Analysis of Branching Algorithms séminaire AlGco

Serge Gaspers¹

¹LIRMM – Université Montpellier 2, CNRS

Nothing is particularly hard if you divide it into small jobs. - Henry Ford (1863–1947)

March 26, 2009

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

(日)

Introduction

- Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- 6 Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures

(日)

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

イロト 不得 トイヨト イヨト

-

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET (MIS)

- Input: A graph G = (V, E).
- Output: An independent set of G of maximum cardinality.
- *I* ⊆ *V* is an independent set if the vertices in *I* are pairwise non-adjacent.

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

vleasure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Branching Algorithm

Branching Algorithm

- Selection: Select a local configuration of the problem instance
- Inspection: Determine the possible values this local configuration can take
- Recursion: Recursively solve subinstances based on these values
- Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances
- Reduction: transformation (selection, inspection and the creation of the subinstances for the recursion) of the initial instance into one or more subinstances
- Simplification: reduction to 1 subinstance
- Branching: reduction to ≥ 2 subinstances

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Branching Algorithm for MIS

Algorithm **mis**(*G*) **Input** : A graph G = (V, E). Introduction **Output**: The size of a maximum i.s. of G. 1 if $\Delta(G) < 2$ then // G has max degree < 2**return** the size of a maximum i.s. of G in polynomial time 2 3 else if $\exists v \in V : d(v) = 1$ then // v has degree 1 return $1 + mis(G \setminus N[v])$ 4 else if G is not connected then 5 Let G_1 be a connected component of G6 return $mis(G_1) + mis(G \setminus V(G_1))$ 7 else 8 Select $v \in V$ s.t. $d(v) = \Delta(G)$ // v has max degree 9 return max $(1 + mis(G \setminus N[v]), mis(G \setminus v))$ 10

Branching algorithms

Introduction

2 Simple Analysis

- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Measure Based Analysis for Parameterized Complexity

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Lemma 1

Let *A* be an algorithm for a problem *P*, and $\alpha > 0$, $c \ge 0$ be constants such that for any input instance *I*, *A* reduces *I* to instances I_1, \ldots, I_k , solves these recursively, and combines their solutions to solve *I*, using time at most $\mathcal{O}(|I|^c)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm *A*,

> $(\forall i: 1 \le i \le k) \quad |I_i| \le |I| - 1, \text{ and}$ (1) $2^{\alpha \cdot |I_1|} + \dots + 2^{\alpha \cdot |I_k|} \le 2^{\alpha \cdot |I|}.$ (2)

Then A solves any instance I in time at most $\mathcal{O}(|I|^{c+1})2^{\alpha \cdot |I|}$.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise

rarely State Based Measures

Simple Analysis for mis

- Reduction and combination steps: $O(n^2)$
- G disconnected:

$$(\forall s: 1 \le s \le n-1) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \le 2^{\alpha \cdot n}.$$
(3)

always satisfied by convexity of the function 2^x

• branch on vertex of degree $d \ge 3$

$$(\forall d: 3 \le d \le n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \le 2^{\alpha n}.$$
 (4)

Dividing all these terms by $2^{\alpha n}$, the constraints become

$$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \le 1.$$
 (5)

イロト 不得 トイヨト イヨト 二日

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Compute optimum α

By standard techniques [Kullmann 99], the minimum α satisfying the constraints is obtained by setting $x := 2^{\alpha}$, computing the unique positive real root of each of the characteristic polynomials

$$c_d(x) := x^{-1} + x^{-1-d} - 1,$$

and taking the maximum of these roots.

d	x	α
3	1.3803	0.4650
4	1.3248	0.4057
5	1.2852	0.3620
6	1.2555	0.3282
7	1.2321	0.3011

Alternatively, solve a mathematical program minimizing α subject to the constraints (the constraint for d = 3 is sufficient as all other constraints are weaker).

