
Étiquetage de Formules du Premier Ordre dans des
graphes de Clique-width non Bornée.

M. M. KANTÉ B. COURCELLE C. GAVOILLE

Université Bordeaux 1, LaBRI, CNRS.

Groupe de Travail VAG (LIRMM)
13 Mars 2008

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 1 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Let P(x1, . . . ,xm,Y1, . . . ,Yq) be a graph property (adjacency, distance at
most k , connectivity, ...)
For a class of graphs C , we want two algorithms A and B such that

◮ For all G ∈ C , A , called labeling algorithm, constructs a labeling of the vertices of G,
◮ B, called decoding algorithm, checks whether G satisfies P(a1, . . . ,am,W1, . . . ,Wq)

using L(a1), . . . ,L(am) et L(W1), . . . ,L(Wq).
◮ We require B independent from G, i.e., has to be the same for all G ∈ C .

The couple (A ,B) is called labeling scheme (HERE).

We want to minimize the length of the labels. We also require that the
time complexity of B depends only on the length of the labels.

We are interested in labeling schemes where the length of the labels are
at most O(logk(n)) (k is fixed and n is (always) the number of vertices of
graphs).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 2 / 30

Introduction

Introduction

Lebeling schemes

Two approaches =>
1 P is fixed and we look for classes that accept labeling scheme with labels

of length at most O(f (n)) ≪ O(n) (adjacency, distance for instance).
2 C is fixed and we look for problems expressible in logical languages like

first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f (n)) ≪ O(n).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 3 / 30

Introduction

Introduction

Lebeling schemes

Two approaches =>
1 P is fixed and we look for classes that accept labeling scheme with labels

of length at most O(f (n)) ≪ O(n) (adjacency, distance for instance).
2 C is fixed and we look for problems expressible in logical languages like

first-order (FO) or monadic second-order (MSO) logic such that there
exist labeling schemes with labels of size O(f (n)) ≪ O(n).

We are interested in this talk with 2. and particularly with graphs with
unbounded clique-width, particularly, the locally cwd-decomposable classes.

Courcelle and Vanicat have already considered MSO queries on graphs
of bounded clique-width.

We are obliged to consider FO queries since the planar graphs are locally
cwd-decomposable.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 3 / 30

Introduction

Plan

1 Clique-Width

2 Logic

3 Locally Decomposable Graphs

4 Main Results

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 4 / 30

Clique-Width

Plan

1 Clique-Width

2 Logic

3 Locally Decomposable Graphs

4 Main Results

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 5 / 30

Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k].

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 6 / 30

Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k].

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 6 / 30

Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k].

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 6 / 30

Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k].

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 6 / 30

Clique-Width

Clique-Width

A k-graph is a graph where the vertices are colored with colors in
{1, . . . ,k}. Each vertex with one color. We represent it by 〈VG,EG, labG 〉.

G⊕H is the disjoint union of G and H (notice that G⊕G 6= G).

addij(G), i 6= j, is the graph 〈VG,E ′, labG 〉 where

E ′ = EG ∪{xy | labG(x) = i, labG(y) = j}.

This operation adds edges between vertices colored by i and vertices
colored by j (a kind of complete bipartite graphs).

reni→j(G) is the graph 〈VG,EG, lab′ 〉 where

lab′(x) =

{

j if labG(x) = i

labG(x) otherwise
.

i is the graph with single vertex colored by i ∈ [k].

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 6 / 30

Clique-Width

Clique-Width

Well-Formed Terms
Fk = {⊕,addij , reni→j | i, j ∈ [k], i 6= j} and Ck = {i | i ∈ [k].

A term t defines, up to isomorphism, a graph val(t) (we forget the colors).

the clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t), t ∈ T (Fk ,Ck).

bounded tree-width implies bounded clique-width but the converse is
false (cliques have unbounded tree-width but clique-width 2)

Examples => blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 7 / 30

Clique-Width

Clique-Width

Well-Formed Terms
Fk = {⊕,addij , reni→j | i, j ∈ [k], i 6= j} and Ck = {i | i ∈ [k].

A term t defines, up to isomorphism, a graph val(t) (we forget the colors).

the clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t), t ∈ T (Fk ,Ck).

bounded tree-width implies bounded clique-width but the converse is
false (cliques have unbounded tree-width but clique-width 2)

Examples => blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 7 / 30

Clique-Width

Clique-Width

Well-Formed Terms
Fk = {⊕,addij , reni→j | i, j ∈ [k], i 6= j} and Ck = {i | i ∈ [k].

