Etiquetage de Formules du Premier Ordre dans des
graphes de Clique-width non Bornée.

M. M. KANTE B. CoURCELLE C. GAVOILLE

Université Bordeaux 1, LaBRI, CNRS.

Groupe de Travail VAG (LIRMM)
13 Mars 2008

(LaBRI, Universite Bordeaux 1, CNRS) 1/30

Introduction

@ Let P(xa,...,xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)

(LaBRI, Universite Bordeaux 1, CNRS) 2130

Introduction

@ Let P(xa,...,xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)
@ For a class of graphs ¢, we want two algorithms 4 and B such that

(LaBRI, Universite Bordeaux 1, CNRS) 2130

Introduction

@ Let P(xa,...,xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)
@ For a class of graphs ¢, we want two algorithms 4 and B such that
» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,

(LaBRI, Universite Bordeaux 1, CNRS) 2130

Introduction

@ Let P(xa,...,xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)
@ For a class of graphs ¢, we want two algorithms 4 and B such that

» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,
» B, called decoding algorithm, checks whether G satisfies P (a1, ...,am,W1,...,Wq)
using L(a1),...,L(am) et L(W1),...,L(Wq).

(LaBRI, Universite Bordeaux 1, CNRS) 2130

Introduction

@ Let P(xa,...,xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)
@ For a class of graphs ¢, we want two algorithms 4 and B such that
» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,
» B, called decoding algorithm, checks whether G satisfies P (a1, ...,am,W1,...,Wq)
using L(a1),...,L(am) et L(W1),...,L(Wq).
» We require B independent from G, i.e., has to be the same for all G € (.

(LaBRI, Universite Bordeaux 1, CNRS) 2/30

Introduction

@ Let P(xq,...,Xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)
@ For a class of graphs ¢, we want two algorithms 4 and B such that

» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,

» B, called decoding algorithm, checks whether G satisfies P (a1, ...,am,W1,...,Wq)
using L(a1),...,L(am) et L(W1),...,L(Wq).

» We require B independent from G, i.e., has to be the same for all G € (.

@ The couple (4, B) is called labeling scheme (HERE).

(LaBRI, Universite Bordeaux 1, CNRS) 2/30

Introduction

@ Let P(xq,...,Xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)

@ For a class of graphs ¢, we want two algorithms 4 and B such that
» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,
» B, called decoding algorithm, checks whether G satisfies P (a1, ...,am,W1,...,Wq)

using L(a1),...,L(am) et L(W1),...,L(Wq).

» We require B independent from G, i.e., has to be the same for all G € (.

@ The couple (4, B) is called labeling scheme (HERE).

@ We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

(LaBRI, Universite Bordeaux 1, CNRS) 2/30

Introduction

@ Let P(xq,...,Xm,Y1,...,Yq) be a graph property (adjacency, distance at
most k, connectivity, ...)

@ For a class of graphs ¢, we want two algorithms 4 and B such that
» For all G € C, 4, called labeling algorithm, constructs a labeling of the vertices of G,
» B, called decoding algorithm, checks whether G satisfies P (a1, ...,am,W1,...,Wq)

using L(a1),...,L(am) et L(W1),...,L(Wq).

» We require B independent from G, i.e., has to be the same for all G € (.

@ The couple (4, B) is called labeling scheme (HERE).

@ We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

@ We are interested in labeling schemes where the length of the labels are
at most O(log*(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) 2/30

Introduction

Lebeling schemes
Two approaches =>

@ P is fixed and we look for classes that accept labeling scheme with labels
of length at most O(f(n)) < O(n) (adjacency, distance for instance).

@ (s fixed and we look for problems expressible in logical languages like
first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f(n)) < O(n).

(LaBRI, Universite Bordeaux 1, CNRS) 3/30

Introduction

Lebeling schemes
Two approaches =>

@ P is fixed and we look for classes that accept labeling scheme with labels
of length at most O(f(n)) < O(n) (adjacency, distance for instance).

@ (s fixed and we look for problems expressible in logical languages like
first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f(n)) < O(n).

@ We are interested in this talk with 2. and particularly with graphs with
unbounded clique-width, particularly, the locally cwd-decomposable classes.

@ Courcelle and Vanicat have already considered MSO queries on graphs
of bounded clique-width.

