
PhD Student session: formally verified postpass scheduling
with peephole optimization for AArch64

Léo Gourdin *

Université Grenoble Alpes — Verimag & TIMA Laboratories
leo.gourdin@grenoble-inp.org

Abstract

COMPCERT is a C compiler with a complete machine-checked proof of semantic preser-
vation from C to assembly [Ler09]. We present here an extension of COMPCERT for AArch64
processors, that optimizes the use of the pipeline in the processor (postpass scheduling)
and performs instruction compaction (e.g. replaces pairs of simple load instructions, by
single double load instructions), through a technique called peephole optimization. Our
method is founded on a two-tier design, introducing an untrusted oracle performing the
translation, and a formally-verified checker testing whether the code produced by the oracle
simulates the original code. We reuse here the generic checker, based on symbolic execution
with an hash-consing mechanism, of [SBM20]. The paper presents the correctness proof of
my optimizations, and experimental measurements of performance improvements. More
generally, my thesis explores how to apply and generalize such mechanisms of translation
validation in order to extend COMPCERT with target-dependent optimizations.

1 Introduction and related works

An instruction sequence may take significantly less time if executed according to a favorable
schedule. Indeed, the simultaneous use of all processor units may be maximized with a smart
interleaving of “parallelizable” computations. High-performance processors schedule instructions
dynamically, but this complicates their design. COMPCERT is often used by industrials working
with Safety-critical systems (SCS) [BFBFF+12], that must remain reliable, not too complex, and
predictable. In-order cores, which do not dynamically reorder instructions, are thus a common
choice to meet these needs. On such processors, performance may be improved significantly
if the compiler schedules instructions intelligently. Within compilers, instruction scheduling is
usually split in two passes: a “coarse-grain” one, in an Intermediate Representation (IR), before
register allocation and a “fine-grain” one, after register allocation, on the emitted assembly.1.

Such a (verified) “coarse-grain” prepass scheduling optimization has been recently proposed
for COMPCERT [SGBM21]. This paper presents a (verified) “fine-grain” postpass scheduling

*This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir.

1Combining scheduling and register allocation is useful to avoid a high register pressure, but existing works such
as [LCBS19, MPSR95] are challenging and does not seem to scale.

mailto:leo.gourdin@grenoble-inp.org


Asmblock
Translation pass

PostpassScheduling
Module

Asm
Flattening pass

Error

AbstractBasicBlock
Verifier

Peephole+Scheduler Hash Consing

Machblock
input

Asmblock
input

Asmblock
output

Asm
output

B

tB

(B,tB)
OK/Error

COQ (trusted)

OCAML (untrusted)

Figure 1: Architecture of our verified optimizations

and a peephole optimization (i.e. instruction compaction on load and store). Both optimizations
are performed by untrusted OCAML oracles. We adapt the work of [SBM20], where they present
a new IR Asmblock to define basic blocks2 at the assembly level, and a generic checker, formally
proved correct in COQ, defined above a dedicated IR called AbstractBasicBlock.

[Nec00] and [TGM11] have experimented that combining symbolic execution with rewriting
is effective to validate the code produced by state-of-the-art optimizing compilers. In the
meantime, [TL08] have used a formally-verified symbolic execution in order to formally certify
the schedules produced by an untrusted oracle within the COMPCERT compiler. Unfortunately,
their checker had exponential complexity [Tri09, §6.7.1], [TL08, §7] and their formally-verified
scheduler was never released. [SBM20] tackle this issue with a dynamically verified hash-
consing mechanism: an untrusted OCAML oracle memoizes symbolic terms, and its results are
dynamically checked with an axiomatized pointer equality.3. We port their work on the AArch64
architecture, and also applies this translation validation solution to verify the correctness of
peephole replacements. In contrast to the peephole optimizations of [MZTG16] (for x86-32), we
do not consider register liveness nor arithmetic transformations of pointers, but they do not tackle
instruction scheduling and their model of basic blocks relies on some unverified assumptions.

2 Architecture of our solution and its formal proof

Our solution, pictured in Fig. 1, reuses the generic basic blocks construction method of [SBM20]
through Machblock. W.r.t. [SBM20], the whole proof effort consists in adapting to our target the
Asmblock IR and the various translations from and to this IR. As pictured in Fig. 1, untrusted
optimizations are together applied to each basic block B producing a basic block tB, which are
then both translated to the generic AbstractBasicBlock IR for verification. Hence, the results
of our combined oracles are verified in one pass, with a single checker. We apply the peephole

2By definition, a basic block is a sequence of assembly instructions with at most one branching instruction, which
is in this case in final position, and such that the ambient program only enters this sequence at the first instruction.
Hence, optimizations (e.g. instructions rewriting or reorderings) that (locally) preserve the semantics of the basic
block, also (globally) preserve the semantics of the ambient program.

