Étiquetage de Formules du Premier Ordre dans des graphes de Clique-width non Bornée.

M. M. kanté \quad B. Courcelle \quad C. gavoille

Université Bordeaux 1, LaBRI, CNRS.

Groupe de Travail VAG (LIRMM)
13 Mars 2008

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding alaorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1} \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple (\mathcal{A}, \mathcal{B}) is called laboling scheme (HEDE)
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)(k$ is fixed and n is (always) the number of vertices of graphs).

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in C$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)$ (k is fixed and n is (always) the number of vertices of graphs).

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple ($\mathfrak{A}, \mathcal{B}$) is called laboling scheme (HFRE)
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)$ (k is fixed and n is (always) the number of vertices of graphs).

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)$ (k is fixed and n is (always) the number of vertices of graphs)

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$.
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)$ (k is fixed and n is (always) the number of vertices of graphs)

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$.
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are graphs).

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$.
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are graphs).

Introduction

- Let $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs \mathcal{C}, we want two algorithms \mathcal{A} and \mathcal{B} such that
- For all $G \in \mathcal{C}, \mathcal{A}$, called labeling algorithm, constructs a labeling of the vertices of G,
- \mathcal{B}, called decoding algorithm, checks whether G satisfies $P\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ using $L\left(a_{1}\right), \ldots, L\left(a_{m}\right)$ et $L\left(W_{1}\right), \ldots, L\left(W_{q}\right)$.
- We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called labeling scheme (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most $O\left(\log ^{k}(n)\right)$ (k is fixed and n is (always) the number of vertices of graphs).

Introduction

Lebeling schemes

Two approaches =>
(1) P is fixed and we look for classes that accept labeling scheme with labels of length at most $O(f(n)) \ll O(n)$ (adjacency, distance for instance).
(2) C is fixed and we look for problems expressible in logical languages like first-order (FO) or monadic second-order (MSO) logic such that there exist labeling schemes with labels of size $O(f(n)) \ll O(n)$.

Introduction

Lebeling schemes

Two approaches =>
© P is fixed and we look for classes that accept labeling scheme with labels of length at most $O(f(n)) \ll O(n)$ (adjacency, distance for instance).
(2) C is fixed and we look for problems expressible in logical languages like first-order (FO) or monadic second-order (MSO) logic such that there exist labeling schemes with labels of size $O(f(n)) \ll O(n)$.

- We are interested in this talk with 2. and particularly with graphs with unbounded clique-width, particularly, the locally cwd-decomposable classes.
- Courcelle and Vanicat have already considered MSO queries on graphs of bounded clique-width.
- We are obliged to consider FO queries since the planar graphs are locally cwd-decomposable.

Plan

(9) Clique-Width

(2) Logic
(3) Locally Decomposable Graphs
(4) Main Results

Plan

(9) Clique-Width

(3) Locally Decomposable Graphs
(4) Main Results

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in $\{1, \ldots, k\}$. Each vertex with one color. We represent it by $\left\langle V_{G}, E_{G}, l a b_{G}\right\rangle$.
- $\operatorname{add}_{i j}(G), i \neq j$, is the $\operatorname{graph}\left\langle V_{G}, E^{\prime}, l a b_{G}\right\rangle$ where

This operation adds edges between vertices colored by i and vertices colored by j (a kind of complete bipartite graphs).

- ren $i_{i \rightarrow j}(G)$ is the graph $\left\langle V_{G}, E_{G}, l a b^{\prime}\right\rangle$ where

- i is the graph with single vertex colored by $i \in[k]$.

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in $\{1, \ldots, k\}$. Each vertex with one color. We represent it by $\left\langle V_{G}, E_{G}, l a b_{G}\right\rangle$.
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $\operatorname{adddj}_{j}(G), i \neq j$, is the graph $\left\langle V_{G}, E^{\prime}, \mid a b_{G}\right\rangle$ where

This operation adds edges between vertices colored by i and vertices colored by j (a kind of complete bipartite graphs).
\square - reni ${ }_{i \rightarrow j}(G)$ is the graph $\left\langle V_{G}, E_{G}, l a b^{\prime}\right\rangle$ where

- i is the graph with single vertex colored by $i \in[k]$.