@ We are obliged to consider FO queries since the planar graphs are locally
cwd-decomposable.

(LaBRI, Universite Bordeaux 1, CNRS) 3/30

Plan

@ clique-width

a Logic

a Locally Decomposable Graphs

° Main Results

(LaBRI, Universite Bordeaux 1, CNRS)

Plan

@ clique-width

(LaBRI, Universite Bordeaux 1, CNRS)

Cligue-Width

@ A k-graph is a graph where the vertices are colored with colors in
{1,...,k}. Each vertex with one color. We represent it by (Vg,Eg,labg).

(LaBRI, Universite Bordeaux 1, CNRS) 6/30

Cligue-Width

@ A k-graph is a graph where the vertices are colored with colors in
{1,...,k}. Each vertex with one color. We represent it by (Vg,Eg,labg).

@ G @H is the disjoint union of G and H (notice that G & G # G).

(LaBRI, Universite Bordeaux 1, CNRS) 6/30

Cligue-Width

@ A k-graph is a graph where the vertices are colored with colors in
{1,...,k}. Each vertex with one color. We represent it by (Vg,Eg,labg).

@ G @H is the disjoint union of G and H (notice that G & G # G).
® add;(G), i #], is the graph (Vg,E’,labg) where

E'=EcU{xy | labg(x) =i, labg(y) =j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

(LaBRI, Universite Bordeaux 1, CNRS) 6/30

Cligue-Width

@ A k-graph is a graph where the vertices are colored with colors in
{1,...,k}. Each vertex with one color. We represent it by (Vg,Eg,labg).

@ G @H is the disjoint union of G and H (notice that G & G # G).
® add;(G), i #], is the graph (Vg,E’,labg) where
E'=EcU{xy | labg(x) =i, labg(y) =j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

@ ren;_j(G) is the graph (Vg,Eg,lab’) where

b’ () = {j i laba () =i

labg(x) otherwise

(LaBRI, Universite Bordeaux 1, CNRS) 6/30

Cligue-Width

@ A k-graph is a graph where the vertices are colored with colors in
{1,...,k}. Each vertex with one color. We represent it by (Vg,Eg,labg).

@ G @H is the disjoint union of G and H (notice that G & G # G).
® add;(G), i #], is the graph (Vg,E’,labg) where

E'=EcU{xy | labg(x) =i, labg(y) =j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

@ ren;_j(G) is the graph (Vg,Eg,lab’) where

b’ () = {j i laba () =i

labg(x) otherwise
@ i is the graph with single vertex colored by i € [k].

(LaBRI, Universite Bordeaux 1, CNRS) 6/30

Cligue-Width

Well-Formed Terms

@ Fy :{@,addij,reni_,j li,jek],i#jtand Cx ={i|i€ [K].

o> <& = = Do
(LaBRI, Universite Bordeaux 1, CNRS)

Cligue-Width

Well-Formed Terms
@ F = {@,addij,reni_,j | i,j € [k],i 75]} and Cy = {i | ie [k]
@ Atermt defines, up to isomorphism, a graph val(t) (we forget the colors).

(LaBRI, Universite Bordeaux 1, CNRS) 7130

Cligue-Width

Well-Formed Terms
@ F = {@,addij,reni_,j | i,j € [k],i 75]} and Cy = {i | ie [k]
@ Atermt defines, up to isomorphism, a graph val(t) (we forget the colors).

@ the clique-width of a graph G, denoted by cwd (G), is the minimum k such
that G = val(t), te T(Fk,Ck).

(LaBRI, Universite Bordeaux 1, CNRS) 7130

Cligue-Width

Well-Formed Terms
Q@ F = {@,addij,reni_,j li,jek],i#jtand Cx ={i|i€ [K].
@ Atermt defines, up to isomorphism, a graph val(t) (we forget the colors).
@ the clique-width of a graph G, denoted by cwd (G), is the minimum k such
that G =val(t), t € T (Fk,Cxk).
@ bounded tree-width implies bounded clique-width but the converse is
false (cligues have unbounded tree-width but clique-width 2)

@ Examples => blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) 7130

Cligue-Width

Some Results

@ Every MSO query can be tested in graphs of clique-width at most k, k
fixed.

@ It uses tree-automata.

@ The labeling scheme of Courcelle and Vanicat uses tree-automata and
the fact that binary terms can be balanced.

