Factorization

I Show: The Markov condition implies

p(X1, . . . ,Xn) =
∏
i

p(Xi |pa(Xi )).

I E.g., in the previous network,

p(A,B,C ,D,E ) = p(E |C )p(A,B,C ,D)

= p(E |C )p(D|B,C )p(A,B,C )

= p(E |C )p(D|B,C )p(B|A)p(A,C )

= p(E |C )p(D|B,C )p(B|A)p(C |A)p(A)



Factorization

I Consequence: just a “few” parameters specify the whole joint
distribution.

I Linear in the number of variables if in-degree is bounded.



Bayesian networks

I A DAG with the Markov condition.

I For each variable (node), a “local” probability distribution:
variable conditional on its parents.

I In a Bayesian network, all probability values are unique.
I p(A),
I p(B|a), p(B|¬a),
I p(C |a), p(C |¬a),
I p(D|b, c), p(D|¬b, c), p(D|b,¬c), p(D|¬b,¬c),
I p(E |c), p(E |¬c),



Independence: d-separation

X is independent of Y given Z if all paths (using arcs in both
directions) between X and Y are blocked by an element of Z . A
path is blocked if an element of Z is observed and has not two
converging arcs (in the path being analyzed) or an element of Z is
not observed (neither any of its descendants) and has two
converging arcs.

(g) Converging (h) Directed path (i) Diverging



Inferences

I Conditional probabilities are obtained by Bayes rule:

p(a|d ,¬e) =

∑
B,C p(a)p(B|a)p(C |a)p(d |B,C )p(¬e|C )∑

A,B,C p(A)p(B|A)p(C |A)p(d |B,C )p(¬e|C )

I In many situations, we can do much better (for example
because of d-separation).

p(a|c) =
p(a, c)

p(c)
=

p(a)p(c |a)∑
A p(A)p(c |A)



Inference is #P-hard

I Local conditional probability distributions encode the true
tables of the logical operators.

I Let γ be the only operator without children.

p(γ) =
∑
X

p(γ|x)p(x) = 2−m
∑
X

p(γ|x)

I Note that p(γ|x) = 1 if x satisfy the whole sentence, and zero
otherwise.

I Hence, 2m · p(γ) is the number of instantiations of x that
satisfy the logical sentence.



Bayesian network example

I p(a) = 0.2, p(¬a) = 0.8,

I p(c |a) = 0.1, p(¬c |a) = 0.9, p(c |¬a) = 0.8, p(¬c |¬a) = 0.2,

p(a|c) =
p(a, c)

p(c)
=

0.2× 0.1

0.2× 0.1 + 0.8× 0.8
= 0.0303 . . .



More on inferences

I Even the hardest belief updating inference is a matter of
choosing the best ordering for evaluations.

p(y) =
∑
X\Y

∏
i

p(xi |pa(Xi ))

Some of these summations can be interchanged with some
multiplications.



Belief Updating Inferences

p(d) =
∑

A,B,C

p(d |B,C )p(B|A)p(C |A)p(A) =

=
∑
B,C

p(d |B,C )
∑
A

p(B|A)p(C |A)p(A).



Exact inference: Variable elimination

I Choose an ordering for the variables where queries come last.

I Create a pool of functions with all local probability
distributions.

I For each variable X in the ordering:
I Insert all functions that contain X in a structure called bucket

of X and remove them from the pool.
I Multiply these functions and sum the result over X .
I Insert the resulting functions in the pool.



Variable elimination

Suppose the ordering A,B,C ,D and we want p(D).

I The pool contains p(A), p(B|A), p(C |A), p(D|B,C ).

I Bucket of A:
∑

A p(B|A)p(C |A)p(A) = p(B,C ). Insert the
function p(B,C ) in the pool.

I Bucket of B:
∑

B p(D|B,C )p(B,C ) = p(D,C ). Insert the
function p(D,C ) in the pool.

I Bucket of C :
∑

C p(D,C ) = p(D). Insert p(D) in the pool.

I Bucket of D: just get p(d) from the pool.



Exact inference in polytrees: Belief Propagation

Local calculations:
p(x |e) = αΛ(x)π(x),

Λ(x) = ΛX (x)
∏

j

ΛYi (x),

π(x) =
∑

u

p(x |u)
∏
k

πX (uk),

Messages to propagate:

ΛX (ui ) = α
∑

x

Λ(x)
∑

uk :k 6=i

p(x |u)
∏
k 6=i

πX (uk),

πYj (x) = απ(x)ΛX (x)
∏
k 6=j

ΛYk (x).



