Étiquetage de Formules du Premier Ordre dans des graphes de Clique-width non Bornée.

M. M. KANTÉ B. COURCELLE C. GAVOILLE

Université Bordeaux 1, LaBRI, CNRS.

Groupe de Travail VAG (LIRMM) 13 Mars 2008

イロト 不得 トイヨト イヨト 三連

Introduction

Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)

- For a class of graphs C, we want two algorithms A and B such that
 - For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ \mathcal{B} , called *decoding algorithm*, checks whether *G* satisfies $P(a_1, \ldots, a_m, W_1, \ldots, W_q)$ using $L(a_1), \ldots, L(a_m)$ et $L(W_1), \ldots, L(W_q)$.
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

(ロ) (個) (E) (E) (E)

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ \mathcal{B} , called *decoding algorithm*, checks whether *G* satisfies $P(a_1, \ldots, a_m, W_1, \ldots, W_q)$ using $L(a_1), \ldots, L(a_m)$ et $L(W_1), \ldots, L(W_q)$.
 - We require \mathcal{B} independent from *G*, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ \mathcal{B} , called *decoding algorithm*, checks whether *G* satisfies $P(a_1, \ldots, a_m, W_1, \ldots, W_q)$ using $L(a_1), \ldots, L(a_m)$ et $L(W_1), \ldots, L(W_q)$.
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

(日) (個) (注) (注) (三)

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ \mathcal{B} , called *decoding algorithm*, checks whether *G* satisfies $P(a_1, \ldots, a_m, W_1, \ldots, W_q)$ using $L(a_1), \ldots, L(a_m)$ et $L(W_1), \ldots, L(W_q)$.
 - We require \mathcal{B} independent from *G*, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

(日) (個) (E) (E) (E)

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ B, called decoding algorithm, checks whether G satisfies P(a₁,..., a_m, W₁,..., W_q) using L(a₁),...,L(a_m) et L(W₁),...,L(W_q).
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ B, called decoding algorithm, checks whether G satisfies P(a₁,..., a_m, W₁,..., W_q) using L(a₁),...,L(a_m) et L(W₁),...,L(W_q).
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

◆ロト ◆得 ト ◆ 三 ト ◆ 三 ト つんの

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ B, called decoding algorithm, checks whether G satisfies P(a₁,..., a_m, W₁,..., W_q) using L(a₁),...,L(a_m) et L(W₁),...,L(W_q).
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

▲□▶▲□▶▲□▶▲□▶ □ のQの

Introduction

- Let P(x₁,...,x_m, Y₁,...,Y_q) be a graph property (adjacency, distance at most k, connectivity, ...)
- For a class of graphs C, we want two algorithms A and B such that
 - ▶ For all $G \in C$, A, called *labeling algorithm*, constructs a labeling of the vertices of G,
 - ▶ B, called decoding algorithm, checks whether G satisfies P(a₁,..., a_m, W₁,..., W_q) using L(a₁),...,L(a_m) et L(W₁),...,L(W_q).
 - We require \mathcal{B} independent from G, i.e., has to be the same for all $G \in \mathcal{C}$.
- The couple $(\mathcal{A}, \mathcal{B})$ is called *labeling scheme* (HERE).
- We want to minimize the length of the labels. We also require that the time complexity of \mathcal{B} depends only on the length of the labels.
- We are interested in labeling schemes where the length of the labels are at most O(log^k(n)) (k is fixed and n is (always) the number of vertices of graphs).

▲□▶▲□▶▲□▶▲□▶ □ のQの

Lebeling schemes

Two approaches =>

- P is fixed and we look for classes that accept labeling scheme with labels of length at most $O(f(n)) \ll O(n)$ (adjacency, distance for instance).
- C is fixed and we look for problems expressible in logical languages like first-order (FO) or monadic second-order (MSO) logic such that there exist labeling schemes with labels of size O(f(n)) ≪ O(n).