@ Follow explanations on blackboard.

(LaBRI, Universite Bordeaux 1, CNRS)

8130

Plan

a Logic

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.
@ x =y, x €X, E(x,y) and P(x) are FO formulas.

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.
@ x =y, x €X, E(x,y) and P(x) are FO formulas.
@ b, ¢, VvV, and ¢1 AP, are FO formulas.

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.
@ x =y, x €X, E(x,y) and P(x) are FO formulas.

@ b, ¢, VvV, and ¢1 AP, are FO formulas.

@ Ix.¢(x) is a FO formula (x is in the scope of a quantifier).

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.
@ x =y, x €X, E(x,y) and P(x) are FO formulas.

@ b, ¢, VvV, and ¢1 AP, are FO formulas.

@ Ix.¢(x) is a FO formula (x is in the scope of a quantifier).

@ A free variable in a formula is a variable which is not inside the scope of a
quantifier.

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

@ G is the structure (Vg,Eg,P1g,-.-,Pxs) Where Pig is an unary relation.
@ x =y, x €X, E(x,y) and P(x) are FO formulas.

@ b, ¢, VvV, and ¢1 AP, are FO formulas.

@ Ix.¢(x) is a FO formula (x is in the scope of a quantifier).

@ A free variable in a formula is a variable which is not inside the scope of a
quantifier.

@ We denote by ¢(x1,...,%Xm,Y1,...,Yq) the FO formula ¢ with free FO
variables in {xi,...,xn} and free MSO variables in {Y1,...,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) 10/30

FO Logic

@ We write G = ¢(a1,...,am,W1,...,Wq) to say that G satisfies
¢(a1, . ,am,Wl, . ,Wq).
@ An FO sentence is a FO formula without free variables.

Distance at most t

d(x,y)i=(x=y) V \/ (Elxl.--- .Elxs+1< /\ E(Xi,Xit1) A X =X1 A y:xs>>

1<s<t 1<i<t

(LaBRI, Universite Bordeaux 1, CNRS) 11/30

Locally Decomposable Graphs

a Locally Decomposable Graphs

(LaBRI, Universite Bordeaux 1, CNRS)

Local Clique-Width

Classes of bounded Local Clique-Width

@ The local clique-width of a graph G is the function lew® : N — N defined by
lew®(t) := max{cwd (G[N§ (a)]) | a € Vg }.

@ A class C of graphs has bounded local clique-width if there is a function
f : N — N such that lcw® (t) <f (t) for every G € Cand t € N.

Examples

Planar Graphs, unit-interval graphs, graphs of bounded degree, classes of
bounded local tree-width

(LaBRI, Universite Bordeaux 1, CNRS) 13/30

Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover

Letr, >1andg:N— N. An (r,l,g)-cwd cover of a graph G is a family 7 of
subsets of Vg such that:

@ For every a € Vg there exists a U € 7 such that N (a) C U.

@ For each U € T there exist less than | many V € 7 such that U NV # 0.
@ For each U we have cwd (G[U]) < g(1).

(LaBRI, Universite Bordeaux 1, CNRS) 14/30

Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover

Letr, >1andg:N— N. An (r,l,g)-cwd cover of a graph G is a family 7 of
subsets of Vg such that:

@ For every a € Vg there exists a U € 7 such that N (a) C U.
@ For each U € T there exist less than | many V € 7 such that U NV # 0.
@ For each U we have cwd (G[U]) < g(1).

Nice cwd-cover

An (r,1,g)-cwd cover is nice if condition 3 is replaced by condition 3’ below:
3. Forall Uy,...,Uq and g > 1 we have

cwd (G[U1U---UUq]) < g(q).

(LaBRI, Universite Bordeaux 1, CNRS) 14/30

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G € C and r > 1, computes an (r,l,g)-cwd cover
of G for suitable I,g depending on'r.

(LaBRI, Universite Bordeaux 1, CNRS) 15/30

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G € C and r > 1, computes an (r,l,g)-cwd cover
of G for suitable I,g depending on'r.

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G € C and r > 1, computes a hice
(r,1,9)-cwd cover of G for suitable I,g depending onr.

(LaBRI, Universite Bordeaux 1, CNRS) 15/30

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G € ¢ and r > 1, computes an (r,l,g)-cwd cover
of G for suitable I,g depending on'r.

