
Directed Fuzzing for Use-After-Free
Vulnerabilities Detection

(Doctoral Work Presentation)

Manh-Dung Nguyen †

Université Paris-Saclay, CEA LIST, France
manh-dung.nguyen@cea.fr

1 Introduction

Context. Coverage-based Greybox Fuzzing (CGF) [1] shows its ability to find
various types of bugs in real-world applications. While the main goal of CGF is
to cover as many program states as possible in a limited time, Directed Greybox
Fuzzing (DGF) [2,3] aims to perform stress testing on potentially vulnerable target
locations, with applications to different security contexts: (1) bug reproduction,
(2) patch testing or (3) static analysis report verification. We focus mainly on bug
reproduction, which is the most common practical application of DGF. It consists
in generating Proof-of-Concept (PoC) inputs of disclosed vulnerabilities given bug
report information. It is especially needed since only 54.9% of usual bug reports
can be reproduced [4]. Even with a PoC provided in the bug report, developers
may still need to consider all corner cases of the bug in order to avoid regression
bugs or incomplete fixes. Bug stack traces, sequences of function calls at the time
a bug is triggered, are widely used for guiding directed fuzzers [2, 3].
Problems. Fuzzers have made tremendous progress on specific problems (e.g.,
magic bytes comparison, deep execution, lack of directedness and complex file
formats), but existing greybox fuzzers still have a hard time finding complex vul-
nerabilities such as Use-After-Free (UAF), non-interference or flaky bugs, which
require bug-triggering paths satisfying very specific properties. We focus on UAF
bugs – one of the most critical exploitable vulnerabilities. They appear when a heap
element is used after having been freed (Listing 1) and have serious consequences.

1 char *buf = (char *) malloc(BUF_SIZE);
2 free(buf); // pointer buf becomes dangling
3 ...
4 strncpy(buf, argv[1], BUF_SIZE-1); // Use-After-Free

Listing 1: Code snippet illustrating a UAF bug.

†PhD student co-supervised at CEA LIST & Univ. Grenoble Alpes (27/11/2017 – 20/11/2020).
Thanks to my supervisors for their inputs: Roland Groz, Richard Bonichon, Sébastien Bardin and
Matthieu Lemerre. This research was supported by a grant from the H2020 C4IIOT project.



Challenges. Fuzzers targeting the detection of UAF bugs confront themselves
with the following challenges.

C1. Complexity – Exercising UAF bugs require to generate inputs triggering a
sequence of 3 events – alloc, free and use – on the same memory location,
spanning multiple functions of the program under test (PUT). This combina-
tion of both temporal and spatial constraints is difficult to meet in practice;

C2. Silence – UAF bugs often have no observable effect, such as segmentation
faults. Thus, fuzzers simply observing crashing behaviors do not detect that
a test case triggered such bugs. Sadly, popular profiling tools such as ASan
or VALGRIND cannot be used in a fuzzing context due to their high overhead.

Related Work. AFLGO [2] was the first directed fuzzer. It features a simulated
annealing-based power schedule that gradually favors seeds whose traces are closer
to the target locations. HAWKEYE [3] improves it in terms of seed prioritization,
power scheduling and mutation strategies. Although DGF effectively solves the
reachability problem of the target locations, existing DGF is limited in detecting
UAF vulnerabilities in binaries even given the UAF bug target locations.
Research Directions. We propose 3 research directions as follows:

D1. Directed fuzzer towards UAF targets extracted from a bug trace, which is a
sequence of function calls at the time a bug is triggered (discussed in details
in this paper). It could be obtained by running the PUT with a PoC input
under profiling tools such as VALGRIND [5].

D2. Typestate directed fuzzer detects common bugs (e.g., UAF, buffer overflows)
that are considered as the violation of typesate properties (work in progress).

D3. Hybrid directed fuzzer towards UAF targets extracted from static reports
of UAF detector like GUEB [6] (as future work). GUEB, which is the only
binary-level static analyzer for UAF, performs a dedicated value-set analysis
with different heap modeling approaches.

Contributions. Our work D1 [7, 8] makes the followings contributions:
• We design the first directed greybox fuzzing technique dedicated to UAF

bugs working directly on executables.
• We implement the fuzzer UAFUZZ on top of AFL [1] and BINSEC [9].
• We construct a new UAF fuzzing benchmark [10] of 30 real UAF bugs.
• For bug reproduction setting, we evaluate UAFUZZ against state-of-the-art

coverage-guided and directed greybox fuzzers using our UAF fuzzing bench-
mark. For patch testing setting, UAFUZZ successfully discovers 11 new
UAF (4 buggy patches) in critical projects like Perl, GNU Patch and GPAC.

2 The UAFUZZ approach

Overall we propose 3 dynamic input metrics specialized for UAF vulnerabilities
detection, used in conjunction with a dedicated power schedule assigning more
energy (i.e., number of mutants) to favored seeds that are wisely selected by our
new heuristic during fuzzing (as shown in Fig. 1).



Binary

Targets

CG

CFGs

Computation UAF-based Distance

Cut-edge Coverage

Target Similarity

Input Metrics

Seed
Selection

Power
Schedule

UAF
Triage

UAF bugs

Instrumentation Fuzzing Triage

Figure 1: The UAFUZZ workflow.

Target Similarity metric & Seed Selection heuristic. A target similarity metric
measures the similarity between the execution of a seed and the target UAF bug
trace. Our seed selection algorithm is based on two insights. First, we should
prioritize seeds that are most similar to the target bug trace. Second, target simi-
larity should take ordering (a.k.a., sequenceness) into account, as traces covering
sequentially a number of locations in the target bug trace are closer to the target
than traces covering the same locations in an arbitrary order.