A term t defines, up to isomorphism, a graph val(t) (we forget the colors).

the clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t), t ∈ T (Fk ,Ck).

bounded tree-width implies bounded clique-width but the converse is
false (cliques have unbounded tree-width but clique-width 2)

Examples => blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 7 / 30

Clique-Width

Clique-Width

Well-Formed Terms
Fk = {⊕,addij , reni→j | i, j ∈ [k], i 6= j} and Ck = {i | i ∈ [k].

A term t defines, up to isomorphism, a graph val(t) (we forget the colors).

the clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t), t ∈ T (Fk ,Ck).

bounded tree-width implies bounded clique-width but the converse is
false (cliques have unbounded tree-width but clique-width 2)

Examples => blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 7 / 30

Clique-Width

Clique-Width

Some Results
Every MSO query can be tested in graphs of clique-width at most k , k
fixed.

It uses tree-automata.

The labeling scheme of Courcelle and Vanicat uses tree-automata and
the fact that binary terms can be balanced.

Follow explanations on blackboard.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 8 / 30

Logic

Plan

1 Clique-Width

2 Logic

3 Locally Decomposable Graphs

4 Main Results

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 9 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

Two sorts of variables: variables denoting vertices (lower case) and
variables denoting subsets of vertices (capital letters).

G is the structure 〈VG,EG,P1G, . . . ,PkG 〉 where PiG is an unary relation.

x = y , x ∈ X , E(x,y) and P(x) are FO formulas.

¬ϕ, ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 are FO formulas.

∃x.ϕ(x) is a FO formula (x is in the scope of a quantifier).

A free variable in a formula is a variable which is not inside the scope of a
quantifier.

We denote by ϕ(x1, . . . ,xm,Y1, . . . ,Yq) the FO formula ϕ with free FO
variables in {x1, . . . ,xm} and free MSO variables in {Y1, . . . ,Yq}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 10 / 30

Logic

FO Logic

We write G |= ϕ(a1, . . . ,am,W1, . . . ,Wq) to say that G satisfies
ϕ(a1, . . . ,am,W1, . . . ,Wq).

An FO sentence is a FO formula without free variables.

Distance at most t

ϕ(x,y) := (x = y) ∨
_

1≤s≤t

(

∃x1. · · · .∃xs+1

(

^

1≤i≤t

E(xi ,xi+1) ∧ x = x1 ∧ y = xs

))

.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 11 / 30

Locally Decomposable Graphs

Plan

1 Clique-Width

2 Logic

3 Locally Decomposable Graphs

4 Main Results

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 12 / 30

Locally Decomposable Graphs

Local Clique-Width

Classes of bounded Local Clique-Width

The local clique-width of a graph G is the function lcwG : N → N defined by

lcwG(t) := max{cwd(G[N t
G (a)]) | a ∈ VG}.

A class C of graphs has bounded local clique-width if there is a function
f : N → N such that lcwG (t) ≤ f (t) for every G ∈ C and t ∈ N.

Examples

Planar Graphs, unit-interval graphs, graphs of bounded degree, classes of
bounded local tree-width

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 13 / 30

Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover
Let r , l ≥ 1 and g : N → N. An (r , l,g)-cwd cover of a graph G is a family T of
subsets of VG such that:

1 For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U.

2 For each U ∈ T there exist less than l many V ∈ T such that U ∩V 6= /0.
3 For each U we have cwd(G[U]) ≤ g(1).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 14 / 30

Locally Decomposable Graphs

Locally cwd-decomposable

cwd-cover
Let r , l ≥ 1 and g : N → N. An (r , l,g)-cwd cover of a graph G is a family T of
subsets of VG such that:

1 For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U.

2 For each U ∈ T there exist less than l many V ∈ T such that U ∩V 6= /0.
3 For each U we have cwd(G[U]) ≤ g(1).

Nice cwd-cover
An (r , l,g)-cwd cover is nice if condition 3 is replaced by condition 3’ below:

3’. For all U1, . . . ,Uq and q ≥ 1 we have

cwd(G[U1 ∪·· ·∪Uq]) ≤ g(q).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 14 / 30

Locally Decomposable Graphs

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G ∈ C and r ≥ 1, computes an (r , l,g)-cwd cover
of G for suitable l,g depending on r .

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 15 / 30

Locally Decomposable Graphs

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G ∈ C and r ≥ 1, computes an (r , l,g)-cwd cover
of G for suitable l,g depending on r .