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G € C and r > 1, computes a hice
(r,1,9)-cwd cover of G for suitable I,g depending onr.

Fact

@ Nicely locally cwd-decomposable implies locally cwd-decomposable.
@ locally cwd-decomposable implies local bounded clique-width.

(LaBRI, Universite Bordeaux 1, CNRS) 15/30

Plan

° Main Results

Main Results

Main Theorem 1

There exist O (log (n))-labeling schemes for the following queries and graph
classes:

© FO queries without set arguments on locally cwd-decomposable classes.
@ FO queries with set arguments on nicely locally cwd-decomposable.

(LaBRI, Universite Bordeaux 1, CNRS) 17/30

FO Logic

t-local formulas

An FO formula ¢ (Xq,...,Xm, Y1,...,Yq) is t-local around (x4, ...,xm) if for every G
and, every aj,...,am € Vg, W,...,Wq C Vg we have

G ’: ¢(a1,...,am,W1,...,Wq)

G[N] ': ¢(a1,...,am,W10N,...,WqﬂN)

where N = N§ (ay,...,am) ={y € Vg | d (y,a;) <t forsomei =1,...,m}.

(LaBRI, Universite Bordeaux 1, CNRS) 18/30

FO Logic

t-local formulas

An FO formula ¢ (Xq,...,Xm, Y1,...,Yq) is t-local around (x4, ...,xm) if for every G
and, every aj,...,am € Vg, W,...,Wq C Vg we have

G ’: ¢(a1,...,am,W1,...,Wq)

G[N] ': ¢(a1,...,am,W1ﬂN,...,WqﬂN)

where N = N§ (ay,...,am) ={y € Vg | d (y,a;) <t forsomei =1,...,m}.

Remark

The query d (x,y) <r is t-local witht =r /2 if r is even and (r — 1) /2 if r is odd.
Its negation d (x,y) > r is t-local

(LaBRI, Universite Bordeaux 1, CNRS) 18/30

FO Logic

(t,s)-local sentences
An FO sentence is basic (t,s)-local if it is equivalent to a sentence of the form

Elxl.---.EIxs.< N\ dax)>2t A A l]J(Xi)>

1<i<j<s 1<i<s

where W (x) is t-local around its unique free variable x.

(LaBRI, Universite Bordeaux 1, CNRS) 19/30

Main Results

Gaifman Theorem

Theorem 1
Let ¢(x) be a FO formula where x = (x1,...,xm). Then ¢ is logically equivalent
to a Boolean combination B (¢1(u1),...,¢p(up),Y1,...,Pn) Where:

@ each (¢i)1<i<p is a t-local formula around u; C x.

@ each (Y)1<i<n is a basic (t’,s)-local sentence.

Moreover B can be computed effectively and, t,t’ and s can be bounded in
terms of m and the quantifier-rank of ¢.

(LaBRI, Universite Bordeaux 1, CNRS) 20/30

Main Results

Verification of basic (t,s)-local sentences

Lemma 1

Let G be in a locally cwd-decomposable class. Every basic (t,s)-local
sentence without free set arguments can be decided in polynomial time.

Proof. Let ¢ be a sentence :

Elxl.---.EIxs.< N\ dxix)>2t AN l]J(Xi)>

1<i<j<s 1<i<s

(LaBRI, Universite Bordeaux 1, CNRS) 21/30

Proof(1)

Proof.

@ Let 7 be an (t,l,g)-cwd cover of G.

Q@ ForeachU € T let Py ={a| N§(a) CU,G[N;(a)] E W(a)}.
Q LetP =Uycr Pu.

@ Ifthere exists ay, ..., as in P such that d(aj, ;) > 2t, 1 <i <j <sthen
return TRUE.

@ Otherwise return FALSE.

(LaBRI, Universite Bordeaux 1, CNRS) 22/30

Proof(1)

Correctness
@ Line 1 can be done in polynomial time (G locally cwd-decomposable)
@ For each U we can compute in polynomial time the set
K'(U) :={a|Ng(a) CU}.
@ By Courcelle and Oum, for each a € K'(U) we can test if U = yi(a).
@ Then Line 2 can be computed in polynomial time.

@ Line 4. can be done in polynomial time in the size |G| = O(n?), of G (next
slide).