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in $\{1, \ldots, k\}$. Each vertex with one color. We represent it by $\left\langle V_{G}, E_{G}, l a b_{G}\right\rangle$.
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $\operatorname{add}_{i j}(G), i \neq j$, is the graph $\left\langle V_{G}, E^{\prime}, l a b_{G}\right\rangle$ where

$$
E^{\prime}=E_{G} \cup\left\{x y \mid \operatorname{la} b_{G}(x)=i, \operatorname{la} b_{G}(y)=j\right\}
$$

This operation adds edges between vertices colored by i and vertices colored by j (a kind of complete bipartite graphs).

- i is the graph with single vertex colored by $i \in[k]$.

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in $\{1, \ldots, k\}$. Each vertex with one color. We represent it by $\left\langle V_{G}, E_{G}, l a b_{G}\right\rangle$.
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $\operatorname{add}_{i j}(G), i \neq j$, is the graph $\left\langle V_{G}, E^{\prime}, l a b_{G}\right\rangle$ where

$$
E^{\prime}=E_{G} \cup\left\{x y \mid \operatorname{la} b_{G}(x)=i, \operatorname{la} b_{G}(y)=j\right\}
$$

This operation adds edges between vertices colored by i and vertices colored by j (a kind of complete bipartite graphs).

- ren $n_{i \rightarrow j}(G)$ is the graph $\left\langle V_{G}, E_{G}, l a b^{\prime}\right\rangle$ where

$$
\operatorname{lab}^{\prime}(x)=\left\{\begin{array}{ll}
j & \text { if } \operatorname{lab}_{G}(x)=i \\
\operatorname{lab}_{G}(x) & \text { otherwise }
\end{array} .\right.
$$

- i is the graph with single vertex colored by $i \in[k]$.

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in $\{1, \ldots, k\}$. Each vertex with one color. We represent it by $\left\langle V_{G}, E_{G}, l a b_{G}\right\rangle$.
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $\operatorname{add}_{i j}(G), i \neq j$, is the graph $\left\langle V_{G}, E^{\prime}, l a b_{G}\right\rangle$ where

$$
E^{\prime}=E_{G} \cup\left\{x y \mid \operatorname{lab_{G}}(x)=i, \operatorname{lab} b_{G}(y)=j\right\} .
$$

This operation adds edges between vertices colored by i and vertices colored by j (a kind of complete bipartite graphs).

- ren $n_{i \rightarrow j}(G)$ is the graph $\left\langle V_{G}, E_{G}, l a b^{\prime}\right\rangle$ where

$$
\operatorname{lab}^{\prime}(x)=\left\{\begin{array}{ll}
j & \text { if } \operatorname{lab_{G}}(x)=i \\
\operatorname{lab}_{G}(x) & \text { otherwise }
\end{array} .\right.
$$

- i is the graph with single vertex colored by $i \in[k]$.

Clique-Width

Well-Formed Terms

- $F_{k}=\left\{\oplus\right.$, add $_{i j}$, ren $\left.n_{i \rightarrow j} \mid i, j \in[k], i \neq j\right\}$ and $C_{k}=\{\mathbf{i} \mid i \in[k]$.
- A term t defines, up to isomorphism, a graph val(t) (we forget the colors).
- the clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the minimum k such that $G=\operatorname{val}(t), t \in T\left(F_{k}, C_{k}\right)$.
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

Clique-Width

Well-Formed Terms

- $F_{k}=\left\{\oplus\right.$, add $_{i j}$, ren $\left.n_{i \rightarrow j} \mid i, j \in[k], i \neq j\right\}$ and $C_{k}=\{\mathbf{i} \mid i \in[k]$.
- A term t defines, up to isomorphism, a graph val (t) (we forget the colors).
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