イロト 不得 トイヨト イヨト 三日

Lebeling schemes

Two approaches =>

- P is fixed and we look for classes that accept labeling scheme with labels of length at most $O(f(n)) \ll O(n)$ (adjacency, distance for instance).
- C is fixed and we look for problems expressible in logical languages like first-order (FO) or monadic second-order (MSO) logic such that there exist labeling schemes with labels of size O(f(n)) ≪ O(n).
 - We are interested in this talk with 2. and particularly with graphs with unbounded clique-width, particularly, the *locally cwd-decomposable classes*.
 - Courcelle and Vanicat have already considered MSO queries on graphs of bounded clique-width.
 - We are obliged to consider FO queries since the planar graphs are locally cwd-decomposable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Plan

Olique-Width

Main Results

Plan

Olique-Width

2 Logic

Icocally Decomposable Graphs

Main Results

(ロ) (個) (E) (E) (E)

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in {1,...,k}. Each vertex with one color. We represent it by (V_G, E_G, lab_G).
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $add_{ij}(G)$, $i \neq j$, is the graph $\langle V_G, E', lab_G \rangle$ where

 $E' = E_G \cup \{xy \mid lab_G(x) = i, \ lab_G(y) = j\}.$

This operation adds edges between vertices colored by *i* and vertices colored by *j* (a kind of complete bipartite graphs).

• $ren_{i \to j}(G)$ is the graph $\langle V_G, E_G, Iab' \rangle$ where

$$lab'(x) = \begin{cases} j & \text{if } lab_G(x) = i \\ lab_G(x) & \text{otherwise} \end{cases}.$$

• i is the graph with single vertex colored by $i \in [k]$.

(日) (四) (日) (日) (日)

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in {1,...,k}. Each vertex with one color. We represent it by (V_G, E_G, lab_G).
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $add_{ij}(G)$, $i \neq j$, is the graph $\langle V_G, E', lab_G \rangle$ where

 $E' = E_G \cup \{xy \mid lab_G(x) = i, \ lab_G(y) = j\}.$

This operation adds edges between vertices colored by *i* and vertices colored by *j* (a kind of complete bipartite graphs).

• $ren_{i \to j}(G)$ is the graph $\langle V_G, E_G, Iab' \rangle$ where

$$lab'(x) = \begin{cases} j & \text{if } lab_G(x) = i \\ lab_G(x) & \text{otherwise} \end{cases}.$$

• i is the graph with single vertex colored by $i \in [k]$.

Clique-Width

- A *k*-graph is a graph where the vertices are colored with colors in $\{1, ..., k\}$. Each vertex with one color. We represent it by $\langle V_G, E_G, lab_G \rangle$.
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $add_{ij}(G)$, $i \neq j$, is the graph $\langle V_G, E', lab_G \rangle$ where

 $E' = E_G \cup \{xy \mid lab_G(x) = i, \ lab_G(y) = j\}.$

This operation adds edges between vertices colored by *i* and vertices colored by *j* (a kind of complete bipartite graphs).

• $ren_{i \to j}(G)$ is the graph $\langle V_G, E_G, lab' \rangle$ where

$$lab'(x) = \begin{cases} j & \text{if } lab_G(x) = i \\ lab_G(x) & \text{otherwise} \end{cases}$$

• i is the graph with single vertex colored by $i \in [k]$.

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in {1,...,k}. Each vertex with one color. We represent it by (V_G, E_G, lab_G).
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $add_{ij}(G)$, $i \neq j$, is the graph $\langle V_G, E', lab_G \rangle$ where

 $E' = E_G \cup \{xy \mid lab_G(x) = i, \ lab_G(y) = j\}.$

This operation adds edges between vertices colored by *i* and vertices colored by *j* (a kind of complete bipartite graphs).

• $ren_{i \to j}(G)$ is the graph $\langle V_G, E_G, lab' \rangle$ where

$$lab'(x) = \begin{cases} j & \text{if } lab_G(x) = i \\ lab_G(x) & \text{otherwise} \end{cases}.$$

• i is the graph with single vertex colored by $i \in [k]$.