3Because representing pointer equality as a “pure” function would be unsound, OCAML pointer equality is instead
axiomatized as returning a “non-deterministic” Boolean (within a dedicated monad) such that result “true” implies
Coq equality. This model seems a quite reasonable, and enables an efficient symbolic simulation test.



optimization before the scheduling pass in order to leave more scheduling opportunities after load
and store pairing.

Asmblock B tB

AbstractBasicBlock · ·

Symbolic states · ·

simulated by

bisimulation

bisimulation

compilations
(block by block)

symbolic executions
with hash-consing

simulated by

Figure 2: Simulation Test Correctness

Based on the existing Asm on the back-
end, we build the Asmblock IR by defining a
new instruction hierarchy4. We prove the cor-
rectness of our optimizations thanks to a sim-
ulation test on the AbstractBasicBlock IR, de-
ducing the simulation from syntactical equali-
ties on “symbolic states”, after symbolic execu-
tion5. See [SBM20, §4.3]. The overall proof
of the simulation of B by tB corresponds to
compose the two commutative diagrams on the right-hand side of Figure 2.

3 The Postpass Scheduler

This oracle is declared as a COQ function taking a basic block in input, and returning a tuple
containing a list of basic instructions (i.e. the basic block body) and an optional (using the option
monad) control-flow instruction (i.e. the basic block exit). The main obstacle is then to retrieve
the most precise information possible about latencies of instructions, to be able to correctly “tune”
the oracle. The difficulty resides in the fact that measuring correctly the number of execution
cycles for each instruction is hard, and the manufacturer in the case of the Cortex-A53 (i.e.
ARM) does not provide such information. However, the AArch64 LLVM back-end is using a
similar postpass scheduling optimization, and the source code6 contains some latency information.
Another source we used is an article by [Wig19] where some latencies are manually measured.

Concerning the set of read and written registers for each instruction, it could be deduced
from the Asm semantics. When implementing our solution, we have discovered bugs in this
semantics: indeed, some instructions such as Pfmovimms, Pfmovimmd and Pbtbl were
incorrectly described. The first two are destroying a scratch register before writing the result in
the destination register, and the latter is in fact preserving a scratch register contrary to what its
semantics describes. These three instructions are macros expanded later on in an unverified part
of COMPCERT, the TargetPrinter, into several real Asm instructions. The formalization of their
behavior in COQ was not correct, and it was possible to generate incorrect code by interleaving
them with other macros that are using the same scratch register, and which are expanded in COQ,
at the Asm level (so before our scheduling). The bug was invisible in the sense that as instructions
were never reordered at the Asm level, an incorrect code could not appear (the only way was
either to reschedule instructions as we do, or to write it manually). Thus, our verifier combined
with the postpass scheduling can help us find errors in the trusted base of COMPCERT7.

4We do not detail the chosen hierarchy here, but the interested reader can note that a smart grouping of instructions
by operands (according to the number and type of input registers) helps to produce more compact definitions in the
checker and a shorter overall proof.

5This method simply consists in compiling each program into a big symbolic term, called a symbolic state
6Accessible here as a TABLEGEN code.
7Those bugs are now fixed in the COMPCERT mainline repository.

https://github.com/llvm/llvm-project/blob/382d3a85e2a9269569e7fb8caa487d7ef57900c6/llvm/lib/Target/AArch64/AArch64SchedA53.td
https://github.com/AbsInt/CompCert/commit/0df99dc46209a9fe5026b83227ef73280f0dab70


ldr w4, [x6, #0]
sxtw x3, w0
ldr w1, [x6, #4]
ldr w5, [x3, #0]
ldr w7, [x3, #4]
add w2, w4, w1
adrp x16, a

→

ldp w4, w1, [x6, #0]
sxtw x3, w0
ldp w5, w7, [x3, #0]
add w2, w4, w1
adrp x16, a

ldr x19, [sp, #16]
ldr x30, [sp, #8]
movz x1, #0, lsl #0
str w2, [x1, #0]
movz w0, #0, lsl #0
str w2, [x1, #4]
sub w0, w0, w2

→

ldp x30, x19, [sp, #8]
movz x1, #0, lsl #0
movz w0, #0, lsl #0
stp w2, w2, [x1, #0]
sub w0, w0, w2

Figure 3: Four Examples of load/store Compaction on AArch64

4 The peephole optimizer

In contrast to the peephole optimizer of [SBM20], ours is able to merge non-consecutive load
or store within the original basic block, as long as they respect the semantic dependencies and
offset constraints on double load/store specific to AArch64 Instruction Set Architecture (ISA).
Our algorithm traverses the basic block in both directions, while remembering every encountered
compatible load and store as potential candidates (and forgetting them if another instruction breaks
a needed dependency in-between). The first pass (forward) tries to replace the last encountered
load or store by the double instruction, and the first one by a Nop (no operation) instruction. The
second pass (backward) tries the opposite.