Clique-Width

Well-Formed Terms

- $F_{k}=\left\{\oplus\right.$, add $_{i j}$, ren $\left.n_{i \rightarrow j} \mid i, j \in[k], i \neq j\right\}$ and $C_{k}=\{\mathbf{i} \mid i \in[k]$.
- A term t defines, up to isomorphism, a graph val (t) (we forget the colors).
- the clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the minimum k such that $G=\operatorname{val}(t), t \in T\left(F_{k}, C_{k}\right)$.
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

Clique-Width

Well-Formed Terms

- $F_{k}=\left\{\oplus\right.$, add $_{i j}$, ren $\left._{i \rightarrow j} \mid i, j \in[k], i \neq j\right\}$ and $C_{k}=\{\mathbf{i} \mid i \in[k]$.
- A term t defines, up to isomorphism, a graph val (t) (we forget the colors).
- the clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the minimum k such that $G=\operatorname{val}(t), t \in T\left(F_{k}, C_{k}\right)$.
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

Clique-Width

Some Results

- Every MSO query can be tested in graphs of clique-width at most k, k fixed.
- It uses tree-automata.
- The labeling scheme of Courcelle and Vanicat uses tree-automata and the fact that binary terms can be balanced.
- Follow explanations on blackboard.

Plan

(1) Clique-Width

(2) Logic

3 Locally Decomposable Graphs

4 Main Results

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
$-\neg \varphi, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x \cdot \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the FO formula φ with free FO variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
- $\neg \varphi_{1}, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x \cdot \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the FO formula φ with free FO variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
- $\neg \varphi, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x \cdot \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the FO formula φ with free FO variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
- $\neg \varphi, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x . \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the $F \bigcirc$ formula φ with free $F O$ variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
$-\neg \varphi, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x . \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the FO formula φ with free FO variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- G is the structure $\left\langle V_{G}, E_{G}, P_{1 G}, \ldots, P_{k G}\right\rangle$ where $P_{i G}$ is an unary relation.
- $x=y, x \in X, E(x, y)$ and $P(x)$ are FO formulas.
$-\neg \varphi, \varphi_{1} \vee \varphi_{2}$ and $\varphi_{1} \wedge \varphi_{2}$ are FO formulas.
- $\exists x . \varphi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ the FO formula φ with free FO variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and free MSO variables in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.

FO Logic

- We write $G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ to say that G satisfies $\varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$.
- An FO sentence is a FO formula without free variables.

Distance at most t

$\varphi(x, y):=(x=y) \vee \bigvee_{1 \leq s \leq t}\left(\exists x_{1} \cdots . \exists x_{s+1}\left(\bigwedge_{1 \leq i \leq t} E\left(x_{i}, x_{i+1}\right) \wedge x=x_{1} \wedge y=x_{s}\right)\right)$.

Plan

(9) Clique-Width

(3) Locally Decomposable Graphs

4 Main Results

Local Clique-Width

Classes of bounded Local Clique-Width

- The local clique-width of a graph G is the function $I c w^{G}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\operatorname{lcw}^{G}(t):=\max \left\{\operatorname{cwd}\left(G\left[N_{G}^{t}(a)\right]\right) \mid a \in V_{G}\right\} .
$$

- A class C of graphs has bounded local clique-width if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $l c w^{G}(t) \leq f(t)$ for every $G \in \mathcal{C}$ and $t \in \mathbb{N}$.

Examples

Planar Graphs, unit-interval graphs, graphs of bounded degree, classes of bounded local tree-width

Locally cwd-decomposable

cwd-cover

Let $r, I \geq 1$ and $g: \mathbb{N} \rightarrow \mathbb{N}$. An (r, I, g)-cwd cover of a graph G is a family \mathcal{T} of subsets of V_{G} such that:
(1. For every $a \in V_{G}$ there exists a $U \in \mathcal{T}$ such that $N_{G}^{r}(a) \subseteq U$.
(2) For each $U \in \mathcal{T}$ there exist less than I many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.
(3) For each U we have $c w d(G[U]) \leq g(1)$.