◆□ > ◆□ > ◆三 > ◆三 > ● のへの

Clique-Width

- A k-graph is a graph where the vertices are colored with colors in {1,...,k}. Each vertex with one color. We represent it by (V_G, E_G, lab_G).
- $G \oplus H$ is the disjoint union of G and H (notice that $G \oplus G \neq G$).
- $add_{ij}(G)$, $i \neq j$, is the graph $\langle V_G, E', lab_G \rangle$ where

 $E' = E_G \cup \{xy \mid lab_G(x) = i, \ lab_G(y) = j\}.$

This operation adds edges between vertices colored by *i* and vertices colored by *j* (a kind of complete bipartite graphs).

• $ren_{i \to j}(G)$ is the graph $\langle V_G, E_G, lab' \rangle$ where

$$lab'(x) = \begin{cases} j & \text{if } lab_G(x) = i \\ lab_G(x) & \text{otherwise} \end{cases}.$$

• i is the graph with single vertex colored by $i \in [k]$.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Well-Formed Terms

- $F_k = \{\oplus, add_{ij}, ren_{i \rightarrow j} \mid i, j \in [k], i \neq j\}$ and $C_k = \{i \mid i \in [k]\}$.
- A term t defines, up to isomorphism, a graph val(t) (we forget the colors).
- the clique-width of a graph G, denoted by cwd(G), is the minimum k such that G = val(t), t ∈ T(F_k, C_k).
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

イロト 不得 トイヨト イヨト 三日

Well-Formed Terms

- $F_k = \{\oplus, add_{ij}, ren_{i \rightarrow j} \mid i, j \in [k], i \neq j\}$ and $C_k = \{i \mid i \in [k].$
- A term t defines, up to isomorphism, a graph val(t) (we forget the colors).
- the clique-width of a graph G, denoted by cwd(G), is the minimum k such that G = val(t), t ∈ T(F_k, C_k).
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

イロト 不得 トイヨト イヨト 三連

Well-Formed Terms

- $F_k = \{\oplus, add_{ij}, ren_{i \rightarrow j} \mid i, j \in [k], i \neq j\}$ and $C_k = \{i \mid i \in [k].$
- A term t defines, up to isomorphism, a graph val(t) (we forget the colors).
- the clique-width of a graph G, denoted by cwd(G), is the minimum k such that G = val(t), t ∈ T(F_k, C_k).
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

イロト 不得 トイヨト イヨト 三連

Well-Formed Terms

- $F_k = \{\oplus, add_{ij}, ren_{i \rightarrow j} \mid i, j \in [k], i \neq j\}$ and $C_k = \{i \mid i \in [k].$
- A term t defines, up to isomorphism, a graph val(t) (we forget the colors).
- the clique-width of a graph G, denoted by cwd(G), is the minimum k such that G = val(t), t ∈ T(F_k, C_k).
- bounded tree-width implies bounded clique-width but the converse is false (cliques have unbounded tree-width but clique-width 2)
- Examples => blackboard.

Some Results

- Every MSO query can be tested in graphs of clique-width at most *k*, *k* fixed.
- It uses tree-automata.
- The labeling scheme of Courcelle and Vanicat uses tree-automata and the fact that binary terms can be balanced.
- Follow explanations on blackboard.

イロト 不得 トイヨト イヨト 三日

Plan

Clique-Width

- 3 Locally Decomposable Graphs
- Main Results

(ロ) (個) (E) (E) (E)

Logic

- *G* is the structure $\langle V_G, E_G, P_{1G}, \dots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- $x = y, x \in X, E(x, y)$ and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,...,x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,...,x_m} and free MSO variables in {Y₁,...,Y_q}.

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

Logic

- *G* is the structure $\langle V_G, E_G, P_{1G}, \ldots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- x = y, $x \in X$, E(x, y) and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,...,x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,...,x_m} and free MSO variables in {Y₁,...,Y_q}.

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

Logic

- *G* is the structure $\langle V_G, E_G, P_{1G}, \dots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- $x = y, x \in X, E(x, y)$ and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,...,x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,...,x_m} and free MSO variables in {Y₁,...,Y_q}.