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Simple Analysis: Result

- use Lemma 1 with c = 2 and $\alpha = 0.464959$
- running time of Algorithm **mis** upper bounded by $\mathcal{O}(n^3) \cdot 2^{0.464959 \cdot n} = \mathcal{O}(2^{0.4650 \cdot n})$ or $\mathcal{O}(1.3803^n)$

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

Lower bound

$$T(n) = T(n-5) + T(n-3)$$

for this graph, run time is 1.1938.... poly(n)
Run time of algo mis is Ω(1.1938ⁿ)

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely

State Based Measures

Measure Based Analysis for Parameterized Complexity

(日)

Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $\mathcal{O}(1.3803^n)$

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

イロト 不得 トイヨト イヨト

э

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Measure based analysis

Goal, idea

capture more structural changes when reducing an instance to subinstances

Means

- potential-function method, such as
 - measure used by [Kullmann 1999],
 - quasiconvex analysis of backtracking algorithms [Eppstein 2004],
 - Measure & Conquer [FominGK 2005],
 - linear programming approach [ScottS 2007], and
 - much older potential-function analyses in mathematics and physics
- Example: Algorithm mis
 - advantage when degrees of vertices decrease

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely

State Based Measures

Model running time of **mis** by

$$T(n_1, n_2, ...)$$
, short $T(\{n_i\}_{i\geq 1})$,

where $n_i := |\{v \in V : d(v) = i\}|.$

- $G \setminus v$: neighbors' degree decreases
- $G \setminus N[v]$: a vertex in $N^2[v]$ has its degree decreased

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise

State Based Measures

Measure Based Analysis for Parameterized Complexity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multivariate recurrences (2)

We obtain the following recurrence where the maximum ranges over all *d* ≥ 3, all *p_i*, 2 ≤ *i* ≤ *d* such that ∑^{*d*}_{*i*=2}*p_i* = *d* and all *k* such that 2 ≤ *k* ≤ *d*:

$$T\left(\{n_{i}\}_{i\geq 1}\right) = \\ \max_{d,p_{2},...,p_{d},k} \begin{cases} T\left(\{n_{i} - p_{i} + p_{i+1} - \mathsf{K}_{\delta}(d=i)\}_{i\geq 1}\right) \\ + T\left(\{n_{i} - p_{i} - \mathsf{K}_{\delta}(d=i) - \mathsf{K}_{\delta}(k=i) \\ + \mathsf{K}_{\delta}(k=i+1)\}_{i\geq 1}\right) \end{cases}$$
(6)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

where $\mathsf{K}_{\delta}(F) = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}$

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Solve multivariate recurrence

- restrict to max degree 5
- [Eppstein 2004]: there exists a set of weights $w_1, \ldots, w_5 \in \mathbb{R}^+$ such that a solution to (6) is within a polynomial factor of a solution to the corresponding univariate weighted model $(T(\sum_{i=1}^5 \omega_i n_i) = \max \ldots)$.

Definition 2

A measure μ for a problem *P* is a function from the set of all instances for *P* to the set of non negative reals

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

From recurrences ...

$$\mu(G) := \sum_{i=1}^{5} w_i n_i$$
$$(\forall d: 2 \le d \le 5) \quad h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$$

By Eppstein, there exist weights w_i such that a solution to (6) corresponds to a solution to the following recurrence, where the maximum ranges over all $d, 3 \le d \le 5$, and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^{d} p_i = d$,

$$T(\mu(G)) = \max_{d, p_2, \dots, p_d, k} \begin{cases} T\left(\mu(G) - w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})\right) \\ +T\left(\mu(G) - w_d - \sum_{i=2}^d p_i \cdot w_i - h_d\right). \end{cases}$$

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

... to constraints

$$T(\mu(G)) \ge T\left(\mu(G) - w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})\right)$$
$$+ T\left(\mu(G) - w_d - \sum_{i=2}^d p_i \cdot w_i - h_d\right)$$

for all $d, 3 \le d \le 5$, and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^d p_i = d$.