Locally cwd-decomposable

cwd-cover

Let $r, I \geq 1$ and $g: \mathbb{N} \rightarrow \mathbb{N}$. An (r, I, g)-cwd cover of a graph G is a family \mathcal{T} of subsets of V_{G} such that:
(1) For every a $\in V_{G}$ there exists a $U \in \mathcal{T}$ such that $N_{G}^{r}(a) \subseteq U$.
(2) For each $U \in \mathcal{T}$ there exist less than I many $V \in \mathcal{T}$ such that $U \cap V \neq 0$.
(3) For each U we have $c w d(G[U]) \leq g(1)$.

Nice cwd-cover

An (r, l, g)-cwd cover is nice if condition 3 is replaced by condition 3 ' below:
3'. For all U_{1}, \ldots, U_{q} and $q \geq 1$ we have

$$
\operatorname{cwd}\left(G\left[U_{1} \cup \cdots \cup U_{q}\right]\right) \leq g(q)
$$

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time algorithm that given a graph $G \in \mathcal{C}$ and $r \geq 1$, computes an (r, l, g)-cwd cover of G for suitable I, g depending on r.

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time algorithm that given a graph $G \in \mathcal{C}$ and $r \geq 1$, computes an (r, l, g)-cwd cover of G for suitable I, g depending on r.

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial time algorithm that given a graph $G \in \mathcal{C}$ and $r \geq 1$, computes a nice (r, I, g)-cwd cover of G for suitable I, g depending on r.

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time algorithm that given a graph $G \in \mathcal{C}$ and $r \geq 1$, computes an (r, l, g)-cwd cover of G for suitable I, g depending on r.

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial time algorithm that given a graph $G \in \mathcal{C}$ and $r \geq 1$, computes a nice (r, I, g)-cwd cover of G for suitable I, g depending on r.

Fact

- Nicely locally cwd-decomposable implies locally cwd-decomposable.
- locally cwd-decomposable implies local bounded clique-width.

Plan

() Clique-Width

(2) Logic

3 Locally Decomposable Graphs

(4) Main Results

Main Results

Main Theorem 1

There exist $O(\log (n))$-labeling schemes for the following queries and graph classes:
(1) FO queries without set arguments on locally cwd-decomposable classes.
(2) FO queries with set arguments on nicely locally cwd-decomposable.

FO Logic

t-local formulas

An FO formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is t-local around $\left(x_{1}, \ldots, x_{m}\right)$ if for every G and, every $a_{1}, \ldots, a_{m} \in V_{G}, W_{1}, \ldots, W_{q} \subseteq V_{G}$ we have

$$
G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)
$$

iff

$$
G[N] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap N, \ldots, W_{q} \cap N\right)
$$

where $N=N_{G}^{t}\left(a_{1}, \ldots, a_{m}\right)=\left\{y \in V_{G} \mid d\left(y, a_{i}\right) \leq t\right.$ for some $\left.i=1, \ldots, m\right\}$.

FO Logic

t-local formulas

An FO formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is t-local around $\left(x_{1}, \ldots, x_{m}\right)$ if for every G and, every $a_{1}, \ldots, a_{m} \in V_{G}, W_{1}, \ldots, W_{q} \subseteq V_{G}$ we have

$$
G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)
$$

iff

$$
G[N] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap N, \ldots, W_{q} \cap N\right)
$$

where $N=N_{G}^{t}\left(a_{1}, \ldots, a_{m}\right)=\left\{y \in V_{G} \mid d\left(y, a_{i}\right) \leq t\right.$ for some $\left.i=1, \ldots, m\right\}$.

Remark

The query $d(x, y) \leq r$ is t-local with $t=r / 2$ if r is even and $(r-1) / 2$ if r is odd. Its negation $d(x, y)>r$ is t-local

FO Logic

(t, s)-local sentences
An FO sentence is basic (t, s)-local if it is equivalent to a sentence of the form

$$
\exists x_{1} \cdots \cdot \exists x_{s} .\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq s} \psi\left(x_{i}\right)\right)
$$

where $\psi(x)$ is t-local around its unique free variable x.

