Analysis of Branching Algorithms

 séminaire AIGco
Serge Gaspers ${ }^{1}$

${ }^{1}$ LIRMM - Université Montpellier 2, CNRS
Nothing is particularly hard if you divide it into small jobs.

- Henry Ford (1863-1947)

March 26, 2009

Outline

(1) Introduction

Branching algorithms
S. Gaspers
(2) Simple Analysis
(3) Measure Based Analysis

4 Optimizing the measure
(5) Search Trees and Branching Numbers
(6) Exponential Time Subroutines
(7) Towards a tighter analysis

- Structures that arise rarely
- State Based Measures

8 Measure Based Analysis for Parameterized Complexity

Outline

(1) Introduction

(2) Simple Analysis
(3) Measure Based Analysis

Measure Based
Analysis
A. Optimizing the measure
5) Search Trees and Branching Numbers
(6) Exponential Time Subroutines
(5) Toward's a tighter analysis

- Structures that arise rarely
- State Based Measures

Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
Towards a tighter
analysis
Structures that arise
rarely
Slate Based Measures
Measure Based
Analysis for
Parameterized
Complexity
8. Measure Based Analysis for Parameterized Complexity

Maximum Independent Set

Maximum Independent Set (MIS)

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based
Analysis
Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis
Structures that arise
rarely
State Based Measure
Measure Based
Analysis for
Parameterized
Complexity

Branching Algorithm

Branching Algorithm

Branching algorithms
S. Gaspers

Introduction instance

- Inspection: Determine the possible values this local configuration can take
- Recursion: Recursively solve subinstances based on these values
- Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances
- Reduction: transformation (selection, inspection and the creation of the subinstances for the recursion) of the initial instance into one or more subinstances
- Simplification: reduction to 1 subinstance
- Branching: reduction to ≥ 2 subinstances

Branching Algorithm for MIS

```
Algorithm mis \((G)\)
Input : A graph \(G=(V, E)\).
Output: The size of a maximum i.s. of \(G\).
```

1 if $\Delta(G) \leq 2$ then $\quad / / G$ has max degree ≤ 2 return the size of a maximum i.s. of G in polynomial time

3 else if $\exists v \in V: d(v)=1$ then //v has degree 1
$4 \quad$ return $1+\boldsymbol{\operatorname { m i s }}(G \backslash N[v])$
5 else if G is not connected then
$6 \quad$ Let G_{1} be a connected component of G return $\boldsymbol{\operatorname { m i s }}\left(G_{1}\right)+\boldsymbol{\operatorname { m i s }}\left(G \backslash V\left(G_{1}\right)\right)$

8 else
Select $v \in V$ s.t. $d(v)=\Delta(G) \quad / / v$ has max degree return max $(1+\boldsymbol{\operatorname { m i s }}(G \backslash N[v]), \boldsymbol{\operatorname { m i s }}(G \backslash v))$

Outline

(1) Introduction

(2) Simple Analysis
(3) Measure Based Analysis

Measure Based
Analysis
4 Optimizing the measure
(5) Search Trees and Branching Numbers
(6) Exponential Time Subroutines

- Toward's a tighter analysis
- Structures that arise rarely
- State Based Measures

Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
Towards a tighter analysis
Structures that arise
rarely
Slate Based Measures
Measure Based
Analysis for
Parameterized
Complexity
3 Measure Based Analysis for Parameterized Complexity

Simple Analysis

Lemma 1

Let A be an algorithm for a problem P, and $\alpha>0, c \geq 0$ be constants such that for any input instance I, A reduces I to instances I_{1}, \ldots, I_{k}, solves these recursively, and combines their

Branching algorithms solutions to solve I, using time at most $\mathcal{O}\left(\left.|I|\right|^{c}\right)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm A,

$$
\begin{align*}
&(\forall i: 1 \leq i \leq k) \quad\left|I_{i}\right| \leq|I|-1, \text { and } \tag{1}\\
& 2^{\alpha \cdot\left|I_{1}\right|}+\cdots+2^{\alpha \cdot\left|I_{k}\right|} \leq 2^{\alpha \cdot|I|} . \tag{2}
\end{align*}
$$