Approximate inference: Loopy Belief Propagation

Local calculations:
p(x |e) = αΛ(x)π(x),

Λ(t)(x) = ΛX (x)
∏

j

Λ
(t)
Yi

(x),

π(t)(x) =
∑

u

p(x |u)
∏
k

π
(t)
X (uk),

Messages to propagate:

Λ
(t+1)
X (ui ) = α

∑
x

Λ(t)(x)
∑

uk :k 6=i

p(x |u)
∏
k 6=i

π
(t)
X (uk),

π
(t+1)
Yj

(x) = απ(t)(x)ΛX (x)
∏
k 6=j

Λ
(t)
Yk

(x).



Other inferences

Maximum a posteriori:

arg max
A,D

p(A,D|e) = arg max
A,D

p(A,D, e).



Bayesian network example

I p(a) = 0.2, p(¬a) = 0.8,

I p(b|a) = 0.4, p(¬b|a) = 0.6, p(b|¬a) = 0.5, p(¬b|¬a) = 0.5,

I p(c |a) = 0.1, p(¬c |a) = 0.9, p(c |¬a) = 0.8, p(¬c |¬a) = 0.2,

I p(d |b, c) = 0.75, p(¬d |b, c) = 0.25, p(d |¬b, c) =
0.6, p(¬d |¬b, c) = 0.4, p(d |b,¬c) = 0.45, p(¬d |b,¬c) =
0.55, p(d |¬b,¬c) = 0.4, p(¬d |¬b,¬c) = 0.6,

I p(e|c) = 0.7, p(¬e|c) = 0.3, p(e|¬c) = 0.2, p(¬e|¬c) = 0.8,



Exercises

I Evaluate p(a|e) using the Bayesian network just defined.
Count the number of multiplications that you need to find the
solution.

I Find arg maxA,C |d p(A,C |d) using the same Bayesian network.

I Using the following Bayesian network, verify which are true:
(A⊥⊥H|F ), (G⊥⊥E |C ), (G⊥⊥E |A), (B⊥⊥E |A,D),
(G⊥⊥H|F ).



Learning problem

It is possible to learn

I The graph structure (that is, the (in)dependence relations).
I The parameters (that is, probability values that define the

local conditional distributions).
I Given data and structure.



Parameter learning

Maximum likelihood estimation

I p(x |pa(X )) =
nx,pa(X )

npa(X )

I p(a) = 1, p(¬a) = 0, p(c |a) = 1
3 , p(¬c |a) = 2

3 , p(c|¬a) =?, ...

Dirichlet process using posterior expectation as estimation

I p(x |pa(X )) =
nx,pa(X )+s·τ(x |pa(X ))

npa(X )+s , where
∑

x τ(x |pa(X )) = 1

and s are hyper-parameters. Suppose s = 2 and uniform
priors. Then

I p(a) = 4
5 , p(¬a) = 1

5 , p(c |a) = 2
5 , p(¬c |a) = 3

5 , p(c |¬a) =
1
2 , ...



Limitations

Suppose we have A⊥⊥D|B,C and B⊥⊥C |A,D. It is not possible
to define a Bayesian network that encodes such independence
relations.

Figure: Unsuccessful try



Undirected graphs

I Nodes and edges (undirected arcs). E.g. Markov Random
Fields.

I Markov condition: X and Y are independent given Z if any
path between X and Y contains an element of Z .

I Joint distribution:

p(x) =
1

α

∏
k

φk(x{k}), where α =
∑

x

∏
k

φk(x{k}).

Figure: Markov Random Field



Undirected graphs

MRFs can encode A⊥⊥D|B,C and B⊥⊥C |A,D.



Others...

I Different types of nodes. E.g. influence diagrams, decision
trees.

I Mixed graphs (directed and undirected arcs). E.g. chain
graphs.

(a) Chain graph (b) Influence Diagram



Exercises
I Give a set of independence relations that can be encoded

using a Bayesian network (and show such network) but cannot
be encoded using a Markov Random Field. The network must
encode exactly such relations (nothing else).

I Use maximum likelihood to estimate the parameters of the
following Bayesian network.

I Repeat using a Dirichlet model with s = 1 and uniform
τ(X |pa(X )).

p(x |pa(X )) =
nx ,pa(X ) + s · τ(x |pa(X ))

npa(X ) + s
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Introduction

A credal network is a Bayesian network where some (or all)
parameters are not precisely known, but instead constrained by
convex constraints.



Constraints

I p(a) ∈ [0.1, 0.3].

