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• Minimum number of colors : χ(G) NP-complete !

• Maximum clique : ω(G)

χ(G) ≥ ω(G)

Odd hole (2k+1) Odd antihole (2k+1)

χ = 3 χ = k + 1

ω = 2 ω = k
2/11



Perfection

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960)

G is perfect iff it contains no odd hole and no odd antihole

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm

3/11



Perfection

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005)
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For every induced subgraph H of G : χ(H) = ω(H)

Odd hole Odd antihole

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)

G is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005)

Complexity O(n9)

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984)

Ellipsoïd method (Khachiyan - 1979)

Purely combinatorial coloring algorithm ?
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2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990)

Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)

Every induced subgraph is even-contractile

Conjecture (Everett, Reed - 1993)

G is perfectly contractile iff it contains no odd hole, no antihole and
no odd prism
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Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Odd hole Antihole Bull

Algorithm Cosine (Hertz - 1990)

on bull-free Artemis ?

Theorem (Lévêque, Maffray - 2007)

Every hole-free bull-free graph has a vertex that is not the middle of a P5
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ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).
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- For each unnumbered neighbor v of a, add i to L(v).
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Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).
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Algorithm LEXBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ∅;

General step: For i = n, . . . , 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U | = 0 do:

- Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
- Set U := U \ {u}. If A ∩ N(u) 6= ∅, then set A := A ∩ N(u).

- Pick any vertex a ∈ A and set σ(a) := i.
- For each unnumbered neighbor v of a, add i to L(v).

LEXBFS O(n + m) → LEXBFS* O(nm)
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Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A;
1.3. Color u with c;

2. c := c + 1.
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Algorithm COSINE*

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.

Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored c do:

1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex u that has no neighbor colored c and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for σ;

1.3. Color u with c;
2. c := c + 1.

LEXBFS* on G + COSINE* on G → O(nm) coloring algorithm
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PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect
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