Gaifman Theorem

Theorem 1

Let $\varphi(\bar{x})$ be a FO formula where $\bar{x}=\left(x_{1}, \ldots, x_{m}\right)$. Then φ is logically equivalent to a Boolean combination $B\left(\varphi_{1}\left(\bar{u}_{1}\right), \ldots, \varphi_{p}\left(\bar{u}_{p}\right), \psi_{1}, \ldots, \psi_{h}\right)$ where:

- each $\left(\varphi_{i}\right)_{1 \leq i \leq p}$ is a t-local formula around $\bar{u}_{i} \subseteq \bar{x}$.
- each $\left(\psi_{i}\right)_{1 \leq i \leq h}$ is a basic $\left(t^{\prime}, s\right)$-local sentence.

Moreover B can be computed effectively and, t, t^{\prime} and s can be bounded in terms of m and the quantifier-rank of φ.

Verification of basic (t, s)-local sentences

Lemma 1

Let G be in a locally cwd-decomposable class. Every basic (t, s)-local sentence without free set arguments can be decided in polynomial time.

Proof. Let φ be a sentence :

$$
\exists x_{1} \cdots \cdot \exists x_{s} \cdot\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq s} \psi\left(x_{i}\right)\right)
$$

Proof(1)

Proof.

(1) Let \mathcal{T} be an (t, l, g)-cwd cover of G.
(2) For each $U \in \mathcal{T}$ let $P_{U}=\left\{a \mid N_{G}^{t}(a) \subseteq U, G\left[N_{G}^{t}(a)\right] \models \psi(a)\right\}$.
(3) Let $P=\bigcup_{U \in \mathcal{T}} P_{U}$.
(a) If there exists a_{1}, \ldots, a_{s} in P such that $d\left(a_{i}, a_{j}\right)>2 t, 1 \leq i<j \leq s$ then return True.
(0) Otherwise return False.

Proof(1)

Correctness

- Line 1 can be done in polynomial time (G locally cwd-decomposable)
- For each U we can compute in polynomial time the set $K^{t}(U):=\left\{a \mid N_{G}^{t}(a) \subseteq U\right\}$.
- By Courcelle and Oum, for each $a \in K^{t}(U)$ we can test if $U \models \Psi(a)$.
- Then Line 2 can be computed in polynomial time.
- Line 4. can be done in polynomial time in the size $|G|=O\left(n^{2}\right)$, of G (next slide).

Proof(2)

Input: G, P.
Output: Decide if there exists a_{1}, \ldots, a_{s} in P such that $d\left(a_{i}, a_{j}\right)>t$.

Algorithm

- Choose the $p \leq s$ vertices such that $P \subseteq N_{G}^{t}\left(a_{1}, \ldots, a_{p}\right)$.
- If $p=m$ return YES.
- If $p=0$, return NO.
- Otherwise computes $H=G\left[N_{G}^{2 t}\left(a_{1}, \ldots, a_{p}\right)\right]$.
- Let

$$
\theta:=\exists x_{1} \cdots \cdot \exists x_{s} .\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq s} x_{i} \in P\right) .
$$

- If $G[H] \models \theta$ then return YES.
- Otherwise return NO.

t-local formulas (stronger statement)

Lemma 2

There exists an $O(\log (n))$-labeling scheme for t-local formulas with set arguments on locally cwd-decomposable classes.

Proof.

- We will use a decomposition of t-local formulas by Frick.
- We recall that Gaifman Theorem extends to FO formulas with set arguments.
- It is not natural but is powerful enough for our purposes.

t-distance type

Definition 1

Let $m, t \geq 1$. The t-distance type of an m-tuple \bar{a} is the undirected graph $\varepsilon=\left([m], e d g_{\varepsilon}\right)$ where $\operatorname{edg} g_{\varepsilon}(i, j)$ iff $d\left(a_{i}, a_{j}\right) \leq 2 t+1$.