I p(b|a) ∈ [0.5, 0.8].

I p(d |b, c) = 0.4.

I p(d |b,¬c) + p(d |¬b, c) ≤ 0.75.

I ...



Constraints

I Constraints of credal networks are assumed to be local, that
is, they contain parameters of a single node. E.g.

I p(b|a) ≥ p(b|¬a)
I p(d |b, c) + 2 · p(¬d |¬b, c)− 3 · p(d |¬b,¬c) = 0.3
I p(b|a) ≤ p(c |a)←− non-local!

I and if they have parameters of a single conditional
distribution, then we say that they are separately specified.

I p(b|a) ≤ 2 · p(¬b|a)
I p(e|c) ≥ p(¬e|c)
I p(b|a) ≥ p(b|¬a)←− non-separate!

I Note: a credal network may or may not be separately
specified.



Credal sets

I A credal set is a set of probability distributions, denoted as
K (X ). In our example, X = {A,B,C ,D,E}.

I A conditional credal set is obtained by applying the Bayes rule
to each distribution in a (joint) credal set.

I Credal sets K (X |pa(X )) are specified in the credal network for
every X .



Markov condition

In this talk we adopt the strong independence concept.

Strong independence

All extreme distributions in the convex hull of K (X ) satisfy
standard stochastic independence.

Strong Markov Condition

Every variable is strongly independent of its non-descendants given
its parents.



Consequence of Markov condition

I The extreme distributions of K (X ) factorize as a standard
Bayesian network:

p(X ) =
∏
i

p(Xi |pa(Xi ))

and the credal network can be viewed as a collection of
Bayesian networks that share the same graph.

I This concept is the most adopted in the literature.

I But there are other concepts (SEE TALK TOMORROW...!).



Qualitative Probabilistic Networks

Sub-case of credal networks where constraints have some
pre-defined format:

I Qualitative influences: effect of a parent to a child. A positive
influence means that occurrence of the parent increases the
chance of occurrence of the child.

I E.g. p(b|a) ≥ p(b|¬a), p(e|c) ≤ p(e|¬c),...

I Qualitative synergies: effect of two parents acting together to
influence a child.

I E.g. p(d |b, c) + p(d |¬b,¬c) ≥ p(d |¬b, c) + p(d |b,¬c).



Probabilistic Propositional Logic Networks

I Nodes are associated to propositions.

I The graph encodes (in)dependence relations among
propositions.

I Probabilistic propositional sentences are not restricted to
parameters of the network.

I E.g. p(φ) + p(ψ) ≤ 0.7, where φ = b∨d and ψ = (a∨¬e)∧ c .

(c) Network structure (d) Augmented network



Influence Diagrams

I Graphical model used for decision making.
I They extend Bayesian networks with decision and utility nodes

(besides chance nodes as in Bayesian nets).
I Ellipses represent probabilistic dependencies.
I Rectangles represent decisions.
I Diamonds represent profits or costs.



Credal inferences

An inference in a credal network is the task of finding a
distribution that complies with the credal network constraints and
maximize (or minimize) an objective function.



Inferences
Examples:

I Distribution that minimizes a marginal query given evidence
(known as belief updating):

p(a|d , e) = min
p∈K(X )

p(a|d , e).

I Distribution that maximizes likelihood function (given data):

max
p∈K(X )

∑
ijk

nijk · log p(xik |pa(Xi )j),

where xik is a value of Xi , pa(Xi )j is a configuration for the
parents PA(Xi ), and nijk are the counts from data.

I Distribution that maximizes the (local) entropy:

max
p∈K(X )

−
∑
ijk

p(xik |pa(Xi )j) · log p(xik |pa(Xi )j).



Cano–Cano–Moral transformation
Translate a belief updating in credal network into a MAP inference
in Bayesian network:

I Precondition: extreme points of credal sets must be available.

I For each node Xi , create an additional parent X ′i that has Xi

as its sole child and where X ′i has uniform distribution over t
values, where t is the number of extreme distributions in the
credal set of Xi . The distribution of Xi becomes
p(Xi |pa(Xi ),X

′
i ) = pl(Xi |pa(Xi )), where 1 ≤ l ≤ t represents

each extreme distribution of K (Xi |pa(Xi )).

I Now a MAP inference on the X ′i variables is enough.



Exercises

I Evaluate p(a|e) using the following credal network.

p(a) ∈ [0.1, 0.3], p(c |a) = 0.5, p(c |¬a) = 0.8, p(e|c) ∈
[0.6, 0.9], p(e|¬c) = 0.5, p(b|¬a) ∈ [0.1, 0.5], p(d |b, c) ∈
[0.1, 0.5], p(d |¬b, c) = 0.2 and other parameters are vacuous.

