
Coloring perfect graphs by contraction

Benjamin Lévêque

Combinatorial Optimisation team

G-SCOP Laboratory, Grenoble, France

1/11

Coloring of the vertices of a graph

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G)

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1)

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1)

χ = 3

2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1)

χ = 3

ω = 2
2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1) Odd antihole (2k+1)

χ = 3

ω = 2
2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1) Odd antihole (2k+1)

χ = 3 χ = k + 1

ω = 2
2/11

Coloring of the vertices of a graph

• two adjacent vertices receive two distinct colors

• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1) Odd antihole (2k+1)

χ = 3 χ = k + 1

ω = 2 ω = k
2/11

Perfection

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960)

G is perfect iff it contains no odd hole and no odd antihole

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005)

Complexity O(n9)

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005)

Complexity O(n9)

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984)

Ellipsoïd method (Khachiyan - 1979)

3/11

Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005)

Complexity O(n9)

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984)

Ellipsoïd method (Khachiyan - 1979)

Purely combinatorial coloring algorithm ?

3/11

Contraction

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990)

Can be turned into a clique by a sequence of even pair contractions

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990)

Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)

Every induced subgraph is even-contractile

4/11

Contraction

Even pair (Meyniel - 1987)

2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990)

Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)

Every induced subgraph is even-contractile

Conjecture (Everett, Reed - 1993)

G is perfectly contractile iff it contains no odd hole, no antihole and
no odd prism

4/11

Perfect

Perfectly contractile

oH A oP − free (Grenoble)

oH A P − free (Artemis)

oH C − free (Meyniel) oH A B − freeH A − free (weakly triangulated)

Thomas

Robertson

Seymour

ChudnovskyoH oA − free (Berge)

Maffray

Trotignon

Conjecture

Everett

Reed

Conjecture

Berge

5/11

Perfect

Perfectly contractile

oH A oP − free (Grenoble)

oH A P − free (Artemis)

oH C − free (Meyniel) oH A B − freeH A − free (weakly triangulated)

Thomas

Robertson

Seymour

ChudnovskyoH oA − free (Berge)

Maffray

Trotignon

Conjecture

Everett

Reed

Conjecture

Berge

Léveque

Maffray

Reed

Trotignon

O(n²m)

O(nm)
Léveque

Maffray

Hayward

O(nm) O(nm) HertzSpinrad

Sritharan

5/11

Perfect

Perfectly P4−free−contractile

Perfectly contractile

oH A oP − free (Grenoble)

oH A − free

oH A P − free (Artemis)

oH C − free (Meyniel) oH A B − freeH A − free (weakly triangulated)

Thomas

Robertson

Seymour

ChudnovskyoH oA − free (Berge)

Maffray

Trotignon

Conjecture

Léveque

Maffray

Conjecture

Everett

Reed

Conjecture

Berge

Léveque

Maffray

Reed

Trotignon

O(n²m)

O(nm)
Léveque

Maffray

Hayward

O(nm) O(nm) HertzSpinrad

Sritharan

5/11

Bull-free Artemis graphs

6/11

Bull-free Artemis graphs

6/11

Bull-free Artemis graphs

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

6/11

Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

Theorem (Lévêque, Maffray - 2007)

Every hole-free bull-free graph has a vertex that is not the middle of a P5

6/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {} {}

{}{}{}

{} {}

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {8} {}

{8}{8}

{} {8}

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {8} {}

{8}{8}

{7}
7

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {8} {6}

{8}

{7}

6

7

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{5}

{7,5}

{6}{8}

5 6

7

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{5,4}

{7,5}

{6,4}
4

5 6

7

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{5,4} {6,4}

3

4

5 6

7

8

1 2
7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{5,4}

3

4

5 6

7

8

1 2
7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

3

4

5 6

7

8

21
7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

3

4

5 6

7

8

1 2
7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |A| = 1 or |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {8} {}

{8}{8}

{} {8}

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{} {8} {}

{8}{8}

{7}
7

8

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{6} {8} {}

{8}

{7,6}
7

86

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{6,5} {5}

{8}

{7,6}
7

8

5

6

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{6,5} {5,4}

{7,5}
7

8

5

46

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{6,5} {5,4}

7

8

5

4

3

6

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

{5,4}

7

8

2 5

4

3

6

7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

7

8

2 5

4

3

6

1 7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

7

8

2 5

4

3

6

1 7/11

Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

LEXBFS O(n + m) → LEXBFS* O(nm)

7/11

Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A;
1.3. Color u with c;

2. c := c + 1.

8/11

Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A;
1.3. Color u with c;

2. c := c + 1.

8/11

Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for σ;

1.3. Color u with c;
2. c := c + 1.

8/11

Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for σ;

1.3. Color u with c;
2. c := c + 1.

8/11

Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for σ;

1.3. Color u with c;
2. c := c + 1.

LEXBFS* on G + COSINE* on G → O(nm) coloring algorithm

8/11

Precoloring Extension

9/11

Precoloring Extension

Sudoku

9/11

Precoloring Extension

Sudoku

9/11

Precoloring Extension

Sudoku

9/11

Precoloring Extension

Sudoku

9/11

Precoloring Extension

Sudoku

9/11

Precoloring Extension

Sudoku

3 5

1 7

4

92

8 134

8

1

9

748

9 6 7

6 9 2 75

37

8

1 7

5 9

1

4

5

2

5 9 3

67

9/11

Precoloring Extension

Sudoku

8

2

5

7

1

2 4

4 6

3

9

6

82 5

6

2

8

3

34

9

6 17

98

6

63

3

1

1

2

4

42 5

5

8

3 5

1 7

4

92

8 134

8

1

9

748

9 6 7

6 9 2 75

37

8

1 7

5 9

1

4

5

2

5 9 3

67

9/11

10/11

10/11

10/11

10/11

10/11

10/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

11/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

11/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévêque, Maffray - 2007)

PrExt-perfect = co-Meyniel

11/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévêque, Maffray - 2007)

PrExt-perfect = co-Meyniel

11/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévêque, Maffray - 2007)

PrExt-perfect = co-Meyniel

11/11

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévêque, Maffray - 2007)

PrExt-perfect = co-Meyniel

11/11

	cy {Coloring of the vertices of a graph}
	cy {Perfection}
	cy {Contraction}
	
	cy {Bull-free Artemis graphs}
	cy {Algorithm {sc LexBFS*}}
	cy {Algorithm {sc Cosine*}}
	cy {Precoloring Extension}
	cy {}
	cy {PrExt-perfection}

