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A brief introduction to 
the area of 

fixed-parameter algorithms
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Fixed-parameter algorithms 
as a way of coping with NP-hardness

Fixed-parameter algorithms allow to solve hard optimization
problems:

- exactly,
- in a low-polynomial time.

Of course, they are exponential in the worst case, but:
- the degree of the exponent does not depend on 

the size of input but on an additional parameter k
associated with the problem

- in real-world instances the value of the parameter 
is frequently very small
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Definition of a fixed-parameter algorithm

Given an intractable problem with the input size n
and a parameter k.

A fixed-parameter algorithm is an algorithm that  
solves this problem in time O(f(k)*nc),
where f(k) is an exponential function of k, 
c is a constant independent on  k.



5

Example: a fixed-parameter algorithm 
for the Vertex Cover Problem

Vertex Cover problem:
given a graph G, find the smallest Vertex Cover (VC), 
i.e. a set of vertices incident to all the edges of G.

Being parameterized by the size of VC, the problem 
asks: given a non-negative integer k, 
find out whether G has a VC of size at most k. 
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Example: a parameterized algorithm 
for the Vertex Cover Problem (cont.)

FindVC(G,k)
If G has no edges then return ‘YES’
If k=0 then return ‘NO’
Select an edge {u,v} of G
If FindVC(G\u,k-1) returns ‘YES’ or

FindVC(G\v,k-1) returns ‘YES’ then
Return ‘YES’

Else
Return ‘NO’
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Example: a fixed-parameter algorithm for 
the Vertex Cover Problem (further cont.)

• The recursive applications of FindVC can be organized into a search tree.

• The height of the tree is at most k. Each non-leaf node has 2 children. 
Hence the search tree has O(2k) nodes. The complexity of FindVC is O(2kn).

• A better algorithm for the VC problem takes O(1.3k+n). 
It works in a reasonable time for k=60 and a huge n.

• It is much better then to explore all subsets of k vertices.
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Fixed-parameter tractability

• A problem that can be solved by a fixed-parameter 
algorithm is called fixed-parameter tractable (FPT).

• As we have seen, the VC problem parameterized by the 
size of the output is FPT.

• Another example: many graph-theoretical problems 
(e.g. Clique) are FPT being parameterized by 
the treewidth of the underlying graph.
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Applications
Fixed-parameter algorithms can be applied in 
the areas where the problems are associated with 
parameters that are very small in practice. 
Such areas include:
• Bioinformatics
• Networks Design
• Computer Security
• Machine Learning
• Artificial Intelligence
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Fixed-parameter tractability vs. intractability
Parameterized Independent Set Problem
Given a graph G and a parameter k, find out whether G has an independent 
set (a set of mutually non-adjacent vertices) of size at least k.

A simple method of solving the problem.
Select a vertex v. Select into the independent set either v 
or one of neighbours of v and apply the  algorithm recursively 
to the corresponding residual graph with decreasing the parameter by 1.

Runtime analysis
The algorithm creates a search tree of height k, but the number of children of 
a node is the number of neighbours of the corresponding vertex plus one.  For 
dense graphs the number of nodes of the tree may be as large as O(nk). Thus 
this algorithm is not a fixed-parameter one.  This suggests that there might be 
no fixed-parameter algorithm solving the problem.
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Fixed-parameter tractability vs. intractability 
(cont.)

A stronger evidence that the Independent Set Problem is not FPT:
If it is FPT then the widely believed Exponential Time Hypothesis fails 
(i.e., 3-SAT, Independent Set, and many other problems can be solved in 
a subexponential time).

The question of classification:
given an intractable problem, find out whether this problem is FPT or 
probably not.
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The 2-CNF deletion problem
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Terminology
An example of a 2-CNF formula: (X1 v X2) (¬X2 v ¬X3) (X3 v ¬X1).
• The clauses of the formula are (X1 v X2) , (¬X2 v ¬X3) , 

and (X3 v ¬X1).
• The variables of the formula are: X1, X2, and X3.

• The literals of the formula are: X1, X2, X3, ¬X1, ¬X2, ¬X3.

• A literal included in a clause satisfies this clause.
• An assignment of a formula is a set of its literals, exactly one 

per variable.
• A 2-CNF formula F is satisfied by an assignment P if each 

clause of F is satisfied by at least one literal of P.
• A satisfying assignment of the formula in the above example 

is {X1, ¬X2 , X3}. 
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Definition of the problem

Parameterized 2Parameterized 2--CNF deletion problem (2CNF deletion problem (2--CNFCNF--DEL)DEL)

Input:Input: 2-CNF formula F and a parameter k.

Output:Output: ‘YES’ if there is a set of at most k clauses whose 
removal makes the resulting formula satisfiable.
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Two equivalent problems

1. Input: Graph G, parameter k.
Output: ‘YES’ if G has a VC greater than the maximum 

matching of G by at most k, ‘NO’ otherwise.