I Translate the credal network into a Bayesian network using
the CCM transformation.

I Find a parameterization that respects the credal network and
maximizes the entropy in each local conditional distribution.



Bayesian network learning

I Given
I Complete data set with samples of the variables, and
I A credal network,

parameter learning (in Bayesian networks) is the problem of
selecting a distribution that complies with the credal network
constraints and fits the data.

I The result is a Bayesian network.

I For example, standard maximum likelihood estimation is just
the credal network inference that looks for the distribution
that maximizes the likelihood function over a completely
vacuous credal network.



Credal network learning

I Given
I Complete data set with samples of the variables, and
I A prior credal network,

parameter learning is the problem of updating the credal
network constraints using the information provided by the
data.

I The result is a credal network.



Imprecise Dirichlet Model

Using an Imprecise Dirichlet Model, the resulting credal network is
composed of:

I The same graph as the prior credal network.

I A collection of constraints that contains constraints of the
prior credal network to restrict the values of τxik ,pa(Xi ), for all
xik and all parent configurations pa(Xi ), plus

p(xik |pa(Xi )) =
sτxik ,pa(Xi ) + nxik ,pa(Xi )

s + npa(Xi )
.



Full Imprecise Priors

When no information about the priors are known, then

p(xik |pa(Xi )) ∈
[

nxik ,pa(Xi )

s + npa(Xi )
,

s + nxik ,pa(Xi )

s + npa(Xi )

]
,

Note that∑
k 6=k ′

nxik ,pa(Xi )

s + npa(Xi )
+

s + nxik′ ,pa(Xi )

s + npa(Xi )
=

s +
∑

k nxik ,pa(Xi )

s + npa(Xi )
= 1



Binary networks

Another interesting case happens when the variables are binary and
the prior network parameters are specified through intervals.

Posterior is also defined by intervals

The resulting network can also be expressed by intervals and there
is no need to keep additional constraints.

p(xi |pa(Xi )) ∈
[

sτ xi ,pa(Xi )
+ nxi ,pa(Xi )

s + npa(Xi )
,

sτ xi ,pa(Xi ) + nxi ,pa(Xi )

s + npa(Xi )

]
,

p(¬xi |pa(Xi )) ∈
[

sτ¬xi ,pa(Xi )
+ n¬xi ,pa(Xi )

s + npa(Xi )
,

sτ¬xi ,pa(Xi ) + n¬xi ,pa(Xi )

s + npa(Xi )

]
.



Non-binary networks

I If we keep only the intervals of previous slide, then we are
eventually losing information about the credal sets.

Solution
Learning in non-binary credal network may be achieved by
incorporating the Dirichlet expectation equations and all
constraints of the prior credal network to define the posterior
network.

I If one wants to remove the hyper-parameters τ from equations
of the posterior network, a simple replacement suffices:

τxik ,pa(Xi ) =
(s + npa(Xi )) · p(xik |pa(Xi ))− nxik ,pa(Xi )

s
.



Incomplete data

A good approach to deal with incomplete data is to consider all
possible completions (conservative updating rule).

On the other hand, standard Bayesian network approach

Expectation–Maximization is an algorithm that iterates until
convergence performing two steps: an expectation step where data
are completed (using expectations) and a maximization step where
standard maximum likelihood is employed.



Naive Credal Classifier

I Learning idea using the IDM:

p(X |A) ∈
[

nX ,A

s + nA
,

s + nX ,A

s + nA

]
,

for all X . A is the classification variable and is supposed to be
observable.



Naive Credal Classifier

Credal dominance
Let ai and aj be classes of A. ai dominates aj if the posterior
probability of ai is greater than that of aj everywhere.

Simple case: binary A implies that

p(a|B,C ,D,E ) = 1− p(¬a|B,C ,D,E ).

Thus ¬a dominates a if p(a|B,C ,D,E ) < p(¬a|B,C ,D,E ), that
is,

p(¬a|B,C ,D,E ) > 1/2.

Set-valued classification
Naive Credal Classifier returns all non-dominated classes.



Naive Credal Classifier

I General formulation: a’ dominates a” if

min
ta′ ,ta′′>0

(na′′ + sta′′

na′ + sta′

)m−1 m∏
j=1

na′,xj

na′′,xj
+ sta′′

 > 1

subject to ta′ + ta′′ = 1, where A is the classification variable
and X are the m features.