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

Logic

- *G* is the structure $\langle V_G, E_G, P_{1G}, \ldots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- $x = y, x \in X, E(x, y)$ and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,...,x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,...,x_m} and free MSO variables in {Y₁,...,Y_q}.

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

- Two sorts of variables: variables denoting vertices (lower case) and variables denoting subsets of vertices (capital letters).
- *G* is the structure $\langle V_G, E_G, P_{1G}, \ldots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- $x = y, x \in X, E(x, y)$ and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,...,x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,...,x_m} and free MSO variables in {Y₁,...,Y_q}.

◆ロト ◆得 ト ◆ 三 ト ◆ 三 ト つんの

Logic

- *G* is the structure $\langle V_G, E_G, P_{1G}, \ldots, P_{kG} \rangle$ where P_{iG} is an unary relation.
- $x = y, x \in X, E(x, y)$ and P(x) are FO formulas.
- $\neg \phi$, $\phi_1 \lor \phi_2$ and $\phi_1 \land \phi_2$ are FO formulas.
- $\exists x.\phi(x)$ is a FO formula (x is in the scope of a quantifier).
- A free variable in a formula is a variable which is not inside the scope of a quantifier.
- We denote by φ(x₁,..., x_m, Y₁,..., Y_q) the FO formula φ with free FO variables in {x₁,..., x_m} and free MSO variables in {Y₁,..., Y_q}.

◆□ > ◆□ > ◆三 > ◆三 > ● のへの

• We write $G \models \varphi(a_1, \ldots, a_m, W_1, \ldots, W_q)$ to say that *G* satisfies $\varphi(a_1, \ldots, a_m, W_1, \ldots, W_q)$.

Logic

An FO sentence is a FO formula without free variables.

Distance at most t

$$\varphi(\mathbf{x},\mathbf{y}) := (\mathbf{x} = \mathbf{y}) \lor \bigvee_{1 \le s \le t} \left(\exists \mathbf{x}_1 \dots \exists \mathbf{x}_{s+1} \left(\bigwedge_{1 \le i \le t} E(\mathbf{x}_i, \mathbf{x}_{i+1}) \land \mathbf{x} = \mathbf{x}_1 \land \mathbf{y} = \mathbf{x}_s \right) \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Plan

Clique-Width

Main Results

(ロ) (個) (E) (E) (E)

Local Clique-Width

Classes of bounded Local Clique-Width

• The *local clique-width* of a graph G is the function $lcw^G : \mathbb{N} \to \mathbb{N}$ defined by

 $\mathit{lcw}^{\mathsf{G}}(t) := \max\{\mathit{cwd}(\mathit{G}[\mathit{N}_{\mathsf{G}}^{t}(a)]) \mid a \in V_{\mathsf{G}}\}.$

• A class C of graphs has *bounded local clique-width* if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that $lcw^{G}(t) \leq f(t)$ for every $G \in C$ and $t \in \mathbb{N}$.

Examples

Planar Graphs, unit-interval graphs, graphs of bounded degree, classes of bounded local tree-width

・ロン ・ (目) ・ (目) ・ (目)

cwd-cover

Let $r, l \ge 1$ and $g : \mathbb{N} \to \mathbb{N}$. An (r, l, g)-cwd cover of a graph G is a family \mathcal{T} of subsets of V_G such that:

- So For every $a \in V_G$ there exists a $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.
- So For each $U \in \mathcal{T}$ there exist less than *I* many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.
- So For each *U* we have $cwd(G[U]) \le g(1)$.

cwd-cover

Let $r, l \ge 1$ and $g : \mathbb{N} \to \mathbb{N}$. An (r, l, g)-cwd cover of a graph G is a family \mathcal{T} of subsets of V_G such that:

- So For every $a \in V_G$ there exists a $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.
- **2** For each $U \in \mathcal{T}$ there exist less than *I* many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.
- So For each *U* we have $cwd(G[U]) \le g(1)$.