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G ∈ C and r ≥ 1, computes a nice
(r , l,g)-cwd cover of G for suitable l,g depending on r .

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 15 / 30

Locally Decomposable Graphs

Locally cwd-decomposable

Locally cwd-decomposable

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G ∈ C and r ≥ 1, computes an (r , l,g)-cwd cover
of G for suitable l,g depending on r .

Nicely locally cwd-decomposable

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G ∈ C and r ≥ 1, computes a nice
(r , l,g)-cwd cover of G for suitable l,g depending on r .

Fact
Nicely locally cwd-decomposable implies locally cwd-decomposable.

locally cwd-decomposable implies local bounded clique-width.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 15 / 30

Main Results

Plan

1 Clique-Width

2 Logic

3 Locally Decomposable Graphs

4 Main Results

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 16 / 30

Main Results

Main Results

Main Theorem 1
There exist O (log (n))-labeling schemes for the following queries and graph
classes:

1 FO queries without set arguments on locally cwd-decomposable classes.
2 FO queries with set arguments on nicely locally cwd-decomposable.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 17 / 30

Main Results

FO Logic

t-local formulas
An FO formula ϕ(x1, . . . ,xm,Y1, . . . ,Yq) is t -local around (x1, . . . ,xm) if for every G
and, every a1, . . . ,am ∈ VG, W1, . . . ,Wq ⊆ VG we have

G |= ϕ(a1, . . . ,am,W1, . . . ,Wq)

iff

G[N] |= ϕ(a1, . . . ,am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G (a1, . . . ,am) = {y ∈ VG | d (y ,ai) ≤ t for somei = 1, . . . ,m}.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 18 / 30

Main Results

FO Logic

t-local formulas
An FO formula ϕ(x1, . . . ,xm,Y1, . . . ,Yq) is t -local around (x1, . . . ,xm) if for every G
and, every a1, . . . ,am ∈ VG, W1, . . . ,Wq ⊆ VG we have

G |= ϕ(a1, . . . ,am,W1, . . . ,Wq)

iff

G[N] |= ϕ(a1, . . . ,am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G (a1, . . . ,am) = {y ∈ VG | d (y ,ai) ≤ t for somei = 1, . . . ,m}.

Remark
The query d (x,y) ≤ r is t-local with t = r/2 if r is even and (r −1)/2 if r is odd.
Its negation d (x,y) > r is t-local

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 18 / 30

Main Results

FO Logic

(t,s)-local sentences

An FO sentence is basic (t ,s)-local if it is equivalent to a sentence of the form

∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj) > 2t ∧
^

1≤i≤s

ψ(xi)

)

where ψ(x) is t-local around its unique free variable x.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 19 / 30

Main Results

Gaifman Theorem

Theorem 1
Let ϕ(x̄) be a FO formula where x̄ = (x1, . . . ,xm). Then ϕ is logically equivalent
to a Boolean combination B (ϕ1(ū1), . . . ,ϕp(ūp),ψ1, . . . ,ψh) where:

each (ϕi)1≤i≤p is a t-local formula around ūi ⊆ x̄.

each (ψi)1≤i≤h is a basic (t ′,s)-local sentence.

Moreover B can be computed effectively and, t , t ′ and s can be bounded in
terms of m and the quantifier-rank of ϕ.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 20 / 30

Main Results

Verification of basic (t ,s)-local sentences

Lemma 1
Let G be in a locally cwd-decomposable class. Every basic (t ,s)-local
sentence without free set arguments can be decided in polynomial time.

Proof. Let ϕ be a sentence :

∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj) > 2t ∧
^

1≤i≤s

ψ(xi)

)

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 21 / 30

Main Results

Proof(1)

Proof.
1 Let T be an (t , l,g)-cwd cover of G.
2 For each U ∈ T let PU = {a | N t

G(a) ⊆ U,G[N t
G(a)] |= ψ(a)}.

3 Let P =
S

U∈T PU .
4 If there exists a1, . . . ,as in P such that d(ai ,aj) > 2t , 1 ≤ i < j ≤ s then

return TRUE.
5 Otherwise return FALSE.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 22 / 30

Main Results

Proof(1)

Correctness
Line 1 can be done in polynomial time (G locally cwd-decomposable)

For each U we can compute in polynomial time the set
K t(U) := {a | N t

G(a) ⊆ U}.