NCC is covered again later today.



Exercise

I Use Imprecise Dirichlet Model to learn new intervals for the
credal network. Use s = 1.

p(a) ∈ [0.1, 0.3], p(c |a) = 0.5, p(c |¬a) = 0.8, p(e|c) ∈
[0.6, 0.9], p(e|¬c) = 0.5, p(b|¬a) ∈ [0.1, 0.5], p(d |b, c) ∈
[0.1, 0.5], p(d |¬b, c) = 0.2 and other parameters are vacuous.



Software packages

I SamIam
I Performs MAP queries, so it is possible to solve credal

inferences with CCM transformation (it is up to the user to
perform the transformation).

I JavaBayes
I Supports credal networks defined through extreme points.

I BNT (inside matlab)
I Extensions have been developed to make BNT work with some

credal networks.

I ...



SamIam

Developed by Darwiche at UCLA.



JavaBayes

Developed by Cozman at CMU and USP.



BNT

Developed by Murphy at UBC (except the graphical interface).



cif2ampl



Exercises

We are going to use the software packages to model the credal
networks described in this presentation and perform some
inferences with them. Hence, let’s take a look into the softwares...
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Networks with respect to topology

I Bounded induced-width: moralized graph has induced-width
bounded by O(log(s)), where s is the size of input.

I Polytrees: a bounded induced-width network where the
subjacent graph has no cycles.

I Multiply-connected: the general case.



Complexity classes of interest

P ⊆ NP ⊆ PP ⊆ NPPP

Some important problems:

I SAT is NP-Complete (∃x φ(x)?)

I MAJSAT is PP-Complete
(majority of x satisfies φ(x)?)

I E-MAJSAT is NPPP-Complete
(∃x such that majority of y satisfies φ(x , y)?)



Summary of complexity results

Bayesian Networks

Problem Polytree Bounded induced-width Multiply-connected
Belief updating Polynomial Polynomial PP-Complete
MPE Polynomial Polynomial NP-Complete

MAP NP-Complete NP-Complete NPPP-Complete

MmAP ΣP
2 -Complete ΣP

2 -Complete NPPP-Hard

Credal Networks with strong independence

Problem Polytree Bounded induced-width Multiply-connected
MPE Polynomial Polynomial NP-Complete

Belief updating NP-Complete NP-Complete NPPP-Complete

MAP ΣP
2 -Complete ΣP

2 -Complete NPPP-Hard



MAP for Bayesian networks

Evidence E = e, set of variables Q, rational r , is there an
instantiation q for Q such that p(q|e) > r?

I NP-Complete for polytrees and for bounded induced-width
networks.

I Difficult comes from reduction of SAT. Pertinence is
immediate, because given q, evaluating p(q|e) > r is
polynomial.

I NPPP-Complete in the general case.
I Pertinence is immediate as the PP oracle is enough to

compute p(q|e). Difficult comes from E-MAJSAT.



Belief updating in credal networks

Evidence E = e, query Q = q, rational r , is is there a distribution
that comply with the credal network constraints and such that
p(q|e) > r?

I NP-Complete for polytrees and for bounded induced-width
networks

I NPPP-Complete in the general case (by a reduction from
E-MAJSAT)



PT and BIW-CN-Pr are NP-Complete

I PT-CN-Pr: Belief updating in polytree credal networks.

I BIW-CN-Pr: Belief updating in BIW credal networks.

Pertinence of BIW-CN-Pr (which ensures pertinence of PT-CN-Pr)
is immediate, as given a distribution (that is, choosing a vertex of
each set of probabilities) we have a Bayesian network updating
problem to solve, which is polynomial.

To show hardness we reduce the MAX-3-SAT problem to PT-CN-Pr.
It can be formulated as follows: Given a set of boolean variables
{X1, . . . ,Xn}, a 3CNF formula with clauses {C1, . . . ,Cm} and an
integer 0 ≤ k ≤ m, is there an assignment for the variables that
satisfies at least k clauses?



PT and BIW-CN-Pr are NP-Complete

Figure: Polytree used in the network of Theorem.

We are going to show that

p(Sn = c) =

{
0 if c is satisfied

1
m+1 if c is not satisfied

Summing over all categories of Sn, we obtain

p(Sn = 0) = 1−
∑

c∈{1,...,m}

p(Sn = c)

and thus p(Sn = 0) minimizes this sum.