Measure Based
Analysis for
Parameterized
Complexity

Simple Analysis for mis

- Reduction and combination steps: $\mathcal{O}\left(n^{2}\right)$
- G disconnected:

$$
\begin{equation*}
(\forall s: 1 \leq s \leq n-1) \quad 2^{\alpha \cdot s}+2^{\alpha \cdot(n-s)} \leq 2^{\alpha \cdot n} \tag{3}
\end{equation*}
$$

always satisfied by convexity of the function 2^{x}

- branch on vertex of degree $d \geq 3$

$$
\begin{equation*}
(\forall d: 3 \leq d \leq n-1) \quad 2^{\alpha \cdot(n-1)}+2^{\alpha \cdot(n-1-d)} \leq 2^{\alpha n} \tag{4}
\end{equation*}
$$

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$
\begin{equation*}
2^{-\alpha}+2^{\alpha \cdot(-1-d)} \leq 1 \tag{5}
\end{equation*}
$$

Branching algorithms

Compute optimum α

By standard techniques [Kullmann 99], the minimum α satisfying the constraints is obtained by setting $x:=2^{\alpha}$, computing the unique positive real root of each of the characteristic polynomials

$$
c_{d}(x):=x^{-1}+x^{-1-d}-1
$$

Branching algorithms
S. Gaspers

Alternatively, solve a mathematical program minimizing α subject to the constraints (the constraint for $d=3$ is sufficient as all other constraints are weaker).

Simple Analysis: Result

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based

- use Lemma 1 with $c=2$ and $\alpha=0.464959$
- running time of Algorithm mis upper bounded by $\mathcal{O}\left(n^{3}\right) \cdot 2^{0.464959 \cdot n}=\mathcal{O}\left(2^{0.4650 \cdot n}\right)$ or $\mathcal{O}\left(1.3803^{n}\right)$

Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
Towards a tighter analysis
Structures that arise rarely
Slate Based Measure
Measure Based
Analysis for
Parameterized
Complexity

Lower bound

$$
T(n)=T(n-5)+T(n-3)
$$

- for this graph, run time is $1.1938 \ldots$. poly (n)
- Run time of algo mis is $\Omega\left(1.1938^{n}\right)$

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based
Analysis
Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
Towards a tighter analysis
Structures that arise

Worst-case running time - a mystery

- lower bound $\Omega\left(1.1938^{n}\right)$
- upper bound $\mathcal{O}\left(1.3803^{n}\right)$

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based
Analysis
Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
Towards a tighter analysis
Structures that arise rarely
Slate Based Measures
Measure Based
Analysis for
Parameterized
Complexity

Outline

(1) Introduction

(2) Simple Analysis

Introduction
Simple Analysis
(3) Measure Based Analysis

Measure Based
Analysis
4. Optimizing the measure
(5) Search Trees and Branching Numbers

Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
(6. Exponential Time Subroutines
(7) Towards a tighter analysis

- Structures that arise rarely
- State Based Measures

Towards a tighter analysis
Structures that arise
rarely
State Based Measures
Measure Based
Analysis for
Parameterized
Complexity
8 Measure Based Analysis for Parameterized Complexity

Measure based analysis

- Goal, idea
- capture more structural changes when reducing an instance to subinstances
- Means
- potential-function method, such as
- measure used by [Kullmann 1999],
- quasiconvex analysis of backtracking algorithms [Eppstein 2004],
- Measure \& Conquer [FominGK 2005],
- linear programming approach [ScottS 2007], and
- much older potential-function analyses in mathematics and physics
- Example: Algorithm mis
- advantage when degrees of vertices decrease

Branching
algorithms
S. Gaspers

Multivariate recurrences

- Model running time of mis by

$$
T\left(n_{1}, n_{2}, \ldots\right), \text { short } T\left(\left\{n_{i}\right\}_{i \geq 1}\right)
$$

where $n_{i}:=|\{v \in V: d(v)=i\}|$.
Optimizing the
measure
Search Trees and Branching Numbers

