Coloring perfect graphs by contraction

Benjamin Lévêque
Combinatorial Optimisation team
G-SCOP Laboratory, Grenoble, France

Coloring of the vertices of a graph

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete!
- Maximum clique : $\omega(G)$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

Odd hole $(2 k+1)$

$$
\chi=3
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

Odd hole $(2 k+1)$

$$
\begin{aligned}
& \chi=3 \\
& \omega=2
\end{aligned}
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

Odd antihole ($2 \mathrm{k}+1$)

$$
\begin{aligned}
& \chi=3 \\
& \omega=2
\end{aligned}
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

$$
\begin{aligned}
& \chi=3 \\
& \omega=2
\end{aligned}
$$

Odd antihole ($2 \mathrm{k}+1$)

$$
\chi=k+1
$$

Coloring of the vertices of a graph

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$
\chi(G) \geq \omega(G)
$$

$$
\begin{aligned}
& \chi=3 \\
& \omega=2
\end{aligned}
$$

Odd antihole ($2 \mathrm{k}+1$)

$$
\begin{gathered}
\chi=k+1 \\
\omega=k
\end{gathered}
$$

Perfection

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Odd hole
 Odd antihole

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : $\chi(H)=\omega(H)$

Conjecture (Berge - 1960)
G is perfect iff it contains no odd hole and no odd antihole

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Conjecture (Berge-1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G is perfect iff it contains no odd hole and no odd antihole

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Conjecture (Berge-1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G is perfect iff it contains no odd hole and no odd antihole
Recognition algorithm

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Conjecture (Berge-1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G is perfect iff it contains no odd hole and no odd antihole
Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}\left(n^{9}\right)$

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Conjecture (Berge-1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G is perfect iff it contains no odd hole and no odd antihole
Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}\left(n^{9}\right)$

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984)
Ellipsoïd method (Khachiyan - 1979)

Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of $G: \chi(H)=\omega(H)$

Odd hole

Odd antihole

Conjecture (Berge-1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G is perfect iff it contains no odd hole and no odd antihole
Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}\left(n^{9}\right)$

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984)
Ellipsoïd method (Khachiyan - 1979)
Purely combinatorial coloring algorithm ?

Contraction

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length
Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length
Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω
Even contractile (Bertschi-1990)
Can be turned into a clique by a sequence of even pair contractions

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length
Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω
Even contractile (Bertschi-1990)
Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)
Every induced subgraph is even-contractile

Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length
Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of χ and ω
Even contractile (Bertschi-1990)
Can be turned into a clique by a sequence of even pair contractions
Perfectly contractile (Bertschi - 1990)
Every induced subgraph is even-contractile

```
Conjecture (Everett, Reed - 1993)
G is perfectly contractile iff it contains no odd hole, no antihole and
no odd prism
```


Bull-free Artemis graphs

Bull-free Artemis graphs

Bull-free Artemis graphs

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole

Antihole

Bull

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole

Antihole

Bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis?

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole

Antihole

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

Theorem (Lévêque, Maffray - 2007)
Every hole-free bull-free graph has a vertex that is not the middle of a P_{5}

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Algorithm LexBFS (Rose, Tarjan, Lueker 1976)
Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set $L(a):=\emptyset$;
General step: For $i=n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex $u \in U$ for which $L(u) \backslash L(A)$ is maximum.
- Set $U:=U \backslash\{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A:=A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a):=i$.
- For each unnumbered neighbor v of a, add i to $L(v)$.

$$
\text { LexBFS } \mathcal{O}(n+m) \rightarrow \text { LexBFS* }^{*} \mathcal{O}(n m)
$$

Algorithm CosinE*

Algorithm Cosine (Hertz 1990)
Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: $c=1$;
General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A;
1.3. Color u with c;
2. $c:=c+1$.

Algorithm CosinE*

Algorithm Cosine (Hertz 1990)
Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: $c=1$;
General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A;
1.3. Color u with c;
2. $c:=c+1$.

Algorithm CosinE*

Algorithm Cosine (Hertz 1990)
Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: $c=1$;
General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A,
1.3. Color u with c;
2. $c:=c+1$.

Algorithm Cosine*

Algorithm Cosine (Hertz 1990)
Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: $c=1$;
General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A, ties being broken by taking such a vertex that is minimum for σ;
1.3. Color u with c;
2. $c:=c+1$.

Algorithm Cosine*

Algorithm Cosine (Hertz 1990)
Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: $c=1$;
General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A, ties being broken by taking such a vertex that is minimum for σ;
1.3. Color u with c;
2. $c:=c+1$.

LexBFS* on $\bar{G}+$ Cosine * on $G \rightarrow \mathcal{O}(n m)$ coloring algorithm

Precoloring Extension

Precoloring Extension

Sudoku

Precoloring Extension

Sudoku

3	8		4		7		5	
				9			1	7
9	6	7		1				4
					8		2	9
6	9	2	5	7	4	3	8	1
7	3		1					
8				4		5	9	3
1	7			5				
	5		9		2		7	6

Precoloring Extension

Sudoku

3	8	1	4	6	7	9	5	2
2	4	5	8	9	3	6	1	7
9	6	7	2	1	5	8	3	4
5	1	4	6	3	8	7	2	9
6	9	2	5	7	4	3	8	1
7	3	8	1	2	9	4	6	5
8	2	6	7	4	1	5	9	3
1	7	9	3	5	6	2	4	8
4	5	3	9	8	2	1	7	6

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
Which are the PrExt-perfect graphs ?

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
Which are the PrExt-perfect graphs ?
Theorem (Jost, Lévêque, Maffray - 2007)
PrExt-perfect = co-Meyniel

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
Which are the PrExt-perfect graphs ?
Theorem (Jost, Lévêque, Maffray - 2007)
PrExt-perfect = co-Meyniel

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
Which are the PrExt-perfect graphs ?
Theorem (Jost, Lévêque, Maffray - 2007)
PrExt-perfect = co-Meyniel

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
Which are the PrExt-perfect graphs ?
Theorem (Jost, Lévêque, Maffray - 2007)
PrExt-perfect = co-Meyniel