PT and BIW-CN-Pr are NP-Complete

Figure: Polytree used in the network of Theorem.

p(Xi = xi ) and p(Xi = ¬xi ) are in [0, 1]. Si may assume m + 1
categories (from 0 to m) and is defined as

p(Si = c|Si−1 = c, xi ) = 0 if xi ∈ Cc , or 1 otherwise

p(Si = c|Si−1 = c,¬xi ) = 0 if ¬xi ∈ Cc , or 1 otherwise

p(Si = c|Si−1 6= c,Xi ) = 0 for Xi ∈ {xi ,¬xi},

for c 6= 0. The probability values for c = 0 guarantee coherency in
probabilities (that is, make the sums equal to 1); note that we
include a dummy node S0 with p(S0 = c) = 1

m+1 for all c .



PT and BIW-CN-Pr are NP-Complete

Consider p(Sn = c) for c 6= 0. Note that

p(Sn = c) = p(S0 = c)
∏
i

p(Si = c |Si−1 = c)

where p(Si = c |Si−1 = c) equals to

∑
Xi∈{xi ,¬xi}

p(Si = c |Si−1 = c ,Xi ) p(Xi ) =

{
0 if Xi satisfies c
1 otherwise

Figure: Polytree used in the network of Theorem.



PT and BIW-CN-Pr are NP-Complete

p(Sn = c) =

{
0 if c is satisfied

1
m+1 if c is not satisfied

Summing over all categories of Sn, we obtain

p(Sn = 0) = 1−
∑

c∈{1,...,m}

p(Sn = c)

and thus p(Sn = 0) minimizes this sum. The number of unsatisfied
clauses is

(m + 1)(1− p(Sn = 0))

Now we just have to compare this number with k .



CN-Pr is NPPP-Complete

I Pertinence is immediate, because when we fix a distribution
that comply with the credal network constraints, the PP oracle
is enough to verify if p(q|e) > r . (If credal sets are defined by
extreme points, then CCM transformation also shows the
same pertinence result as MAP in Bayesian networks is
NPPP-Complete.)

I Hardness comes from a redution of E-MAJSAT. (A
transformation from BN-MAP to CN-Pr would suffice, but it
uses a non-separate credal network. With the reduction, the
result is stronger.)

Given a propositional formula φ over the boolean variables
X1, . . . ,Xn and an integer 1 ≤ k ≤ n, E-MAJSAT is the task to
decide if there is an instantiation to variables X1, . . . ,Xk such that
the majority of all instantiations to Xk+1, . . . ,Xn satisfy φ.



CN-Pr is NPPP-Complete

Build a credal network that models φ.



CN-Pr is NPPP-Complete

I X1, . . . ,Xn are nodes without parents such that Xk+1, . . . ,Xn

have uniform distributions and X1, . . . ,Xk have vacuous
distributions.

I Operators ∨,∧,¬ become binary nodes which parents are the
elements they connect. Conditional probability distributions
are the true-table of the operators.

I Let γ be the only operator without children, x an instantiation
to X1, . . . ,Xk , and y an instantiation to Xk+1, . . . ,Xn.

p(γ) =
∑
x

∑
y

p(γ|x , y)p(x)p(y) =
1

2n−k

∑
x

∑
y

p(γ|x , y)p(x).



CN-Pr is NPPP-Complete

I When maximizing maxp p(γ) with respect to the vacuous
distributions of X1, . . . ,Xk , we have a solution in the extremes
and so p(x) = 1 for exactly one x (call it as x ′). Hence

max
p

1

2n−k

∑
x

∑
y

p(γ|x , y)p(x) =
1

2n−k

∑
y

p(γ|x ′, y).

I p(γ|x ′, y) is one if γ is satisfied by x ′ and y and zero otherwise
(note that this does not involve imprecise probabilities).

I maxp p(γ) > 1
2 ⇐⇒

∑
y p(γ|x ′, y) > 2n−k−1, which means

that the majority of the instantiations y satisfy φ.



Bayesian MAP inference and Credal Belief Updating

I Belief updating in credal networks is solvable by MAP (CCM
transformation)

I The opposite direction is also possible: MAP is solvable by
belief updating in credal networks with joint queries without
changes in topology.



MPE for credal networks

Evidence e, rational r , is there a complete instantiation x for the
variables such that p(x , e) > r?

I Polynomial for polytrees and for bounded induced-width
networks

I NP-Complete in the general case

Same complexity of its Bayesian sibling!



Exercises

I Show how to translate a Bayesian network MAP problem to a
credal network belief updating inference.

I Prove that credal MPE in separately specified polytrees can
be solved by MPE in polytree Bayesian networks.
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Conclusion

We have discussed

I Basic concepts of Bayesian and credal networks.