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Measure Based Analysis

Lemma 3

Let *A* be an algorithm for a problem *P*, $c \ge 0$ be a constant, and $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of *P*, such that for any input instance *I*, *A* reduces *I* to instances I_1, \ldots, I_k , solves these recursively, and combines their solutions to solve *I*, using time at most $\mathcal{O}(\eta(I)^c)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm *A*,

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and } (7)$$

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$
(8)

Then A solves any instance I in time at most $\mathcal{O}(\eta(I)^{c+1})2^{\mu(I)}$.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Applying the lemma

$$2^{\mu(G)} \ge 2^{\mu(G)-w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G)-w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d}$$
$$1 \ge 2^{-w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d}$$

i	Wi	h_i
1	0	0
2	0.25	0.25
3	0.35	0.10
4	0.38	0.03
5	0.40	0.02

With these values for w_i , the constraints are satisfied and $\mu(G) \leq 2n/5$ for any graph of max degree ≤ 5 . Taking c = 2 and $\eta(G) = n$, Lemma 3 shows that **mis** has run time $\mathcal{O}(n^3)2^{2n/5} = \mathcal{O}(1.3196^n)$ on graphs of max degree ≤ 5 .

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

イロト 不得 トイヨト イヨト

э

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Compute optimal weights

- random local search [Fomin, Grandoni, Kratsch 2005, 2007]
- quasiconvex programming [Eppstein 2004, 2006]
- convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for h_d

Use existing convex programming solvers to find optimum weights.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

convex program in AMPL

```
algorithms
param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0: # weight for degree reductions from deg \le i
var Wmax;
                         # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight
                                                                              Optimizing the
                                                                              measure
subject to MaxWeight {d in DEGREES}:
  Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
  a[d] \le W[d] - W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
  h[d] \leq W[i] - W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
  2^{(-W[3] - p2 + q[2] - p3 + q[3])} + 2^{(-W[3] - p2 + W[2] - p3 + W[3] - h[3])} <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
  2^{(-W[4] - p2 * q[2] - p3 * q[3] - p4 * q[4])}
+ 2^{(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4])} <=1;
subject to Deq5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
                  p_{2+p_{3+p_{4+p_{5=5}}}
  2^{(-W[5] - p2 + q[2] - p3 + q[3] - p4 + q[4] - p5 + q[5])}
+ 2^{(-W[5] - p_2*W[2] - p_3*W[3] - p_4*W[4] - p_5*W[5] - h[5])} <=1;
```

▲□▶▲□▶★□▶★□▶ = つく⊙

Branching

Optimal weights

i	Wi	h_i
1	0	0
2	0.206018	0.206018
3	0.324109	0.118091
4	0.356007	0.031898
5	0.358044	0.002037

- use Lemma 3 with $\mu(G) = \sum_{i=1}^{5} w_i n_i \le 0.358044 \cdot n, c = 2$ and $\eta(G) = n$
- **mis** has run time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

イロト イ理ト イヨト イヨト

э

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Search Trees

Example: execution of **mis** on a P_n^2

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measure

Measure Based Analysis for Parameterized Complexity

Branching number: Definition

Given a constraint

$$2^{\mu(I)-a_1} + \dots + 2^{\mu(I)-a_k} \le 2^{\mu(I)},$$

its branching number is

$$2^{-a_1} + \cdots + 2^{-a_k}$$

and is denoted by

$$(a_1,\ldots,a_k)$$
.

Clearly, any constraint with branching number at most 1 is satisfied.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dominance For any a_i, b_i such that $a_i \ge b_i$ for all $i, 1 \le i \le k$,

$$(a_1,\ldots,a_k)\leq (b_1,\ldots,b_k),$$

as $2^{-a_1} + \dots + 2^{-a_k} \le 2^{-b_1} + \dots + 2^{-b_k}$. In particular, for any a, b > 0,

either $(a,a) \leq (a,b)$ or $(b,b) \leq (a,b)$.

Balance If $0 < a \le b$, then for any ε such that $0 \le \varepsilon \le a$,

 $(a,b) \le (a-\varepsilon,b+\varepsilon)$

by convexity of 2^x .

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures
- 8 Measure Based Analysis for Parameterized Complexity

イロト イ理ト イヨト イヨト

-

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Exponential time subroutines

Lemma 4

Let *A* be an algorithm for a problem *P*, *B* be an algorithm for (special instances of) *P*, $c \ge 0$ be a constant, and $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of *P*, such that for any input instance *I*, $\mu'(I) \le \mu(I)$ and for any input instance *I*, *A* either solves *P* on *I* by invoking *B* with running time at most $\mathcal{O}(\eta(I)^{c+1})2^{\mu'(I)}$, or reduces *I* to instances I_1, \ldots, I_k , solves these recursively, and combines their solutions to solve *I*, using time at most $\mathcal{O}(\eta(I)^c)$ for the reduction and combination steps (but not the recursive solves) and such that for any reduction done by Algorithm *A*,

$$\begin{array}{ll} (\forall i) & \eta(I_i) \leq \eta(I) - 1, \, \textit{and} \\ \\ 2^{\mu(I_1)} + \dots + 2^{\mu(I_k)} \leq 2^{\mu(I)}. \end{array} \tag{9}$$

Then A solves any instance I in time $\mathcal{O}(\eta(I)^{c+1})2^{\mu(I)}$.