Nice cwd-cover

An (r, I, g)-cwd cover is *nice* if condition 3 is replaced by condition 3' below:

3'. For all U_1, \ldots, U_q and $q \ge 1$ we have

 $cwd(G[U_1\cup\cdots\cup U_q])\leq g(q).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Locally cwd-decomposable

A class C of graphs is *locally cwd-decomposable* if there is a polynomial time algorithm that given a graph $G \in C$ and $r \ge 1$, computes an (r, l, g)-cwd cover of G for suitable l, g depending on r.

イロト 不得 とくき とくき とうき

Locally cwd-decomposable

A class C of graphs is *locally cwd-decomposable* if there is a polynomial time algorithm that given a graph $G \in C$ and $r \ge 1$, computes an (r, l, g)-cwd cover of G for suitable l, g depending on r.

Nicely locally cwd-decomposable

A class C of graphs is *nicely locally cwd-decomposable* if there is a polynomial time algorithm that given a graph $G \in C$ and $r \ge 1$, computes a nice (r, I, g)-cwd cover of G for suitable I, g depending on r.

イロト 不得 トイヨト イヨト 三日

Locally cwd-decomposable

A class C of graphs is *locally cwd-decomposable* if there is a polynomial time algorithm that given a graph $G \in C$ and $r \ge 1$, computes an (r, l, g)-cwd cover of G for suitable l, g depending on r.

Nicely locally cwd-decomposable

A class C of graphs is *nicely locally cwd-decomposable* if there is a polynomial time algorithm that given a graph $G \in C$ and $r \ge 1$, computes a nice (r, I, g)-cwd cover of G for suitable I, g depending on r.

Fact

- Nicely locally cwd-decomposable implies locally cwd-decomposable.
- Iocally cwd-decomposable implies local bounded clique-width.

- 日本 - 4 日本 - 4 日本 - 日本

Plan

Clique-Width

3 Locally Decomposable Graphs

Main Results

(ロ) (個) (E) (E) (E)

Main Theorem 1

There exist $O(\log(n))$ -labeling schemes for the following queries and graph classes:

- FO queries without set arguments on locally cwd-decomposable classes.
- FO queries with set arguments on nicely locally cwd-decomposable.

イロト 不得 トイヨト イヨト 三日

t-local formulas

An FO formula $\varphi(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$ is *t-local around* (x_1, \ldots, x_m) if for every *G* and, every $a_1, \ldots, a_m \in V_G$, $W_1, \ldots, W_q \subseteq V_G$ we have

$$G \models \varphi(a_1, \ldots, a_m, W_1, \ldots, W_q)$$

iff

$$G[N] \models \varphi(a_1, \ldots, a_m, W_1 \cap N, \ldots, W_q \cap N)$$

where $N = N_G^t(a_1, ..., a_m) = \{y \in V_G \mid d(y, a_i) \le t \text{ for some } i = 1, ..., m\}.$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

t-local formulas

An FO formula $\varphi(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$ is *t-local around* (x_1, \ldots, x_m) if for every *G* and, every $a_1, \ldots, a_m \in V_G$, $W_1, \ldots, W_q \subseteq V_G$ we have

$$G \models \varphi(a_1, \ldots, a_m, W_1, \ldots, W_q)$$

iff

$$G[N] \models \varphi(a_1, \ldots, a_m, W_1 \cap N, \ldots, W_q \cap N)$$

where $N = N_G^t(a_1, ..., a_m) = \{y \in V_G \mid d(y, a_i) \le t \text{ for some } i = 1, ..., m\}.$

Remark

The query $d(x,y) \le r$ is *t*-local with t = r/2 if *r* is even and (r-1)/2 if *r* is odd. Its negation d(x,y) > r is *t*-local

・ロン (雪) (ヨ) (ヨ) (ヨ)

(t, s)-local sentences

An FO sentence is *basic* (t, s)-local if it is equivalent to a sentence of the form

$$\exists x_1.....\exists x_s.\left(\bigwedge_{1\leq i< j\leq s} d(x_i, x_j) > 2t \land \bigwedge_{1\leq i\leq s} \psi(x_i)\right)$$

where $\psi(x)$ is *t*-local around its unique free variable *x*.