I Why credal networks are interesting.

I Which challenges have to be faced.

I Some applications. Hopefully more to come.
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Facial expression recognition

I 8000 images from DFAT-504 data set.
I Facial expressions can be defined through Action Units (AUs),

which represent muscle contractions.
I AU1: inner brow raiser
I AU2: outer brow raiser
I AU5: upper eyelid raiser
I AU9: nose wrinkle
I AU17: chin raiser



Facial expression recognition

Facial action unit coding system:



Parameterization of the SQPN

I Parameters of observed nodes are defined by the expert using
the errors of the measurement technique.

I Parameters of hidden nodes are learned from data.
I Data contains 28 columns: 14 measurements from Computer

Vision techniques and 14 manually labeled AUs.
I Prior SQPN and Imprecise Dirichlet Model are employed.



AUs have relations

I Mouth stretch increases the chance of lips apart; it decreases
the chance of cheek raiser and lip presser.

I Nose wrinkle increases the chance of brow lowered and lid
tightened.

I Eyelid tightened increases the chance of lip presser.

I Lip presser increases the chance of chin raiser.



Facial expression recognition

Semi-qualitative Probabilistic Network:



Inference Approaches

Two approaches are tested:

1. After learning, we perform a query in the credal network to
select the distribution of maximum entropy.

I Then standard Bayesian network belief updating is performed
for each AU, given the observations: p(AUi |O).

I Main advantage: performance.

2. Inference is performed directly in the credal network, and only
cases with interval dominance are analyzed, that is, the
maximum probability of AU occurrence (or absence) is less
than the minimum of absence (or occurrence). So, we classify
only if p(AUi |O) ≤ p(¬AUi |O) or p(¬AUi |O) ≤ p(AUi |O).

I Inference algorithm is slower, but gain is greater.



Facial expression recognition

Figure: Benefits of using a prior SQPN



Facial expression recognition

Figure: Benefits of using a prior SQPN



Facial expression recognition

Dataset Maximum Entropy Interval SQPN gain
Size Positive Negative Dominance Positive Negative

100 9.8% -0.1% 49.2% 9.6% -0.7%
1000 4.0% 0.3% 54.8% 11.4% 0.4%

Table: Percentage of improvement with Maximum entropy and
SQPN+IDM approaches against standard maximum likelihood.



Image Segmentation

We worked with over-segmented images and applied Bayesian
networks with imprecise probabilities to choose boundary vertices
and edges using most probable explanation.



Image Segmentation

I Edges are denoted by Ej and vertices are denoted by Vt .
Shadowed nodes are related to computer vision measurements.

I p(mVt |vt) = 0.99 and p(mVt |¬vt) = 0.1. The same idea holds
for edge measurements, but with distinct strengths.

I Border should be closed:

p(vt |pa(Vt)) =


≥ 0.5, if exactly two parent nodes are true;
0.3, if none of the parent nodes are true;
0, otherwise.



Inference

Given the SQPN, the goal of image segmentation is achieved by
inferring the most probable categories of the variables given the
observations (measurements), that is, we look for the categories of
E given ME ,MV that maximize p(E|ME ,MV ). Unfortunately that
is very time consuming, but it is much easier to compute
categories of E,V that maximize

max
p

p(E,V,ME ,MV ) =
∏
t

p(Vt |pa(Vt))p(MVt |Vt)
∏
j

p(Ej)p(MEj
|Ej).



Image segmentation

(a) Over-segmented (b) Bayesian network (c) Credal network



Image segmentation

(d) Bayesian network

(e) Credal network



Activity recognition

Figure: Comparison between learning ideas



Influence Diagram

Strategy selection is the problem of deciding the action to take at
each decision node.

I Shall we do a ground attack?

I Bomb the bridge? Both? None?



Expected utility

Each strategy s = (d1, . . . , dN) (collection of local decisions) has
an expected utility:

EU(s) =
∑
x

p(x) ·
∑
U

fU(pa(U)),

where
p(x) =

∏
x↓C

p(C |pa(C ))
∏
x↓D

dD(pa(D)).

In words, it is the sum of utility functions for each network
configuration x , weighted by the probability of such configuration.
We want to maximize the expected utility.



Hard problem

The number of distinct strategies may be huge. Supposing all
nodes are binary, then D3 has 24 distinct parent configurations.
For each configuration, a decision must be taken. Thus just on D3

there are 224
distinct possibilities.



EBO example

Figure: Approximate inference using Single Policy Updating.