(LaBRI, Universite Bordeaux 1, CNRS) 23/30

Proof(2)

Input: G, P.
Output: Decide if there exists ay,...,as in P such that d(a;,aj) > t.

Algorithm
@ Choose the p < s vertices such that P C N§(ay, ..., ap).
@ If p=m return YES.
@ If p=0, return NO.
@ Otherwise computes H = G[NZ'(ay, ..., ap)].
o Let

0:=Ixq. - .Ixs. (/\ d (xi,x) > 2t A /\ X € P) .
1<i<j<s 1<i<s

@ If G[H] [6 then return YES.
@ Otherwise return NO.

(LaBRI, Universite Bordeaux 1, CNRS) 24/30

t-local formulas (stronger statement)

Lemma 2

There exists an O (log (n))-labeling scheme for t-local formulas with set
arguments on locally cwd-decomposable classes.

Proof.
@ We will use a decomposition of t-local formulas by Frick.
@ We recall that Gaifman Theorem extends to FO formulas with set
arguments.
@ Itis not natural but is powerful enough for our purposes.

(LaBRI, Universite Bordeaux 1, CNRS)

25/30

t-distance type

Definition 1

Let m,t > 1. The t-distance type of an m-tuple a is the undirected graph
€ = ([m],edge) where edge(i,j) iff d(aj,a)) <2t + 1.

Satisfaction

The satisfaction of a t-distance type by an m-tuple can be expressed by a
t-local formula:

Pre(xe,-- - xm) = A dlxix)<2t+1 A A d(xi,x)>2t+1.
(i,j)€edge (i,j)¢edge

(LaBRI, Universite Bordeaux 1, CNRS) 26/30

Main Results

Decomposition of t-local formulas

Lemma 3

Let ¢(x,Y1,...,Yq) be at-local formula around x = (x4,...,Xm), m > 1. For
each t-distance type € with &,,...,&, as connected components, one can
compute a Boolean combination F“¥(¢11,...,01j,,...,9p.1,-. ., dpjy)

of formulas ¢;; such that:

@ The FO free variables of each ¢;; are among x | & (x | & is the restriction
of x to &) and the set arguments remains in {Y1,...,Yq}.

@ ¢, is t-local around x | &;.
@ For each m-tuple a, each g-tuple of sets Wi,...,Wq:

GE pre(a) A d(a,Wy,...,Wq)
iff

GE pie(@) A FYE(..,0i(a] &,W1,...,Wg),...).

(LaBRI, Universite Bordeaux 1, CNRS) 27130

Proof of Lemma 2

@ Let 7 be an (r,1,g)-cwd cover of G where r =m(2t +1).

(LaBRI, Universite Bordeaux 1, CNRS)

Proof of Lemma 2
@ Let 7 bean (r,l,

g)-cwd cover of G where r =m(2t +1).
@ Eachx e VgisinlessthanI manyV € 7.

o> <& = = Do
(LaBRI, Universite Bordeaux 1, CNRS)

Proof of Lemma 2

@ Let 7 be an (r,l,g)-cwd cover of G where r = m(2t + 1).
@ Eachx e VgisinlessthanI manyV € 7.

@ By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) <2t+1 in O(log(n))-time by using
K(x) and K (y).

(LaBRI, Universite Bordeaux 1, CNRS) 28/30

Proof of Lemma 2

@ Let 7 be an (r,l,g)-cwd cover of G where r = m(2t 4+ 1).

® Eachx e Vg isinlessthanlI many Vv € 7.

@ By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) <2t+1 in O(log(n))-time by using
K(x) and K (y).

@ For each U € 7 and each ¢;j, we can label each vertex x € U with a label
J5u(x) and decide ¢ j(as,...,as,Ws,...,Wq) by using only Jf; , (a) and
‘]is,j,U (Winu).

(LaBRI, Universite Bordeaux 1, CNRS) 28/30

Proof of Lemma 2

@ Let 7 be an (r,l,g)-cwd cover of G where r = m(2t + 1).
® Eachx e Vg isinlessthanlI many Vv € 7.

@ By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) <2t+1 in O(log(n))-time by using
K(x) and K (y).