Gaifman Theorem

Theorem 1

Let $\varphi(\bar{x})$ be a FO formula where $\bar{x} = (x_1, \dots, x_m)$. Then φ is logically equivalent to a Boolean combination $B(\varphi_1(\bar{u}_1), \dots, \varphi_p(\bar{u}_p), \psi_1, \dots, \psi_h)$ where:

- each $(\phi_i)_{1 \le i \le p}$ is a *t*-local formula around $\bar{u}_i \subseteq \bar{x}$.
- each $(\psi_i)_{1 \le i \le h}$ is a basic (t', s)-local sentence.

Moreover *B* can be computed effectively and, t, t' and *s* can be bounded in terms of *m* and the quantifier-rank of φ .

イロト 不得 トイヨト イヨト 三日

Verification of basic (t, s)-local sentences

Lemma 1

Let *G* be in a locally cwd-decomposable class. Every basic (t, s)-local sentence without free set arguments can be decided in polynomial time.

Proof. Let φ be a sentence :

$$\exists x_1.....\exists x_s.\left(\bigwedge_{1\leq i< j\leq s} d(x_i, x_j) > 2t \land \bigwedge_{1\leq i\leq s} \psi(x_i)\right)$$

イロト 不得 トイヨト イヨト 三日

Proof(1)

Proof.

- Let \mathcal{T} be an (t, I, g)-cwd cover of G.
- So For each $U \in \mathcal{T}$ let $P_U = \{a \mid N_G^t(a) \subseteq U, G[N_G^t(a)] \models \psi(a)\}.$

$$\bigcirc \text{ Let } P = \bigcup_{U \in \mathcal{T}} P_U.$$

- If there exists a₁,..., a_s in P such that d(a_i, a_j) > 2t, 1 ≤ i < j ≤ s then return TRUE.</p>
- Otherwise return FALSE.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof(1)

Correctness

- Line 1 can be done in polynomial time (G locally cwd-decomposable)
- For each U we can compute in polynomial time the set
 K^t(U) := {a | N^t_G(a) ⊆ U}.
- By Courcelle and Oum, for each $a \in K^t(U)$ we can test if $U \models \psi(a)$.
- Then Line 2 can be computed in polynomial time.
- Line 4. can be done in polynomial time in the size $|G| = O(n^2)$, of G (next slide).

イロト 不得 トイヨト イヨト 三頭 …

Proof(2)

Input: G, P.

Output: Decide if there exists a_1, \ldots, a_s in *P* such that $d(a_i, a_j) > t$.

Algorithm

- Choose the $p \leq s$ vertices such that $P \subseteq N_G^t(a_1, \ldots, a_p)$.
- If p = m return YES.
- If p = 0, return NO.
- Otherwise computes $H = G[N_G^{2t}(a_1, \ldots, a_p)]$.

Let

$$\theta := \exists x_1 \cdots \exists x_s. \left(\bigwedge_{1 \le i < j \le s} d(x_i, x_j) > 2t \land \bigwedge_{1 \le i \le s} x_i \in P \right).$$

- If $G[H] \models \theta$ then return YES.
- Otherwise return NO.

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

t-local formulas (stronger statement)

Lemma 2

There exists an $O(\log(n))$ -labeling scheme for *t*-local formulas with set arguments on locally cwd-decomposable classes.

Proof.

- We will use a decomposition of *t*-local formulas by Frick.
- We recall that Gaifman Theorem extends to FO formulas with set arguments.
- It is not natural but is powerful enough for our purposes.

イロト 不得 トイヨト イヨト 三日

t-distance type

Definition 1

Let $m, t \ge 1$. The *t*-distance type of an *m*-tuple \bar{a} is the undirected graph $\epsilon = ([m], edg_{\epsilon})$ where $edg_{\epsilon}(i, j)$ iff $d(a_i, a_j) \le 2t + 1$.