Satisfaction

The satisfaction of a t-distance type by an m-tuple can be expressed by a t-local formula:

$$
\rho_{t, \varepsilon}\left(x_{1}, \ldots, x_{m}\right):=\bigwedge_{(i, j) \in e d g_{\varepsilon}} d\left(x_{i}, x_{j}\right) \leq 2 t+1 \wedge \bigwedge_{(i, j) \notin e d g_{\varepsilon}} d\left(x_{i}, x_{j}\right)>2 t+1
$$

Decomposition of t-local formulas

Lemma 3

Let $\varphi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ be a t-local formula around $\bar{x}=\left(x_{1}, \ldots, x_{m}\right), m \geq 1$. For each t-distance type ε with $\varepsilon_{1}, \ldots, \varepsilon_{p}$ as connected components, one can compute a Boolean combination $F^{t, \varepsilon}\left(\varphi_{1,1}, \ldots, \varphi_{1, j 1}, \ldots, \varphi_{p, 1}, \ldots, \varphi_{p, j_{p}}\right)$ of formulas $\varphi_{i, j}$ such that:

- The FO free variables of each $\varphi_{i, j}$ are among $\bar{x} \mid \varepsilon_{i}\left(\bar{x} \mid \varepsilon_{i}\right.$ is the restriction of \bar{x} to ε_{i}) and the set arguments remains in $\left\{Y_{1}, \ldots, Y_{q}\right\}$.
- $\varphi_{i, j}$ is t-local around $\bar{x} \mid \varepsilon_{i}$.
- For each m-tuple \bar{a}, each q-tuple of sets W_{1}, \ldots, W_{q} :

$$
G \models \rho_{t, \varepsilon}(\bar{a}) \wedge \varphi\left(\bar{a}, W_{1}, \ldots, W_{q}\right)
$$

iff

$$
G \models \rho_{t, \varepsilon}(\bar{a}) \wedge F^{t, \varepsilon}\left(\ldots, \varphi_{i, j}\left(\bar{a} \mid \varepsilon_{i}, W_{1}, \ldots, W_{q}\right), \ldots\right) .
$$

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $J_{i, j, U}^{\ell}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\varepsilon}\left(a_{i}\right)$ and $J_{i, j, U}^{e}\left(W_{i} \cap U\right)$.
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, U}^{\varepsilon}$ in order to get a label J_{ε}.
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let

$$
J(x)=\left\{\ulcorner x\urcorner, K(x), J_{\varepsilon^{1}}, \ldots, J_{\varepsilon^{k^{k}}}\right\} .
$$

- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $J_{i, j, U}^{\varepsilon}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, u}^{\varepsilon}\left(a_{i}\right)$ and
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, U}^{\varepsilon}$ in order to get a label J_{ε}.
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let

- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\varepsilon}\left(a_{i}\right)$ and
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, U}^{\varepsilon}$ in order to get a label J_{ε}.
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let
- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $J_{i, j, U}^{\varepsilon}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\varepsilon}\left(a_{i}\right)$ and $\mathcal{J i}_{i, j, U}^{\mathcal{E}}\left(W_{i} \cap U\right)$.
- We do the same for all $\varphi_{i,}$,
- For each x we append all these labels $J_{i, j, u}^{\varepsilon}$ in order to get a label J_{ε}
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let
- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $J_{i, j, U}^{\mathfrak{E}}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\varepsilon}\left(a_{i}\right)$ and $\mathcal{J}_{i, j, U}^{\varepsilon}\left(W_{i} \cap U\right)$.
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, u}^{\varepsilon}$ in order to get a label J_{ε}
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let
- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $J_{i, j, U}^{\mathfrak{E}}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\varepsilon}\left(a_{i}\right)$ and $J_{i, j, U}^{\varepsilon}\left(W_{i} \cap U\right)$.
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, U}^{\varepsilon}$ in order to get a label J_{ε}.
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let
- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2