UAF-based Distance metric. Previous seed distances [2, 3] do not account for
any order among the target locations, while it is essential for UAF. We address this
issue by modifying the distance between functions in the call graph to favor paths
that sequentially go through the 3 UAF events alloc, free and use of the bug trace.

Cut-edge Coverage metric. We propose the lightweight cut-edge coverage metric
by measuring the “reachability progress” at the edge level but on the critical de-
cision nodes only. Our heuristic is that an input exercising more cut edges whose
edge destinations are more likely to reach the next target in the bug trace, is more
likely to cover more locations of the target UAF bug trace.

Power Schedule. The power scheduler determines the energy for each selected
seed based on its dynamic metric scores at runtime. We therefore spend more time
fuzzing seeds that (1) are closer (using the UAF-based seed distance); (2) are more
similar to the UAF target bug trace (using the target similarity); (3) make better
decisions at critical code junctions (using the cut-edge coverage).

UAF Triage. False positive inputs are finally filtered by running the PUT with
potential inputs which exercise in sequence all target locations of the target UAF
bug trace under a profiling tool (here VALGRIND [5]) in the bug triaging phase.

3 Current Results

Implementation. We develop a lightweight static analysis as a plugin of the binary
analysis platform BINSEC [9] and the dynamic fuzzing part based on AFL-QEMU
2.52b [1]. We also re-implement the best state-of-the-art DGF, named AFLGOB1

1The comparison between AFLGOB and source-based AFLGO is discussed in [7].



Total Success Runs
(higher is better)

0

50

100

150

85 89
67

119

AFL-QEMU AFLGOB HAWKEYEB UAFUZZ

Total µTTE (h)
(lower is better)

0

5

10

15

20

25

16.1 16.6
18.6

9.0

AFL-QEMU AFLGOB HAWKEYEB UAFUZZ

Figure 2: Summary of fuzzing performance (RQ1)

and HAWKEYEB, in our own framework for binary-level fuzzing because HAWK-
EYE [3] is not available and AFLGO [2] works on source code only.
RQ1 – Bug-reproduction Ability. Overall UAFUZZ significantly outperforms
existing fuzzers in terms of UAF bugs reproduction. We use Time-to-Exposure
(TTE) and the number of success runs in which a fuzzer could trigger the bug as
two important metrics to compare the efficiency of each fuzzer. As shown in Fig. 2,
UAFUZZ has the largest total number of success runs and achieves 34% (up to
+300%) more than the second best fuzzer AFLGOB. Furthermore, UAFUZZ can
find bugs around 2× faster than other fuzzers. Interestingly, UAFUZZ is able to
find the bugs faster than AFLGO with source code in 4 cases, which implies the
efficiency of our techniques.
RQ2 – Overhead. UAFUZZ is an order of magnitude faster (14.7× in total) than
the source-based directed fuzzer AFLGO in the instrumentation phase. The total
numbers of executions done of UAFUZZ are slightly smaller (−4% in total) than
AFL-QEMU, which implies that UAFUZZ’s runtime overhead is negligible.
RQ3 – UAF Triage. UAFUZZ reduces a large portion (i.e., more than 90% of
triaging inputs) in the post-processing phase. Unsurprisingly, UAFUZZ spends the
smallest amount of time (i.e., an average of 7.4s – a speedup of up to 17.5× over
AFLGOB) in the bug triaging step thanks to our target similarity metric.
RQ4 – Individual Contribution. Our experiments show that UAF-based distance,
power schedule and seed selection heuristic individually contribute to improve the
performance of corresponding variants built on top of AFLGOB. Combining these
components can further improve effectiveness and efficency of our technique.

4 Conclusion & Future Work

UAFUZZ is the first directed greybox fuzzing approach tailored to detecting UAF
bugs in binary given only the bug trace. By specializing standard (directed) grey-
box fuzzing components to UAF, UAFUZZ outperforms existing directed fuzzers,
both in terms of time to bug exposure and number of success runs. Our technique
also enjoys only a small overhead (instrumentation- and run- time), and speeds up
the bug triage step by significantly reducing the number of seeds to be sent to an
external UAF checker. Finally, we currently follow the directions D2 and D3.



References
[1] “Afl,” http://lcamtuf.coredump.cx/afl/, 2020.

[2] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS17), 2017.

[3] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye: towards a desired
directed grey-box fuzzer,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2018, pp. 2095–2108.

[4] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang, “Understanding
the reproducibility of crowd-reported security vulnerabilities,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX Association, 2018, pp. 919–936.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity18/presentation/mu

[5] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary instru-
mentation,” in ACM Sigplan, vol. 42-6. ACM, 2007, pp. 89–100.

[6] J. Feist, L. Mounier, and M.-L. Potet, “Statically detecting use after free on binary code,”
Journal of Computer Virology and Hacking Techniques, vol. 10, no. 3, pp. 211–217, 2014.

[7] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre, “Binary-level directed
fuzzing for use-after-free vulnerabilities,” The 23nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID ’20), 2020.

[8] ——, “About Directed Fuzzing and Use-After-Free: How to Find Complex & Silent Bugs?”
Black Hat USA, 2020.

[9] “Binsec,” https://binsec.github.io/, 2020.

[10] “Uaf fuzzing benchmark,” https://github.com/uafuzz/UAF-FuzzBench, 2020.


