Coloring perfect graphs by contraction

Benjamin Lévéque

Combinatorial Optimisation team
G-SCOP Laboratory, Grenoble, France

1/11



Coloring of the vertices of a graph



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors

® Minimum number of colors : x(G)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors

® Minimum number of colors : x(G)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) > w(G)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) > w(G)

Odd hole (2k+1)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) > w(G)

Odd hole (2k+1)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) > w(G)

Odd hole (2k+1)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) > w(G)

Odd hole (2k+1) Odd antihole (2k+1)

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) = w(G)
Odd hole (2k+1) Odd antihole (2k+1)
X =3 x=k+1

2/11



Coloring of the vertices of a graph

® two adjacent vertices receive two distinct colors
® Minimum number of colors : x(G)

® Maximum clique : w(G)

X(G) = w(G)
Odd hole (2k+1) Odd antihole (2k+1)

x=k+1

w:2 w =k

2/11



Perfection

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960)
G Is perfect iff it contains no odd hole and no odd antihole

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G Is perfect iff it contains no odd hole and no odd antihole

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G Is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G Is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vu3kovi¢ - 2005)
Complexity O(n?)

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G Is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vu3kovi¢ - 2005)
Complexity O(n?)

Coloring algorithm (Grétschel, Lovasz, Schrijver - 1984)
Ellipsoid method (Khachiyan - 1979)

3/11



Perfection

Perfect graphs (Berge - 1960)
For every induced subgraph H of G : x(H) = w(H)

Conjecture (Berge - 1960) Theorem (Chud., Rob., Seym., Thom. - 2006)
G Is perfect iff it contains no odd hole and no odd antihole

Recognition algorithm (Chudnovsky, Cornuéjols, Liu, Seymour, Vu3kovi¢ - 2005)
Complexity O(n?)

Coloring algorithm (Grétschel, Lovasz, Schrijver - 1984)
Ellipsoid method (Khachiyan - 1979)

Purely combinatorial coloring algorithm ?

3/11



Contraction

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

A\
S

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

/\

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

Even contractile (Bertschi - 1990)
Can be turned into a cligue by a sequence of even pair contractions

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

Even contractile (Bertschi - 1990)
Can be turned into a cligue by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)
Every induced subgraph is even-contractile

4/11



Contraction

Even pair (Meyniel - 1987)
2 vertices s.t. every chordless path between them has even length

Theorem (Fonlupt, Uhry - 1982)
Contracting an even pair preserves the value of y and w

Even contractile (Bertschi - 1990)
Can be turned into a cligue by a sequence of even pair contractions

Perfectly contractile (Bertschi - 1990)
Every induced subgraph is even-contractile

Conjecture (Everett, Reed - 1993)
G is perfectly contractile iff it contains no odd hole, no antihole and
no odd prism

4/11



Conjecture
Berge

Conjecture
Everett

Chudnovsky
¢ Robertson
Seymour
Pel‘feCt Thomas
- J
___________ Y """ =777
(Perfectly contractile j :
Maffray

Trotignon

5/11



Conjecture
Berge

Conjecture
Everett

Hayward
O(nm) Spinrad

Sritharan

Perfect

(Perfectly contractile j
Maffray
Trotignon

O(nm) Hertz

-

Chudnovsky
Robertson
Seymour
Thomas
Léveque
O(nm) Maffray
Reed
Trotignon
O(nm) Léveque
Maffray

5/11



Chudnovsky
¢ Robertson
Seymour

Conjecture
Berge Perfect Thomas

Conjecture

Léveque
Maffray

Conjecture | ¢ i
Everett Perfectly contractile j :
Reed ! )
Maffray
Trotignon Léveque
O(n2m) Maffray
Reed
Trotignon
Hayward c
Léveque
O(nm) Spinrad O(nm) Hertz O(nm)

Maffray
Sritharan

5/11



Bull-free Artemis graphs



Bull-free Artemis graphs

%




Bull-free Artemis graphs

\%




Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

l

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

A

6/11



Bull-free Artemis graphs

G is bull-free Artemis iff it contains no odd hole, no antihole and no bull

Algorithm Cosine (Hertz - 1990)
on bull-free Artemis ?

A

Theorem (Lévéque, Maffray - 2007)
Every hole-free bull-free graph has a vertex that is not the middle of a P;

6/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.

Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) :

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o O
0 0

® ®
0 0

o o

{}

{}

{}

{}

0;

7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

o 0O
0 {8
® 18/

{8} {8}

{} {8} {} 71



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{7}

{8} {8}

{} {8} {} 71



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{7}

{8}

{} {8} {6} 7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{ 5} { 8} { 6} 7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{54} {64} 7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{54} {64} 7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

{5’4} 7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

ALGORITHM LEXBFS (Rose, Tarjan, Lueker 1976)

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := 0);

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.
- Pick any vertex a € A and set o(a) := .

- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:
- Let A be the set of unnumbered vertices whose label is maximum.

- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o —0
0 (8)

® ©
{8} {8}

® ®
0 (8} 0

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o 0
"

® 18/
{8 {8
® ®

{} {8} {}

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o ©

{7.6}

(6 8

{8}

® ®
{6} (8} 0

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o ©

{7.6}

(6 8

{8}

@ 5
(6,5 {5}

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

o O

{75}

(6 8 T
® 5/

{6,5} {5,4}

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

{5,4}

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

7/11



Algorithm LExBFS*

Input: A graph G with n vertices.
Output: An ordering o on the vertices of G.

Initialization: For every vertex a of G, set L(a) := ();

General step: For¢ =n, ..., 1 do:

- Let A be the set of unnumbered vertices whose label is maximum.

- Let U be the other unnumbered vertices.
- Until |U| = 0 do:
- Select a vertex v € U for which L(u) \ L(A) is maximum.
-SetU :=U \ {u}. FANN(u) # 0, thenset A:= AN N(u).
- Pick any vertex a € A and set o(a) := .
- For each unnumbered neighbor v of a, add ¢ to L(v).

LEXBFS O(n +m) — LExXBFS* O(nm)

7/11



Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has

the maximum number of neighbors in A;
1.3. Color u with ¢;
2.c:=c+ 1.

8/11



Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;

1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has
the maximum number of neighbors in A;

1.3. Color u with ¢;
2.c:=c-+ 1.

8/11



Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;

1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has
the maximum number of neighbors in A,

1.3. Color u with ¢:
2. c:=c-+ 1.

8/11



Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for o;
1.3. Color u with ¢;
2.c:=c+ 1.

8/11



Algorithm CosINE*

ALGORITHM CosINE (Hertz 1990)

Input: A graph GG on n vertices and an ordering o on its vertices.
Output: A coloring of the vertices of G.

Initialization: ¢ = 1;

General step: While there exist uncolored vertices do:

1. While there exist uncolored vertices that have no neighbor colored ¢ do:
1.1. Let A be the set of uncolored vertices that have a neighbor colored c;
1.2. Select an uncolored vertex « that has no neighbor colored ¢ and has

the maximum number of neighbors in A, ties being broken by taking
such a vertex that is minimum for o;
1.3. Color u with ¢;
2.c:=c+ 1.

LEXBFS* on G + Cosine*on G — O(nm) coloring algorithm

8/11



Precoloring Extension

9/11



Precoloring Extension

Sudoku

9/11



Precoloring Extension

Sudoku

9/11



Precoloring Extension

Sudoku




Precoloring Extension

Sudoku




Precoloring Extension

Sudoku

9/11



Precoloring Extension

Sudoku

9/11



Precoloring Extension

Sudoku

9/11



10/11



10/11



10/11



10/11



10/11



10/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

11/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

11/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévéque, Maffray - 2007)
PrExt-perfect = co-Meyniel

11/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévéque, Maffray - 2007)
PrExt-perfect = co-Meyniel

11/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévéque, Maffray - 2007)
PrExt-perfect = co-Meyniel

11/11



PrExt-perfection

PrExt-perfect graphs (Hujter, Tuza - 1996)
For every precoloring, the contracted graph is perfect

Which are the PrExt-perfect graphs ?

Theorem (Jost, Lévéque, Maffray - 2007)
PrExt-perfect = co-Meyniel

11/11



	cy {Coloring of the vertices of a graph}
	cy {Perfection}
	cy {Contraction}
	
	cy {Bull-free Artemis graphs}
	cy {Algorithm {sc LexBFS*}}
	cy {Algorithm {sc Cosine*}}
	cy {Precoloring Extension}
	cy {}
	cy {PrExt-perfection}

