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Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).
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Introduction

Lebeling schemes

Two approaches =>
1 P is fixed and we look for classes that accept labeling scheme with labels

of length at most O(f (n)) ≪ O(n) (adjacency, distance for instance).
2 C is fixed and we look for problems expressible in logical languages like

first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f (n)) ≪ O(n).
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1 P is fixed and we look for classes that accept labeling scheme with labels

of length at most O(f (n)) ≪ O(n) (adjacency, distance for instance).
2 C is fixed and we look for problems expressible in logical languages like

first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f (n)) ≪ O(n).

We are interested in this talk with 2. and particularly with graphs with
unbounded clique-width, particularly, the locally cwd-decomposable classes.

Courcelle and Vanicat have already considered MSO queries on graphs
of bounded clique-width.

We are obliged to consider FO queries since the planar graphs are locally
cwd-decomposable.
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Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k ].
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Clique-Width

Clique-Width

Well-Formed Terms
Fk = {⊕,addij , reni→j | i, j ∈ [k ], i 6= j} and Ck = {i | i ∈ [k ].

A term t defines, up to isomorphism, a graph val(t) (we forget the colors).

the clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t), t ∈ T (Fk ,Ck).

bounded tree-width implies bounded clique-width but the converse is
false (cliques have unbounded tree-width but clique-width 2)

Examples => blackboard.
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Clique-Width

Clique-Width

Some Results
Every MSO query can be tested in graphs of clique-width at most k , k
fixed.

It uses tree-automata.

The labeling scheme of Courcelle and Vanicat uses tree-automata and
the fact that binary terms can be balanced.

Follow explanations on blackboard.
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Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.
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Logic

FO Logic

We write G |= ϕ(a1, . . . ,am,W1, . . . ,Wq) to say that G satisfies
ϕ(a1, . . . ,am,W1, . . . ,Wq).

An FO sentence is a FO formula without free variables.

Distance at most t

ϕ(x,y) := (x = y) ∨
_

1≤s≤t

(

∃x1. · · · .∃xs+1

(

^

1≤i≤t

E(xi ,xi+1) ∧ x = x1 ∧ y = xs

))

.
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Locally Decomposable Graphs

Local Clique-Width

Classes of bounded Local Clique-Width

The local clique-width of a graph G is the function lcwG : N → N defined by

lcwG(t) := max{cwd(G[N t
G (a)]) | a ∈ VG}.

A class C of graphs has bounded local clique-width if there is a function
f : N → N such that lcwG (t) ≤ f (t) for every G ∈ C and t ∈ N.

Examples

Planar Graphs, unit-interval graphs, graphs of bounded degree, classes of
bounded local tree-width . . . .
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Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover
Let r , l ≥ 1 and g : N → N. An (r , l,g)-cwd cover of a graph G is a family T of
subsets of VG such that:

1 For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U.

2 For each U ∈ T there exist less than l many V ∈ T such that U ∩V 6= /0.
3 For each U we have cwd(G[U]) ≤ g(1).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 14 / 30



Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover
Let r , l ≥ 1 and g : N → N. An (r , l,g)-cwd cover of a graph G is a family T of
subsets of VG such that:

1 For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U.

2 For each U ∈ T there exist less than l many V ∈ T such that U ∩V 6= /0.
3 For each U we have cwd(G[U]) ≤ g(1).

Nice cwd-cover
An (r , l,g)-cwd cover is nice if condition 3 is replaced by condition 3’ below:

3’. For all U1, . . . ,Uq and q ≥ 1 we have

cwd(G[U1 ∪·· ·∪Uq]) ≤ g(q).
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Locally Decomposable Graphs

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G ∈ C and r ≥ 1, computes an (r , l,g)-cwd cover
of G for suitable l,g depending on r .
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algorithm that given a graph G ∈ C and r ≥ 1, computes an (r , l,g)-cwd cover
of G for suitable l,g depending on r .

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G ∈ C and r ≥ 1, computes a nice
(r , l,g)-cwd cover of G for suitable l,g depending on r .

Fact
Nicely locally cwd-decomposable implies locally cwd-decomposable.

locally cwd-decomposable implies local bounded clique-width.
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Main Results

Main Results

Main Theorem 1
There exist O (log (n))-labeling schemes for the following queries and graph
classes:

1 FO queries without set arguments on locally cwd-decomposable classes.
2 FO queries with set arguments on nicely locally cwd-decomposable.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 17 / 30



Main Results

FO Logic

t-local formulas
An FO formula ϕ(x1, . . . ,xm,Y1, . . . ,Yq) is t -local around (x1, . . . ,xm) if for every G
and, every a1, . . . ,am ∈ VG, W1, . . . ,Wq ⊆ VG we have

G |= ϕ(a1, . . . ,am,W1, . . . ,Wq)

iff

G[N] |= ϕ(a1, . . . ,am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G (a1, . . . ,am) = {y ∈ VG | d (y ,ai) ≤ t for somei = 1, . . . ,m}.
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where N = N t
G (a1, . . . ,am) = {y ∈ VG | d (y ,ai) ≤ t for somei = 1, . . . ,m}.