Figure 3 illustrates four situations found by our peephole optimizer. On the left column:
1. backward load pairing, with increasing offset (the offset of the second load is greater than
that of the first one); 2. consecutive load pairing, with increasing offset. On the right column:
1. consecutive load pairing, with decreasing offset (the offset of the second load is lower than that
of the first one); 2. forward store pairing, with increasing offset.

Currently, the main benefit of our peephole optimizer for AArch64 is a reduction of code size:
it reduces the number of generated memory transfer instructions by about 10%, which represents
approximately 3% of the total code length (on average across all our benchmarks). Like [SBM20],
our formally-verified simulation test validates these rewritings by performing the reverse rewriting
(i.e. from double load/store to pairs of simple load/store) in the Asmblock-to-AbstractBasicBlock
pass (see Fig. 2).

5 Conclusion and future work

Using such a low level scheduling pass allows a finer tuning of instructions latencies compared to
the existing prepass. On average, running on a Raspberry Pi 3 with a Cortex-A53 core, our oracle
alone raises performance by 9.11% across all our benchmarks8, and using prepass scheduling
[SGBM21] on top of postpass makes us reach 22% of performance improvement. The postpass
itself brings a gain of about 5.46% comparing to COMPCERT with all optimizations turned on9

as they allow generating larger, more profitable, basic blocks. The overall implementation of our
formally-verified optimization pipeline on AArch64 represents a bit more than three man·months
of development. This constitutes for us the first step for future optimizations exploiting the same
principle of a posteriori verification, which we will study in the rest of the thesis.

8Based on Polybench [Pou12], TACLeBench [FAH+16], and some additional benches described in [SBM20].
9Including among others Loop Invariant Code Motion (LICM), loop-unrolling, loop-rotate, and tail duplication.



References
[BFBFF+12] Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc Pantel,

and Jean Souyris. Formally verified optimizing compilation in ACG-based flight control
software. In Embedded Real Time Software and Systems (ERTS2). AAAF, SEE, February
2012.

[FAH+16] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Chris-
tine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon
Wegener. TACLeBench: A benchmark collection to support worst-case execution time
research. In Martin Schoeberl, editor, 16th International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET 2016), volume 55 of OpenAccess Series in Informatics
(OASIcs), pages 2:1–2:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[LCBS19] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte.
Combinatorial register allocation and instruction scheduling. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 41(3):1–53, 2019.

[Ler09] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[MPSR95] Rajeev Motwani, Krishna V Palem, Vivek Sarkar, and Salem Reyen. Combining register
allocation and instruction scheduling. Courant Institute, New York University, 1995.

[MZTG16] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole opti-
mizations for compcert. In Chandra Krintz and Emery Berger, editors, Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 448–461. ACM, 2016.

[Nec00] George C. Necula. Translation validation for an optimizing compiler. In Programming
Language Design and Implementation (PLDI), pages 83–94. ACM Press, 2000.

[Pou12] Louis-Noël Pouchet. the polyhedral benchmark suite, 2012.

[SBM20] Cyril Six, Sylvain Boulmé, and David Monniaux. Certified and efficient instruction schedul-
ing. Application to interlocked VLIW processors. PACMPL (OOPSLA 2020), November
2020.

[SGBM21] Cyril Six, Léo Gourdin, Sylvain Boulmé, and David Monniaux. Verified Superblock
Scheduling with Related Optimizations. preprint, April 2021.

[TGM11] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. Evaluating value-graph trans-
lation validation for LLVM. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011, pages 295–305. ACM, 2011.

[TL08] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation validators: a case
study on instruction scheduling optimizations. In POPL, pages 17–27. ACM Press, 2008.

[Tri09] Jean-Baptise Tristan. Formal verification of translation validators. PhD thesis, Université
Paris 7 Diderot, November 2009.

[Wig19] Thom Wiggers. Energy-Efficient ARM64 Cluster with Cryptanalytic Applications: 80 Cores
That Do Not Cost You an ARM and a Leg, pages 175–188. 07 2019.


	Introduction and related works
	Architecture of our solution and its formal proof
	The Postpass Scheduler
	The peephole optimizer
	Conclusion and future work