Satisfaction

The satisfaction of a *t*-distance type by an *m*-tuple can be expressed by a *t*-local formula:

 $\rho_{t,\varepsilon}(x_1,\ldots,x_m) := \bigwedge_{(i,j)\in \textit{edg}_{\varepsilon}} d(x_i,x_j) \leq 2t+1 \ \land \ \bigwedge_{(i,j)\notin \textit{edg}_{\varepsilon}} d(x_i,x_j) > 2t+1.$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Decomposition of *t*-local formulas

Lemma 3

Let $\varphi(\bar{x}, Y_1, ..., Y_q)$ be a *t*-local formula around $\bar{x} = (x_1, ..., x_m)$, $m \ge 1$. For each *t*-distance type ε with $\varepsilon_1, ..., \varepsilon_p$ as connected components, one can compute a Boolean combination $F^{t,\varepsilon}(\varphi_{1,1}, ..., \varphi_{1,j_1}, ..., \varphi_{p,1}, ..., \varphi_{p,j_p})$ of formulas $\varphi_{i,j}$ such that:

- The FO free variables of each φ_{i,j} are among x
 | ε_i (x

 fx to ε_i) and the set arguments remains in {Y₁,..., Y_q}.
- $\varphi_{i,j}$ is *t*-local around $\bar{x} \mid \varepsilon_i$.
- For each *m*-tuple \bar{a} , each *q*-tuple of sets W_1, \ldots, W_q :

 $G \models \rho_{t,\varepsilon}(\bar{a}) \land \phi(\bar{a}, W_1, \ldots, W_q)$

iff

$$\mathbf{G} \models \rho_{t,\epsilon}(\bar{\mathbf{a}}) \land \mathbf{F}^{t,\epsilon}(\ldots, \varphi_{i,j}(\bar{\mathbf{a}} \mid \epsilon_i, \mathbf{W}_1, \ldots, \mathbf{W}_q), \ldots).$$

Proof of Lemma 2

- Let T be an (r, I, g)-cwd cover of G where r = m(2t + 1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels $J_{i,i,U}^{\varepsilon}$ in order to get a label J_{ε} .
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

$$J(x) = \{ \ulcorner x \urcorner, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

- 日本 - 4 日本 - 4 日本 - 日本

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t + 1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels $J_{i,i,U}^{\varepsilon}$ in order to get a label J_{ε} .
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

$$J(x) = \{ \ulcorner x \urcorner, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

- 日本 - 4 日本 - 4 日本 - 日本

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t+1).
- Each $x \in V_G$ is in less than / many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t+1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels $J_{i,i,U}^{\varepsilon}$ in order to get a label J_{ε} .
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

$$J(x) = \{ \lceil x \rceil, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

< ロ > < 図 > < 注 > < 注 > … 注:

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t+1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels $J_{i,i,U}^{\varepsilon}$ in order to get a label J_{ε} .
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

$$J(x) = \{ \ulcorner x \urcorner, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t+1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels $J_{i,i,U}^{\varepsilon}$ in order to get a label J_{ε} .
- There exists at most $k' = 2^{k(k-1)/2}$ t-distance types, we let

$$J(x) = \{ \ulcorner x \urcorner, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

◆□ > ◆檀 > ◆臣 > ◆臣 > 「臣」

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t+1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels J^ε_{i,i,U} in order to get a label J_ε.
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

 $J(x) = \{ \ulcorner x \urcorner, K(x), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$

• It has length $O(\log(n))$ (Huge Constants).