Exponential Time Subroutines

- $G \backslash v$: neighbors' degree decreases
- $G \backslash N[v]$: a vertex in $N^{2}[v]$ has its degree decreased

Multivariate recurrences (2)

Branching algorithms

- We obtain the following recurrence where the maximum ranges over all $d \geq 3$, all $p_{i}, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_{i}=d$ and all k such that $2 \leq k \leq d$:

$$
\begin{align*}
& T\left(\left\{n_{i}\right\}_{i \geq 1}\right)= \\
& \max _{d, p_{2}, \ldots, p_{d}, k}\left\{\begin{array}{c}
T\left(\left\{n_{i}-p_{i}+p_{i+1}-\mathrm{K}_{\delta}(d=i)\right\}_{i \geq 1}\right) \\
+T\left(\left\{n_{i}-p_{i}-\mathrm{K}_{\delta}(d=i)-\mathrm{K}_{\delta}(k=i)\right.\right. \\
\left.\left.\quad+\mathrm{K}_{\delta}(k=i+1)\right\}_{i \geq 1}\right)
\end{array}\right. \tag{6}
\end{align*}
$$

where $\mathrm{K}_{\delta}(F)=\left\{\begin{array}{l}1 \text { if } F \text { true } \\ 0 \text { otherwise }\end{array}\right.$

Measure Based
Analysis for
Parameterized Complexity

Solve multivariate recurrence

- restrict to max degree 5
- [Eppstein 2004]: there exists a set of weights
$w_{1}, \ldots, w_{5} \in \mathbb{R}^{+}$such that a solution to (6) is within a polynomial factor of a solution to the corresponding univariate weighted model $\left(T\left(\sum_{i=1}^{5} \omega_{i} n_{i}\right)=\max \ldots\right)$.

Definition 2

A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals

From recurrences ...

$$
\begin{aligned}
\mu(G) & :=\sum_{i=1}^{5} w_{i} n_{i} \\
(\forall d: 2 \leq d \leq 5) \quad h_{d} & :=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\}
\end{aligned}
$$

By Eppstein, there exist weights w_{i} such that a solution to (6) corresponds to a solution to the following recurrence, where the

Branching algorithms
S. Gaspers that $\sum_{i=2}^{d} p_{i}=d$,

$$
T(\mu(G))=\max _{d, p_{2}, \ldots, p_{d}, k}\left\{\begin{array}{l}
T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)\right) \\
+T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}\right)
\end{array}\right.
$$

... to constraints

$$
\begin{aligned}
T(\mu(G)) \geq & T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)\right) \\
& +T\left(\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}\right)
\end{aligned}
$$

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based Analysis

Optimizing the measure

Search Trees and
Branching Numbers
Exponential Time
Subroutines
for all $d, 3 \leq d \leq 5$, and all $p_{i}, 2 \leq i \leq d$, such that $\sum_{i=2}^{d} p_{i}=d$.

Measure Based Analysis

Lemma 3

Let A be an algorithm for a problem $P, c \geq 0$ be a constant, and $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of P, such that for any input instance I, A reduces I to instances I_{1}, \ldots, I_{k}, solves these recursively, and combines their solutions to solve I, using time at most $\mathcal{O}\left(\eta(I)^{c}\right)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm A,

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1 \text {, and } \tag{7}\\
2^{\mu\left(I_{1}\right)}+\ldots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{8}
\end{align*}
$$

Then A solves any instance I in time at most $\mathcal{O}\left(\eta(I)^{c+1}\right) 2^{\mu(I)}$.