By Courcelle and Oum, for each a ∈ K t(U) we can test if U |= ψ(a).

Then Line 2 can be computed in polynomial time.

Line 4. can be done in polynomial time in the size |G| = O(n2), of G (next
slide).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 23 / 30

Main Results

Proof(2)

Input: G, P.
Output: Decide if there exists a1, . . . ,as in P such that d(ai ,aj) > t .

Algorithm

Choose the p ≤ s vertices such that P ⊆ N t
G(a1, . . . ,ap).

If p = m return YES.

If p = 0, return NO.

Otherwise computes H = G[N2t
G (a1, . . . ,ap)].

Let

θ := ∃x1. · · · .∃xs.

(

^

1≤i<j≤s

d (xi ,xj) > 2t ∧
^

1≤i≤s

xi ∈ P

)

.

If G[H] |= θ then return YES.

Otherwise return NO.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 24 / 30

Main Results

t-local formulas (stronger statement)

Lemma 2
There exists an O (log (n))-labeling scheme for t-local formulas with set
arguments on locally cwd-decomposable classes.

Proof.
We will use a decomposition of t-local formulas by Frick.

We recall that Gaifman Theorem extends to FO formulas with set
arguments.

It is not natural but is powerful enough for our purposes.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 25 / 30

Main Results

t-distance type

Definition 1
Let m, t ≥ 1. The t -distance type of an m-tuple ā is the undirected graph
ε = ([m],edgε) where edgε(i, j) iff d(ai ,aj) ≤ 2t +1.

Satisfaction
The satisfaction of a t-distance type by an m-tuple can be expressed by a
t-local formula:

ρt,ε(x1, . . . ,xm) :=
^

(i,j)∈edgε

d(xi ,xj) ≤ 2t +1 ∧
^

(i,j)/∈edgε

d(xi ,xj) > 2t +1.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 26 / 30

Main Results

Decomposition of t-local formulas

Lemma 3
Let ϕ(x̄,Y1, . . . ,Yq) be a t-local formula around x̄ = (x1, . . . ,xm), m ≥ 1. For
each t-distance type ε with ε1, . . . ,εp as connected components, one can
compute a Boolean combination F t,ε(ϕ1,1, . . . ,ϕ1,j1 , . . . ,ϕp,1, . . . ,ϕp,jp)
of formulas ϕi,j such that:

The FO free variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction
of x̄ to εi) and the set arguments remains in {Y1, . . . ,Yq}.

ϕi,j is t-local around x̄ | εi .

For each m-tuple ā, each q-tuple of sets W1, . . . ,Wq:

G |= ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq)

iff

G |= ρt,ε(ā) ∧ F t,ε(. . . ,ϕi,j (ā | εi ,W1, . . . ,Wq), . . .).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 27 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2

Let T be an (r , l,g)-cwd cover of G where r = m(2t +1).

Each x ∈ VG is in less than l many V ∈ T .

By Courcelle and Vanicat we can label each vertex with a label K (x) of
length O(log(n)) and decide if d(x,y) ≤ 2t +1 in O(log(n))-time by using
K (x) and K (y).

For each U ∈ T and each ϕi,j , we can label each vertex x ∈ U with a label
Jε

i,j,U(x) and decide ϕi,j(a1, . . . ,as,W1, . . . ,Wq) by using only Jε
i,j,U(ai) and

Jε
i,j,U(Wi ∩U).

We do the same for all ϕi,j .

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x),Jε1 , . . . ,Jεk ′ }.

It has length O(log(n)) (Huge Constants).

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 28 / 30

Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 29 / 30

Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 29 / 30

Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 29 / 30

Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 29 / 30

Main Results

Proof of Lemma 2(end)

Let J(a1), . . . ,J(am) and J(W1), . . . ,J(Wq).

By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).

We let ε1, . . . ,εp be the connected components of ε.

For each ā | εi there exists at least one U ∈ T such that N t
G(ā | εi) ⊆ U.

(There are less than l.)

We can now decide whether G satisfies ϕ by Lemma 3.

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 29 / 30

Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 30 / 30

Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 30 / 30

Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 30 / 30

Conclusion and Perspectives

Perspectives

The tightness of the labels.

Can we extend the results to local bounded clique-width classes ?

Can we extend the logic ?

Thank you !

(LaBRI, Universite Bordeaux 1, CNRS) FO Labeling 30 / 30

	Introduction
	Clique-Width
	Logic
	Locally Decomposable Graphs
	Main Results
	Conclusion and Perspectives