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

Proof of Lemma 2

- Let T be an (r, l, g)-cwd cover of G where r = m(2t+1).
- Each $x \in V_G$ is in less than I many $V \in \mathcal{T}$.
- By Courcelle and Vanicat we can label each vertex with a label K(x) of length O(log(n)) and decide if d(x,y) ≤ 2t + 1 in O(log(n))-time by using K(x) and K(y).
- For each $U \in \mathcal{T}$ and each $\varphi_{i,j}$, we can label each vertex $x \in U$ with a label $J_{i,j,U}^{\varepsilon}(x)$ and decide $\varphi_{i,j}(a_1, \ldots, a_s, W_1, \ldots, W_q)$ by using only $J_{i,j,U}^{\varepsilon}(a_i)$ and $J_{i,j,U}^{\varepsilon}(W_i \cap U)$.
- We do the same for all $\varphi_{i,j}$.
- For each x we append all these labels J^ε_{i,i,U} in order to get a label J_ε.
- There exists at most $k' = 2^{k(k-1)/2}$ *t*-distance types, we let

$$J(\mathbf{x}) = \{ \ulcorner \mathbf{x} \urcorner, \mathbf{K}(\mathbf{x}), J_{\varepsilon^1}, \dots, J_{\varepsilon^{k'}} \}.$$

It has length O(log(n)) (Huge Constants).

▲□▶▲□▶▲□▶▲□▶ □ のQの

• Let $J(a_1), ..., J(a_m)$ and $J(W_1), ..., J(W_q)$.

- By using $K(a_i)$ we can construct the *t*-distance type ε satisfied by a_1, \ldots, a_m . We can then recover $J_{\varepsilon}(a_i)$.
- We let $\varepsilon_1, \ldots, \varepsilon_p$ be the connected components of ε .
- For each ā | ε_i there exists at least one U ∈ T such that N^t_G(ā | ε_i) ⊆ U. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ●□

- Let $J(a_1), ..., J(a_m)$ and $J(W_1), ..., J(W_q)$.
- By using *K*(*a_i*) we can construct the *t*-distance type ε satisfied by *a*₁,...,*a_m*. We can then recover *J*_ε(*a_i*).
- We let $\varepsilon_1, \ldots, \varepsilon_p$ be the connected components of ε .
- For each ā | ε_i there exists at least one U ∈ T such that N^t_G(ā | ε_i) ⊆ U. (There are less than *l*.)
- We can now decide whether *G* satisfies φ by Lemma 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Let $J(a_1), ..., J(a_m)$ and $J(W_1), ..., J(W_q)$.
- By using *K*(*a_i*) we can construct the *t*-distance type ε satisfied by *a*₁,...,*a_m*. We can then recover *J*_ε(*a_i*).
- We let $\varepsilon_1, \ldots, \varepsilon_p$ be the connected components of ε .
- For each ā | ε_i there exists at least one U ∈ T such that N^t_G(ā | ε_i) ⊆ U. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ・注:

- Let $J(a_1), ..., J(a_m)$ and $J(W_1), ..., J(W_q)$.
- By using *K*(*a_i*) we can construct the *t*-distance type ε satisfied by *a*₁,...,*a_m*. We can then recover *J*_ε(*a_i*).
- We let $\varepsilon_1, \ldots, \varepsilon_p$ be the connected components of ε .
- For each ā | ε_i there exists at least one U ∈ T such that N^t_G(ā | ε_i) ⊆ U. (There are less than I.)

• We can now decide whether G satisfies φ by Lemma 3.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

- Let $J(a_1), ..., J(a_m)$ and $J(W_1), ..., J(W_q)$.
- By using *K*(*a_i*) we can construct the *t*-distance type ε satisfied by *a*₁,...,*a_m*. We can then recover *J*_ε(*a_i*).
- We let $\varepsilon_1, \ldots, \varepsilon_p$ be the connected components of ε .
- For each ā | ε_i there exists at least one U ∈ T such that N^t_G(ā | ε_i) ⊆ U. (There are less than I.)
- We can now decide whether G satisfies φ by Lemma 3.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

The tightness of the labels.

- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic ?

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic ?

<ロト <部 > < 語 > < 語 > ・ 語

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic ?

(ロ) (個) (E) (E) (E)

- The tightness of the labels.
- Can we extend the results to local bounded clique-width classes ?
- Can we extend the logic ?
- Thank you !

イロト 不得 トイヨト イヨト 三連