Coloring perfect graphs by contraction

Benjamin Lévêque

Combinatorial Optimisation team G-SCOP Laboratory, Grenoble, France

• two adjacent vertices receive two distinct colors

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

$$\chi(G) \ge \omega(G)$$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

- two adjacent vertices receive two distinct colors
- Minimum number of colors : $\chi(G)$ NP-complete !
- Maximum clique : $\omega(G)$

Perfect graphs (Berge - 1960)

For every induced subgraph *H* of *G* : $\chi(H) = \omega(H)$

Perfect graphs (Berge - 1960)

For every induced subgraph H of G : $\chi(H) = \omega(H)$

Conjecture (Berge - 1960) *G* is perfect iff it contains no odd hole and no odd antihole

Conjecture (Berge - 1960) **Theorem** (Chud., Rob., Seym., Thom. - 2006) *G* is perfect iff it contains no odd hole and no odd antihole

Conjecture (Berge - 1960) **Theorem** (Chud., Rob., Seym., Thom. - 2006) *G* is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm

Conjecture (Berge - 1960) **Theorem** (Chud., Rob., Seym., Thom. - 2006) *G* is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}(n^9)$

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006) *G* is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}(n^9)$

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984) Ellipsoïd method (Khachiyan - 1979)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006) *G* is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković - 2005) Complexity $\mathcal{O}(n^9)$

Coloring algorithm (Grötschel, Lovász, Schrijver - 1984) Ellipsoïd method (Khachiyan - 1979)

Purely combinatorial coloring algorithm ?

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982) Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990)

Can be turned into a clique by a sequence of even pair contractions

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982) Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990) Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990) Every induced subgraph is even-contractile

Even pair (Meyniel - 1987) 2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982) Contracting an even pair preserves the value of χ and ω

Even contractile (Bertschi - 1990) Can be turned into a clique by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990) Every induced subgraph is even-contractile

Conjecture (Everett, Reed - 1993) *G* is perfectly contractile iff it contains no odd hole, no antihole and no odd prism

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990) on bull-free Artemis ?

Theorem (Lévêque, Maffray - 2007) Every hole-free bull-free graph has a vertex that is not the middle of a P_5

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

General step: For $i = n, \ldots, 1$ do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Input: A graph G with n vertices. *Output:* An ordering σ on the vertices of G.

Initialization: For every vertex a of G, set $L(a) := \emptyset$;

- Let A be the set of unnumbered vertices whose label is maximum.
- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
 - Select a vertex $u \in U$ for which $L(u) \setminus L(A)$ is maximum.
 - Set $U := U \setminus \{u\}$. If $A \cap N(u) \neq \emptyset$, then set $A := A \cap N(u)$.
- Pick any vertex $a \in A$ and set $\sigma(a) := i$.
- For each unnumbered neighbor v of a, add i to L(v).

Lexbfs
$$\mathcal{O}(n+m) \rightarrow \text{Lexbfs}^* \mathcal{O}(nm)$$

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices. *Output:* A coloring of the vertices of G.

Initialization: c = 1;

General step: While there exist uncolored vertices do:

- 1. While there exist uncolored vertices that have no neighbor colored c do:
 - 1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
 - 1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A;
 - 1.3. Color u with c;
- **2.** c := c + 1.

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices. *Output:* A coloring of the vertices of G.

Initialization: c = 1;

General step: While there exist uncolored vertices do:

- 1. While there exist uncolored vertices that have no neighbor colored c do:
 - 1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
 - 1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A;
 - 1.3. Color u with c;
- **2.** c := c + 1.

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices. *Output:* A coloring of the vertices of G.

Initialization: c = 1;

General step: While there exist uncolored vertices do:

- 1. While there exist uncolored vertices that have no neighbor colored c do:
 - 1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
 - 1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A,
 - 1.3. Color u with c;
- **2.** *c* := *c* + 1.

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices. *Output:* A coloring of the vertices of G.

Initialization: c = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:

- 1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
- 1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A, ties being broken by taking such a vertex that is minimum for σ ;
- 1.3. Color u with c;
- **2.** c := c + 1.

ALGORITHM COSINE (Hertz 1990)

Input: A graph G on n vertices and an ordering σ on its vertices. *Output:* A coloring of the vertices of G.

Initialization: c = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored c do:

- 1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
- 1.2. Select an uncolored vertex u that has no neighbor colored c and has the maximum number of neighbors in A, ties being broken by taking such a vertex that is minimum for σ ;
- 1.3. Color u with c;
- **2.** c := c + 1.

LEXBFS* on \overline{G} + COSINE* on $G \rightarrow \mathcal{O}(nm)$ coloring algorithm

3	8		4		7		5	
				9			1	7
9	6	7		1				4
					8		2	9
6	9	2	5	7	4	3	8	1
7	3		1					
8				4		5	9	3
1	7			5				
	5		9		2		7	6

3	8	1	4	б	7	9	5	2
2	4	5	8	9	3	6	1	7
9	6	7	2	1	5	8	3	4
5	1	4	6	3	8	7	2	9
6	9	2	5	7	4	3	8	1
7	3	8	1	2	9	4	6	5
8	2	б	7	4	1	5	9	3
1	7	9	3	5	6	2	4	8
4	5	3	9	8	2	1	7	6

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs?

Theorem (Jost, Lévêque, Maffray - 2007) PrExt-perfect = co-Meyniel
PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs?

Theorem (Jost, Lévêque, Maffray - 2007) PrExt-perfect = co-Meyniel

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs?

Theorem (Jost, Lévêque, Maffray - 2007) PrExt-perfect = co-Meyniel

PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)

For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs?

Theorem (Jost, Lévêque, Maffray - 2007) PrExt-perfect = co-Meyniel