@ For each U € 7 and each ¢;j, we can label each vertex x € U with a label
J5u(x) and decide ¢ j(as,...,as,Ws,...,Wq) by using only Jf; , (a) and
‘]ie,j,U (Winu).

@ We do the same for all ¢;;.

(LaBRI, Universite Bordeaux 1, CNRS) 28/30

Proof of Lemma 2

@ Let 7 be an (r,l,g)-cwd cover of G where r = m(2t 4+ 1).

® Eachx e Vg isinlessthanlI many Vv € 7.

@ By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) <2t+1 in O(log(n))-time by using
K(x) and K (y).

@ For each U € 7 and each ¢;j, we can label each vertex x € U with a label
J5u(x) and decide ¢ j(as,...,as,Ws,...,Wq) by using only Jf; , (a) and
‘]IEJ u (Wl N U)

@ We do the same for all ¢;;.

@ For each x we append all these labels JIJ y in order to get a label Je.

(LaBRI, Universite Bordeaux 1, CNRS) 28/30

Proof of Lemma 2

@ Let 7 be an (r,l,g)-cwd cover of G where r = m(2t + 1).
® Eachx e Vg isinlessthanlI many Vv € 7.

@ By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) <2t+1 in O(log(n))-time by using
K(x) and K (y).

@ For each U € 7 and each ¢;j, we can label each vertex x € U with a label
J5u(x) and decide ¢ j(as,...,as,Ws,...,Wq) by using only Jf; , (a) and
‘]is,j,u (Winu).

@ We do the same for all ¢;;.

@ For each x we append all these labels JfLU in order to get a label J;.

@ There exists at most k’ = 2k(k-1)/2 t_distance types, we let
I(x) = {"x,K(x),Je1,..., e }-

@ It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) 28/30

Proof of Lemma 2(end)

@ LetJ(a1),...,d(am) and J(Wy),...,3(Wq).

(LaBRI, Universite Bordeaux 1, CNRS)

Proof of Lemma 2(end)

@ LetJ(a1),...,d(am) and J(Wy),...,3(Wq).

@ By using K (a;) we can construct the t-distance type € satisfied by
ai,...,am. We can then recover Jg(a).

(LaBRI, Universite Bordeaux 1, CNRS)

29/30

Proof of Lemma 2(end)

@ LetJ(a1),...,d(am) and J(Wy),...,3(Wq).

@ By using K (a;) we can construct the t-distance type € satisfied by
ai,...,am. We can then recover Jg(a).

@ We let g4,...,€, be the connected components of €.

(LaBRI, Universite Bordeaux 1, CNRS) 29/30

Proof of Lemma 2(end)

9 LetJ(a1),...,d(am) and J(W1),...,I(Wy).

@ By using K (a;) we can construct the t-distance type € satisfied by
ai,...,am. We can then recover Jg(a).

@ We let g4,...,€, be the connected components of €.

@ For each a| g there exists at least one U € 7 such that N§(a | &) C U.
(There are less than 1.)

(LaBRI, Universite Bordeaux 1, CNRS) 29/30

Proof of Lemma 2(end)

9 LetJ(a1),...,d(am) and J(W1),...,I(Wy).

@ By using K (a;) we can construct the t-distance type € satisfied by
ai,...,am. We can then recover Jg(a).

@ We let g4,...,€, be the connected components of €.

@ For each a| g there exists at least one U € 7 such that N§(a | &) C U.
(There are less than 1.)

@ We can now decide whether G satisfies ¢ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) 29/30

Conclusion and Perspectives

Perspectives

@ The tightness of the labels.

(LaBRI, Universite Bordeaux 1, CNRS)

Perspectives

@ The tightness of the labels.
@ Can we extend the results to local bounded clique-width classes ?

(LaBRI, Universite Bordeaux 1, CNRS) 30/30

Perspectives

@ The tightness of the labels.
@ Can we extend the results to local bounded clique-width classes ?
@ Can we extend the logic ?

(LaBRI, Universite Bordeaux 1, CNRS)

30/30

Perspectives

@ The tightness of the labels.
@ Can we extend the results to local bounded clique-width classes ?
@ Can we extend the logic ?

» Thank you !

(LaBRI, Universite Bordeaux 1, CNRS) 30/30

	Introduction
	Clique-Width
	Logic
	Locally Decomposable Graphs
	Main Results
	Conclusion and Perspectives