Applying the lemma

$$
\begin{aligned}
2^{\mu(G)} & \geq 2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{\mu(G)-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}} \\
1 & \geq 2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right)}+2^{-w_{d}-\sum_{i=2}^{d} p_{i} \cdot w_{i}-h_{d}}
\end{aligned}
$$

Branching algorithms
S. Gaspers

i	w_{i}	h_{i}
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

With these values for w_{i}, the constraints are satisfied and $\mu(G) \leq 2 n / 5$ for any graph of max degree ≤ 5.
Taking $c=2$ and $\eta(G)=n$, Lemma 3 shows that mis has run time $\mathcal{O}\left(n^{3}\right) 2^{2 n / 5}=\mathcal{O}\left(1.3196^{n}\right)$ on graphs of max degree ≤ 5.

Outline

(1) Introduction

(2) Simple Analysis

Introduction
(3) Measure Based Analysis

Simple Analysis
Measure Based
Analysis
4 Optimizing the measure
(5) Search Trees and Branching Numbers

Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines
6) Exponential Time Subroutines
(4) Toward's a tighter analysis

- Structures that arise rarely
- State Based Measures

Towards a tighter
analysis
Structures that arise
rarely
State Based Measures
Measure Based
Analysis for
Parameterized
Complexity
8. Measure Based Analysis for Parameterized Complexity

Compute optimal weights

- random local search [Fomin, Grandoni, Kratsch 2005, 2007]

Branching algorithms

- quasiconvex programming [Eppstein 2004, 2006]
- convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for h_{d}

$$
\begin{aligned}
(\forall d: 2 \leq d \leq 5) & h_{d}:=\min _{2 \leq i \leq d}\left\{w_{i}-w_{i-1}\right\} \\
& \downarrow \\
(\forall i, d: 2 \leq i \leq d \leq 5) & h_{d} \leq w_{i}-w_{i-1} .
\end{aligned}
$$

Use existing convex programming solvers to find optimum weights.

convex program in AMPL

```
param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
subject to MaxWeight {d in DEGREES}:
    Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
    g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
    h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p 2+p3=3}:
    2^(-W[3] - p2*g[2] - p3*g[3]) + 2^(-W[3] - p2*W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
    2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])
+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
    p}2+\textrm{p}3+\textrm{p}4+\textrm{p}5=5}
    2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])
+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
```


Optimal weights

i	w_{i}	h_{i}
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based Analysis

Optimizing the measure

Search Trees and Branching Number

Exponential Time Subroutines

Towards a tighter analysis
Structures that arise rarely
Slate Based Measure
Measure Based
Analysis for Parameterized Complexity

Outline

(1) Introduction

(3) Simple Analysis

(3) Measure Based Analysis

Simple Analysis
(4) Optimizing the measure

Measure Based
Analysis
Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time Subroutines
(6) Exponential Time Subroutines
(7) Towards a tighter analysis

- Structures that arise rarely
- State Based Measures

Towards a tighter
analysis
Structures that arise
rarely
State Based Measures
Measure Based
Analysis for
Parameterized
Complexity
8 Measure Based Analysis for Parameterized Complexity

Search Trees

Branching algorithms
s. Gaspers

Simple Analysis
Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis
Structures that arise rarely
State Based Measures
Measure Based
Analysis for
$\begin{array}{cccc}n-6 & n-8 & n-8 & n-10 \\ \vdots \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots\end{array}$

Branching number: Definition

Given a constraint

$$
2^{\mu(I)-a_{1}}+\cdots+2^{\mu(I)-a_{k}} \leq 2^{\mu(I)}
$$

its branching number is

$$
2^{-a_{1}}+\cdots+2^{-a_{k}}
$$

and is denoted by

$$
\left(a_{1}, \ldots, a_{k}\right)
$$

Clearly, any constraint with branching number at most 1 is satisfied.

Branching algorithms

Branching numbers: Properties

Branching algorithms
S. Gaspers

Dominance For any a_{i}, b_{i} such that $a_{i} \geq b_{i}$ for all $i, 1 \leq i \leq k$,

$$
\left(a_{1}, \ldots, a_{k}\right) \leq\left(b_{1}, \ldots, b_{k}\right),
$$

as $2^{-a_{1}}+\cdots+2^{-a_{k}} \leq 2^{-b_{1}}+\cdots+2^{-b_{k}}$.
In particular, for any $a, b>0$,
either $\quad(a, a) \leq(a, b) \quad$ or $\quad(b, b) \leq(a, b)$.
Balance If $0<a \leq b$, then for any ε such that $0 \leq \varepsilon \leq a$,

$$
(a, b) \leq(a-\varepsilon, b+\varepsilon)
$$

by convexity of 2^{x}.

