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Coloring algorithm (Grétschel, Lovasz, Schrijver - 1984)
Ellipsoid method (Khachiyan - 1979)

Purely combinatorial coloring algorithm ?
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Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

Even contractile (Bertschi - 1990)
Can be turned into a cligue by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)
Every induced subgraph is even-contractile

Conjecture (Everett, Reed - 1993)
G is perfectly contractile iff it contains no odd hole, no antihole and
no odd prism
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Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

A

Theorem (Lévéque, Maffray - 2007)
Every hole-free bull-free graph has a vertex that is not the middle of a P;
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Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).
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Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

LEXBFS O(n +m) — LExXBFS* O(nm)
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Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has

the maximum number of neighbors in A;
1.3. Color u with ¢;
2.c:=c+ 1.
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LEXBFS* on G + Cosine*on G — O(nm) coloring algorithm
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