- Let \mathcal{T} be an (r, l, g)-cwd cover of G where $r=m(2 t+1)$.
- Each $x \in V_{G}$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label $K(x)$ of length $O(\log (n))$ and decide if $d(x, y) \leq 2 t+1$ in $O(\log (n))$-time by using $K(x)$ and $K(y)$.
- For each $U \in \mathcal{T}$ and each $\varphi_{i, j}$, we can label each vertex $x \in U$ with a label $\mathcal{J}_{i, j, U}^{\mathfrak{\varepsilon}}(x)$ and decide $\varphi_{i, j}\left(a_{1}, \ldots, a_{s}, W_{1}, \ldots, W_{q}\right)$ by using only $J_{i, j, U}^{\mathfrak{\varepsilon}}\left(a_{i}\right)$ and $J_{i, j, U}^{\varepsilon}\left(W_{i} \cap U\right)$.
- We do the same for all $\varphi_{i, j}$.
- For each x we append all these labels $J_{i, j, U}^{\varepsilon}$ in order to get a label J_{ε}.
- There exists at most $k^{\prime}=2^{k(k-1) / 2} t$-distance types, we let

$$
J(x)=\left\{\ulcorner x\urcorner, K(x), J_{\varepsilon^{1}}, \ldots, J_{\varepsilon^{k^{\prime}}}\right\} .
$$

- It has length $O(\log (n))$ (Huge Constants).

Proof of Lemma 2(end)

- Let $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.
- By using $K\left(a_{i}\right)$ we can construct the t-distance type ε satisfied by a_{1}, \ldots, a_{m}. We can then recover $J_{\varepsilon}\left(a_{i}\right)$.
- We let $\varepsilon_{1}, \ldots, \varepsilon_{p}$ be the connected components of ε.
- For each $\bar{a} \mid \varepsilon_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \varepsilon_{i}\right) \subseteq U$. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

Proof of Lemma 2(end)

- Let $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.
- By using $K\left(a_{i}\right)$ we can construct the t-distance type ε satisfied by a_{1}, \ldots, a_{m}. We can then recover $J_{\varepsilon}\left(a_{i}\right)$.
- We let $\varepsilon_{1}, \ldots, \varepsilon_{p}$ be the connected components of ε.
- For each $\bar{a} \mid \varepsilon_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \varepsilon_{i}\right) \subseteq U$. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3 .

Proof of Lemma 2(end)

- Let $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.
- By using $K\left(a_{i}\right)$ we can construct the t-distance type ε satisfied by a_{1}, \ldots, a_{m}. We can then recover $J_{\varepsilon}\left(a_{i}\right)$.
- We let $\varepsilon_{1}, \ldots, \varepsilon_{p}$ be the connected components of ε.
- For each $\bar{a} \mid \varepsilon_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \varepsilon_{i}\right) \subseteq U$. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

Proof of Lemma 2(end)

- Let $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.
- By using $K\left(a_{i}\right)$ we can construct the t-distance type ε satisfied by a_{1}, \ldots, a_{m}. We can then recover $J_{\varepsilon}\left(a_{i}\right)$.
- We let $\varepsilon_{1}, \ldots, \varepsilon_{p}$ be the connected components of ε.
- For each $\bar{a} \mid \varepsilon_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \varepsilon_{i}\right) \subseteq U$. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

Proof of Lemma 2(end)

- Let $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.
- By using $K\left(a_{i}\right)$ we can construct the t-distance type ε satisfied by a_{1}, \ldots, a_{m}. We can then recover $J_{\varepsilon}\left(a_{i}\right)$.
- We let $\varepsilon_{1}, \ldots, \varepsilon_{p}$ be the connected components of ε.
- For each $\bar{a} \mid \varepsilon_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \varepsilon_{i}\right) \subseteq U$. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3 .

Perspectives

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic?

Perspectives

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic ?

Perspectives

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic?

Perspectives

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic?
- Thank you!