EBO example

Figure: Exact solution using credal network reformulation.



Results on random diagrams



Experimental results

Nodes Approx.# of IP SPU
Total Decision Strategies Time(sec) Evals (B&B) Max.Error(%) Time(sec) Max.Error(%)

10 3 217 0.66 5 0.000 0.10 0.740

20 6 234 1.73 125 0.000 0.39 2.788

50 10 251 30.42 4048 0.000 1.62 2.837

60 15 252 29.77 2937 0.000 2.99 1.964

70 20 254 125.06 7132 0.000 5.52 3.448

120 25 2102 254.80 15626 0.544 11.58 2.193

120 30 2116 403.13 5617 4.639 13.79 7.281

120 35 2120 578.99 9307 5.983 16.87 11.584

Table: Average results on 30 random influence diagrams.



Influence Diagrams

I Graphical model used for decision making.
I Extends the well known and widely used Bayesian networks

with decision and utility nodes (besides chance nodes as in
Bayesian nets).

I Ellipses represent probabilistic dependencies.
I Rectangles represent decisions.
I Diamonds represent profits or costs.



Influence Diagrams

Strategy selection is the problem of deciding the action to take at
each decision node.

I Shall we do a ground attack?

I Bomb the bridge? Both? None?



Expected utility

Each strategy s = (d1, . . . , dN) (collection of local decisions defined
through functions di : ΩPA(Xi ) → {0, 1}) has an expected utility:

EU(s) =
∑
x

p(x) ·
∑
U

fU(pa(U)),

where
p(x) =

∏
x↓C

p(C |pa(C ))
∏
x↓D

dD(pa(D)).

In words, it is the sum of utility functions for each network
configuration x , weighted by the probability of such configuration.
We want to maximize the expected utility.



Reformulation

Influence Diagram → credal network

I Utility nodes → chance nodes

I Decision nodes → fully imprecise probability nodes (no
constraints besides simplex).

I Chances nodes do not change

Important property

A solution to the new problem is also a solution to the original
problem.



Reformulation: utility nodes

Coopers transformation makes utility nodes become binary chance
nodes such as fU(pa(U)) is replaced by p(u|pa(U)) using a simple
normalization to deal with numbers that do not belong to [0,1].

I Before: U1(Decision1,Chance1) ∈ R
I Normalize: [−100, 100]→ [0, 1].

I U1(true, true) = 100→ p(u1|true, true) = 1.
I U1(true, false) = −50→ p(u1|true, false) = 1/4.
I U1(false, true) = −100→ p(u1|false, true) = 0.
I U1(false, false) = 0→ p(u1|false, false) = 1/2.



Reformulation: objective function

EU(s) =
∑
x

p(x) ·
∑
U

fU(pa(U))

=
∑
x

∑
U

p(x) · fU(pa(U))

=
∑
x

∑
U

p(x , u) =
∑
U

∑
x

p(x , u) =
∑
U

p(u)

Inference in credal network
The problem of strategy selection in influence diagrams can be
solved with the query maxp

∑
U p(u) in a credal network.



Example
Create the bilinear programming problem (symbolically) for the
follow problem:



Example: equivalent credal network



Example: bilinear program
Objective:

max
p

p(u1) + p(u2) + p(u3)

Constraints:

p(u1) =
∑
D1

p(u1|D1)p(D1)

p(u2) =
∑
D2

p(u2|D2)p(D2)

p(u3) =
∑
D2

p(u3|D2)p(D2) ← non-linear

∀D2 p(u3|D2) =
∑
C2

p(C2|D2)p(u3|C2)

∀C2 p(u3|C2) =
∑
D1

p(D1)p(u3|C2,D1) ← non-linear

∀C2,D1 p(u3|C2,D1) =
∑
C1

p(C1|C2,D1)p(u3|C1,C2)

∀C1,C2 p(u3|C1,C2) =
∑
C3

p(C3|C1,C2)p(u3|C3)



Going further: linearizing bi-linear terms

In the previous program, for example the term p(u3|d2)p(d2) is
non-linear, but one of the factors (in this case, p(d2) is known to
be {0, 1}). Then

I Replace p(u3|d2)p(d2) by y

I Include constraints about y :

0 ≤ y ≤ p(u3|d2)

p(u3|d2) + p(d2)− 1 ≤ y ≤ p(d2)

I The programs are equivalent!

Obtaining a linear integer program

Using the bilinear transformation previously described, all
non-linear terms involve an auxiliary optimization variable and a
parameter of the network that can be translated into integer
variables if extreme points of credal sets are known.
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