This is a more general parameterization of VC that by the output size

2. Input: CNF formula F (not necessary 2-CNF!), parameter k.
Output: ‘YES’ if there are k variables such after their removal 

from F, the resulting formula is RENAMABLE HORN, 
‘NO’ otherwise.

This problem has applications in the design of SAT solvers.
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Fixed-parameter tractability of 
the 2-CNF-DEL problem

• The question about the fixed-parameter tractability of the 2-CNF–DEL 
problem was first asked by Mahajan and Raman in JALG 31(2) pp. 335-354,
1999  (the preprint appeared two years earlier in ECCC 4(33), 1997). 

• Since then this question acquired reputation of one of the central 
challenges in the design of fixed parameter algorithms (see Niedermeier, 
“Invitation to fixed-parameter algorithms, volume 31, Oxford University press, 
page 277).

• The fixed-parameter tractability of this problem has been confirmed 
by Igor Razgon and Barry O’Sullivan in “Almost 2-SAT is fixed parameter 
tractable”, ICALP 2008.



A fixed-parameter algorithm 
for the 2-CNF-DEL problem
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The general idea of the algorithm
The basic procedure:

Problem with the second branch:

the parameter does not decrease 

the height of the search tree is not guaranteed to be bounded by a function of k

the algorithm is not necessary a fixed-parameter one. 
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The general idea of the algorithm (cont.)
A way to fix the problem: introducing a polynomially computable lower 
bound on the optimal solution size and recognizing 3 cases.

1. The lower bound is greater than k.  ‘NO’ is returned immediately

2. Forbidding the selected clause increases the lower bound.

The gap between the parameter and the lower bound decreases on both 
branches  the height of the search tree depends on k.
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The general idea of the algorithm 
(further cont.)

3. Forbidding the selected clause does not increase the lower bound.
Theorem:Theorem:

n sizeforbidding the selected clause does not increase optimal solutio
the selected clause can be forbidden without any branching.

On each path from the root to a leaf of the search tree, the number of nodes 
with 2 or more children depends on k   the number of leaves of 
the search tree depends on k the algorithm is a fixed-parameter one. 
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Auxiliary problem
The above strategy is in fact applied to an auxiliary problem, not to the 
2-CNF-DEL problem directly. We define the auxiliary problem and show 
that if this problem is FPT then the 2-CNF-DEL problem is FPT as well.

A 2-CNF formula F is satisfiable w.r.t. a set of literals S if there is a satisfying 
assignment P of F such that S is a subset of P.

For example,  (X1 v X2)(¬X2 v ¬X1) is satisfiable w.r.t. {X1} 

while (¬ X1 v X2)(¬X2 v ¬X1) is not.

Problem AUX
Input: (F,S,l,k), where F is a 2-CNF formula, S is a set of literals such that 

F is satisfiable w.r.t. S, l is a literal of F, k is the parameter.

Output: ‘YES’ if there is a set of at most k clauses of F whose removal makes

resulting formula satisfiable w.r.t. S U {l}; ‘NO’ otherwise.
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Auxiliary problem (cont.)
Theorem.Theorem.
If problem AUX is FPT then the 2-CNF-DEL problem is 
FPT as well.

In the proof we show that the 2-CNF-DEL problem can be solved by 
making O(3k*m) calls to a procedure solving problem AUX, 
where m is the number of clauses of F.

We use a standard technique of proof called iterative compression
See a survey paper:  Huffner, Niedermeier, Wernicke “Techniques
for practical fixed-parameter algorithms”, The Computer Journal,
51(1), pages 7-25, 2008.
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Problem AUX as a graph separation problem

The implication graph D(F) of a 2-CNF formula F is a directed graph whose set of 

vertices corresponds to the set of literals of F and (X1,X2) is an arc of D(F) iff (¬ X1 v X2) 

is a clause of F.

No bijection between clauses and arcs: an arc of D(F) corresponds to exactly one 

clause of F while a clause of F generally corresponds to two different arcs of F.

In the above example, the additional arc associated with clause (¬ X1 v X2)  is 

(¬ X2, ¬ X1).

Let A and B be two sets of vertices of D(F). A set C of clauses of F is 

an (A,B)-separator if removal of all the arcs corresponding to the clauses of C

breaks all the paths from A to B in D(F).

We show that problem AUX can be represented as a separation problem 
on the implication graph of a 2-CNF formula
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Problem AUX as a graph separation problem

TheoremTheorem
Let (F,S,l,k) be an instance of problem AUX. 
This is a ‘YES’ instance if and only if F has an (S U {l} ,{¬l})
separator of size of size at most k.