Remark
The query d (x,y) ≤ r is t-local with t = r/2 if r is even and (r −1)/2 if r is odd.
Its negation d (x,y) > r is t-local
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Main Results

FO Logic

(t,s)-local sentences

An FO sentence is basic (t ,s)-local if it is equivalent to a sentence of the form

∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj ) > 2t ∧
^

1≤i≤s

ψ(xi)

)

where ψ(x) is t-local around its unique free variable x.
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Main Results

Gaifman Theorem

Theorem 1
Let ϕ(x̄) be a FO formula where x̄ = (x1, . . . ,xm). Then ϕ is logically equivalent
to a Boolean combination B (ϕ1(ū1), . . . ,ϕp(ūp),ψ1, . . . ,ψh) where:

each (ϕi )1≤i≤p is a t-local formula around ūi ⊆ x̄.

each (ψi)1≤i≤h is a basic (t ′,s)-local sentence.

Moreover B can be computed effectively and, t , t ′ and s can be bounded in
terms of m and the quantifier-rank of ϕ.
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Main Results

Verification of basic (t ,s)-local sentences

Lemma 1
Let G be in a locally cwd-decomposable class. Every basic (t ,s)-local
sentence without free set arguments can be decided in polynomial time.

Proof. Let ϕ be a sentence :

∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj ) > 2t ∧
^

1≤i≤s

ψ(xi)

)

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 21 / 30



Main Results

Proof(1)

Proof.
1 Let T be an (t , l,g)-cwd cover of G.
2 For each U ∈ T let PU = {a | N t

G(a) ⊆ U,G[N t
G(a)] |= ψ(a)}.

3 Let P =
S

U∈T PU .
4 If there exists a1, . . . ,as in P such that d(ai ,aj) > 2t , 1 ≤ i < j ≤ s then

return TRUE.
5 Otherwise return FALSE.
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Main Results

Proof(1)

Correctness
Line 1 can be done in polynomial time (G locally cwd-decomposable)

For each U we can compute in polynomial time the set
K t(U) := {a | N t

G(a) ⊆ U}.

By Courcelle and Oum, for each a ∈ K t(U) we can test if U |= ψ(a).

Then Line 2 can be computed in polynomial time.

Line 4. can be done in polynomial time in the size |G| = O(n2), of G (next
slide).
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Main Results

Proof(2)

Input: G, P.
Output: Decide if there exists a1, . . . ,as in P such that d(ai ,aj) > t .

Algorithm

Choose the p ≤ s vertices such that P ⊆ N t
G(a1, . . . ,ap).

If p = m return YES.

If p = 0, return NO.

Otherwise computes H = G[N2t
G (a1, . . . ,ap)].

Let

θ := ∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj ) > 2t ∧
^

1≤i≤s

xi ∈ P

)

.

If G[H] |= θ then return YES.

Otherwise return NO.
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Main Results

t-local formulas (stronger statement)

Lemma 2
There exists an O (log (n))-labeling scheme for t-local formulas with set
arguments on locally cwd-decomposable classes.

Proof.
We will use a decomposition of t-local formulas by Frick.

We recall that Gaifman Theorem extends to FO formulas with set
arguments.

It is not natural but is powerful enough for our purposes.
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Main Results

t-distance type

Definition 1
Let m, t ≥ 1. The t -distance type of an m-tuple ā is the undirected graph
ε = ([m],edgε) where edgε(i, j) iff d(ai ,aj) ≤ 2t +1.

Satisfaction
The satisfaction of a t-distance type by an m-tuple can be expressed by a
t-local formula:

ρt,ε(x1, . . . ,xm) :=
^

(i,j)∈edgε

d(xi ,xj ) ≤ 2t +1 ∧
^

(i,j)/∈edgε

d(xi ,xj) > 2t +1.
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Main Results

Decomposition of t-local formulas

Lemma 3
Let ϕ(x̄,Y1, . . . ,Yq) be a t-local formula around x̄ = (x1, . . . ,xm), m ≥ 1. For
each t-distance type ε with ε1, . . . ,εp as connected components, one can
compute a Boolean combination F t,ε(ϕ1,1, . . . ,ϕ1,j1 , . . . ,ϕp,1, . . . ,ϕp,jp)
of formulas ϕi,j such that:

The FO free variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction
of x̄ to εi ) and the set arguments remains in {Y1, . . . ,Yq}.

ϕi,j is t-local around x̄ | εi .

For each m-tuple ā, each q-tuple of sets W1, . . . ,Wq:

G |= ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq)

iff

G |= ρt,ε(ā) ∧ F t,ε(. . . ,ϕi,j (ā | εi ,W1, . . . ,Wq), . . .).
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Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).
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Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi ) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.
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Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?
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Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?

Thank you !
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