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

Structures that arise rarely
Slate Based Measures

Measure Based
Analysis for
Parameterized
Complexity

Outline

(1) Introduction

- Simple Analysis

(3) Measure Based Analysis

Simple Analysis
(9) Optimizing the measure
(5) Search Trees and Branching Numbers

Measure Based
Analysis
Optimizing the
measure
Search Trees and
Branching Numbers
Exponential Time
Subroutines

6 Exponential Time Subroutines

Towards a tighter analysis- Structures that arise rarely
- State Based Measures

Towards a tighter analysis
Structures that arise
rarely
State Based Measures
Measure Based
Analysis for
Parameterized
Complexity
8 Measure Based Analysis for Parameterized Complexity

Exponential time subroutines

Lemma 4

Let A be an algorithm for a problem P, B be an algorithm for (special instances of) $P, c \geq 0$ be a constant, and $\mu(\cdot), \mu^{\prime}(\cdot), \eta(\cdot)$

Branching algorithms
S. Gaspers

Introduction
Simple Analysis be three measures for the instances of P, such that for any input instance $I, \mu^{\prime}(I) \leq \mu(I)$ and for any input instance I, A either solves P on I by invoking B with running time at most $\mathcal{O}\left(\eta(I)^{c+1}\right) 2^{\mu^{\prime}(I)}$, or reduces I to instances I_{1}, \ldots, I_{k}, solves these recursively, and combines their solutions to solve I, using time at most $\mathcal{O}\left(\eta(I)^{c}\right)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm A,

$$
\begin{align*}
(\forall i) \quad \eta\left(I_{i}\right) & \leq \eta(I)-1 \text {, and } \tag{9}\\
2^{\mu\left(I_{1}\right)}+\cdots+2^{\mu\left(I_{k}\right)} & \leq 2^{\mu(I)} . \tag{10}
\end{align*}
$$

Then A solves any instance I in time $\mathcal{O}\left(\eta(I)^{c+1}\right) 2^{\mu(I)}$.

Algorithm mis on general graphs

- use Lemma 4 with $A=B=\mathbf{m i s}, c=2, \mu(G)=0.35805 n$, $\mu^{\prime}(G)=\sum_{i=1}^{5} w_{i} n_{i}$, and $\eta(G)=n$
- for every instance $G, \mu^{\prime}(G) \leq \mu(G)$ because $\forall i, w_{i} \leq 0.35805$
- for each $d \geq 6$,

$$
(0.35805,(d+1) \cdot 0.35805) \leq 1
$$

- Thus, Algorithm mis has running time $\mathcal{O}\left(1.2817^{n}\right)$ for graphs of arbitrary degrees

Branching algorithms
S. Gaspers

Outline

（1）Introduction

（2）Simple Analysis
Introduction
Simple Analysis
（3）Measure Based Analysis
Measure Based
Analysis
a Optimizing the measure
Optimizing the
measure
Search Trees and
（5）Search Trees and Branching Numbers
Branching Numbers
Exponential Time
Subroutines
（6）Exponential Time Subroutines
Towards a tighter analysis
（7）Towards a tighter analysis
－Structures that arise rarely
Structures that arise
rarely
Slate Based Measures
－State Based Measures
（8）Measure Based Analysis for Parameterized Complexity

Rare Configurations

- Branching on a local configuration C does not influence overall running time if C is selected only a constant number
of times on the path from the root to a leaf of any search
$\mu^{\prime}(I):= \begin{cases}\mu(I)+c & \text { if } C \text { may be selected in the current subtree } \\ \mu(I) & \text { otherwise. }\end{cases}$

Avoid branching on regular instances in mis

Branching algorithms
S. Gaspers

else

Select $v \in V$ such that
(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum degree
return max $(1+\boldsymbol{\operatorname { m i s }}(G \backslash N[v]), \boldsymbol{\operatorname { m i s }}(G \backslash v))$

New measure:

$$
\mu^{\prime}(G)=\mu(G)+\sum_{d=3}^{5} \mathrm{~K}_{\delta}(G \text { has a } d \text {-regular subgraph }) C_{d}
$$

where $C_{d}, 3 \leq d \leq 5$, are constants.

Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_{i}, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_{i}=d$ and $p_{d} \neq d$,

$$
\left(w_{d}+\sum_{i=2}^{d} p_{i} \cdot\left(w_{i}-w_{i-1}\right), w_{d}+\sum_{i=2}^{d} p_{i} \cdot w_{i}+h_{d}\right) .
$$

All these branching numbers are at most 1 with the optimal set of weights on the next slide

Branching algorithms
S. Gaspers

Result

i	w_{i}	h_{i}
1	0	0
2	0.207137	0.207137
3	0.322203	0.115066
4	0.343587	0.021384
5	0.347974	0.004387

Branching algorithms

S．Gaspers

Thus，the modified Algorithm mis has running time $\mathcal{O}\left(2^{0.3480 \cdot n}\right)=\mathcal{O}\left(1.2728^{n}\right)$ ．

State based measures

- "bad" branching always followed by "good" branchings

Branching algorithms
S. Gaspers

Introduction
Simple Analysis
Measure Based
Analysis
Optimizing the
measure
where $\Psi: \mathcal{I} \rightarrow \mathbb{R}^{+}$depends on global properties of the instance.
Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis
Structures that arise

State Based Measures
Measure Based
Analysis for
Parameterized
Complexity

Outline

(1) Introduction

a Simple Analysis
(3) Measure Based Analysis
(4) Optimizing the measure
(5) Search Trees and Branching Numbers

Exponential Time
Subroutines

- Exponential Time Subroutines
(7) Towards a tighter analysis
- Structures that arise rarely
- State Based Measures

Measure Based
Analysis for
Parameterized
Complexity
Towards a tighter analysis
Structures that arise rarely
State Based Measules

8) Measure Based Analysis for Parameterized Complexity

Measure in Parameterized Complexity

Branching algorithms
S. Gaspers

- So far: only State Based Measure
- e.g. Wahlström's 3-Hitting Set algorithm analysed with measure $k-\Psi(I)$ where $\Psi: \mathcal{I} \rightarrow \mathbb{R}^{+}$depends on the number of 2-sets
- Here: use unrestricted measure

MIST

Definition 5

Max Internal Spanning Tree (MIST): Given a graph $G=(V, E)$ and a parameter k, does G have a spanning tree with at least k internal nodes?

We consider MIST on graphs of maximum degree 3 .

Branching algorithms
S. Gaspers

Preliminaries

Lemma 6 (Prieto, Sloper 2005)

An optimal solution T_{o} to MIST is a Hamiltonian path or the leaves of T_{o} are independent.

Introduction
Simple Analysis
Measure Based
Analysis
Optimizing the
measure
Search Trees and Branching Number

Exponential Time
Subroutines
Towards a tighter analysis
Structures that arise
rarely

Measure Based

Measure

$$
\begin{aligned}
& \qquad \mu(G, T, k):=k-\omega|X|-|Y|, \text { where } \\
& \qquad \begin{array}{l}
X:=\left\{v \in V \mid d_{G}(v)=3, d_{T}(v)=2\right\} \\
Y=\left\{v \in V \mid d_{G}(v)=d_{T}(v) \geq 2\right\}, \text { and } \\
\omega=0.45346 .
\end{array}
\end{aligned}
$$

Branching algorithms S. Gaspers

Analyse configurations to obtain branching factors $(\omega, 1)$,

Theorem 8

MIST can be solved in time $2.7321^{k} n^{\mathcal{O}(1)}$ on cubic graphs.

Thank you!

Questions?
Comments?