The proof is similar to the proof of the unsatisfiability criterion of a 2-CNF 
formula (see, for example, “Computational Complexity” y Papadimitriou).
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Polynomially computable lower bound

We introduce a polynomially computable lower bound on the size 
of (S U {l}, {¬l}) separator. This lower bound is necessary for 
implementation of the general algorithmic scheme.

The smallest possible size of an (S, {¬l}) separator is a lower 
bound on the size of (S U {l}, {¬l}) separator.

Theorem.                                                        
A smallest (S, {¬l}) separator is polynomially computable.

Proof sketch.

S is satisfiable w.r.t. F two arcs corresponding to the same clause cannot 
be simultaneously reachable from S there is a bijection between the edges 
reachable from S and the corresponding clauses the smallest (S, {¬l})
separator can be computed by a network flow algorithm.
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Clauses forbidden for removal

We describe instances of problem AUX to which the algorithm is 
recursively applied if the selected clauses is forbidden to be 
removed.

Assume that (F,S,l,k) is a ‘YES’ instance of problem AUX and 
clause (X1 v X2) is forbidden to be removed. Then the resulting 
formula must be satisfiable either w.r.t.  S U {X1} or w.r.t. S U {X2}.

Therefore forbidding the clause generally requires two recursive
applications: one to  (F,S U {X1},l,k), the other to (F,S U {X2},l,k).

Remark. The algorithm is applied to instance (F,S U {Xi},l,k) only if F is 
satisfiable w.r.t. S U {Xi}. Otherwise, the respective branch is omitted.
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Neutral literals
of instance neutral literalis a F CNF formula -of a 2’lA literal 

(F,S,l,k) of problem AUX if the size of a smallest 
(S, {¬l})- separator is the same as the size of a smallest     
(S U {l’}, {¬l})-separator.

Theorem. 
If l’ is a neutral literal of (F,S,l,k) and (F,S,l,k) is a ‘YES’ instance of 
problem AUX then (F,S U{l’},l,k) is a ‘YES’ instance as well.

Corollary.
If (X1 v X2) is a clause of F and X1 is a neutral literal of (F,S,l,k) 
then without any branching clause (X1 v X2) can be forbidden 
and algorithm can recursively apply to (F,S U {X1},l,k). 
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The algorithm
SolveAUX(F,S,l,k)
If F is satisfiable w.r.t. S U {l} then return ‘YES’
Let LB be the size of a smallest (S,{¬l})-separator
If LB>k then return ‘NO’
Select a clause C=(X1 v X2)
If some Xi is a neutral literal of (F,S,l,k) then

Return SolveAUX(F,S U {Xi},l,k)
If SolveAUX(F\C,S,l,k-1) returns ‘YES’ or

SolveAUX(F,S U {X1},l,k) returns ‘YES’ or
SolveAUX(F,S U {X2},l,k) returns ‘YES’ then
Return ‘YES’

Else return ‘NO’
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Runtime evaluation of SolveAUX
Theorem.
Each path from the root to a leaf in the search tree contains at
most 2k branching nodes.

Proof  sketch.
• Each node is associated with measure 2k-LB. 
• The measure of the root is at most 2k.
• A node with  measure 0 is a leaf. 
• The measure of any child of a branching node is smaller than the measure 

of this node itself. 

Clause removal decreases the parameter by 1 and decreases LB by at most 1  
the measure of the corresponding child is at most 2(k-1)-(LB-1) < 2k-LB. 
Clause forbidding increases LB by 1  the respective measure becomes 2k-(LB+1) < 2k-LB.
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Runtime evaluation of SolveAUX (cont.)

Corollary.
The search tree has at most 9k leaves.

This corollary immediately follows from the last theorem, taking into account 
that each branching node has at most 3 branches.
A more careful evaluation allows to prove that the number of leaves of the 
search tree can be bounded by 5k. Taking into account the polynomial factors, 
the runtime of SolveAUX(F,S,l,k) is O(5kkm2), where m is the number of clauses 
of F. Taking into account that O(3km) calls to SolveAUX are needed to solve 
the 2-CNF-DEL problem,we get the final theorem.

Theorem.
2-CNF-DEL problem can be solved in time O(15kkm3)
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Summary
• Fixed-parameter algorithms are techniques of coping with 
NP-hardness that are useful in situations where problems are 
associated with parameters that are very small in practice. 
Problems that can be solved by fixed-parameter algorithms are 
called fixed-parameter tractable (FPT).

• 2-CNF deletion problem asks whether at most k clauses can be 
removed from a 2-CNF formula to make it satisfiable. 
The are a number of reasons while it is worthwhile to solve this
problem by a fixed-parameter algorithm. Nevertheless, the status 
of fixed-parameter tractability of this problem had been open for 
more than 10 years.

• We  have shown that this problem is FPT.