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Algorithm **mis** on general graphs

- use Lemma 4 with A = B = mis, c = 2, $\mu(G) = 0.35805n$, $\mu'(G) = \sum_{i=1}^{5} w_i n_i$, and $\eta(G) = n$
- for every instance G, $\mu'(G) \le \mu(G)$ because $\forall i, w_i \le 0.35805$
- for each $d \ge 6$,

 $(0.35805, (d+1) \cdot 0.35805) \le 1$

 Thus, Algorithm mis has running time O(1.2817ⁿ) for graphs of arbitrary degrees

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
 - Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures

8 Measure Based Analysis for Parameterized Complexity

イロト 不得 トイヨト イヨト

э

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

Structures that arise rarely State Based Measures

- Branching on a local configuration *C* does not influence overall running time if *C* is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm
- Can be proved formally by using measure

 $\mu'(I) := \begin{cases} \mu(I) + c & \text{ if } C \text{ may be selected in the current subtree} \\ \mu(I) & \text{ otherwise.} \end{cases}$

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Vleasure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Avoid branching on regular instances in mis

else

Select $v \in V$ such that

- (1) v has maximum degree, and
- (2) among all vertices satisfying (1), v has a neighbor of minimum degree

return max $(1 + mis(G \setminus N[v]), mis(G \setminus v))$

New measure:

$$\mu'(G) = \mu(G) + \sum_{d=3}^{5} \mathsf{K}_{\delta}(G ext{ has a } d ext{-regular subgraph})C_d$$

where C_d , $3 \le d \le 5$, are constants.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For each $d, 3 \le d \le 5$ and all $p_i, 2 \le i \le d$ such that $\sum_{i=2}^d p_i = d$ and $p_d \ne d$,

$$\left(w_d + \sum_{i=2}^d p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^d p_i \cdot w_i + h_d\right).$$

All these branching numbers are at most 1 with the optimal set of weights on the next slide

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely

Measure Based Analysis for Parameterized Complexity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Result

i	Wi	h_i
1	0	0
2	0.207137	0.207137
3	0.322203	0.115066
4	0.343587	0.021384
5	0.347974	0.004387

Thus, the modified Algorithm **mis** has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n)$.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

(日)

State based measures

• "bad" branching always followed by "good" branchings

amortize over branching numbers

$$\mu'(I) := \mu(I) + \Psi(I),$$

where $\Psi: \mathcal{I} \to \mathbb{R}^+$ depends on global properties of the instance.

Branching algorithms

6. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

rarely

State Based Measures

Introduction

- 2 Simple Analysis
- 3 Measure Based Analysis
- Optimizing the measure
- 5 Search Trees and Branching Numbers
- Exponential Time Subroutines
- 7 Towards a tighter analysis
 - Structures that arise rarely
 - State Based Measures

8 Measure Based Analysis for Parameterized Complexity

イロト イ理ト イヨト イヨト

3

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise

rarely State Based Measures

Measure in Parameterized Complexity

- So far: only State Based Measure
- e.g. Wahlström's 3-HITTING SET algorithm analysed with measure $k \Psi(I)$ where $\Psi : \mathcal{I} \to \mathbb{R}^+$ depends on the number of 2-sets
- Here: use unrestricted measure

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis

Structures that arise rarely

Measure Based Analysis for Parameterized Complexity

Definition 5

Max Internal Spanning Tree (MIST): Given a graph G = (V, E) and a parameter k, does G have a spanning tree with at least k internal nodes?

We consider MIST on graphs of maximum degree 3.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the neasure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely

State Based Measures

Lemma 6 (Prieto, Sloper 2005)

An optimal solution T_o to MIST is a Hamiltonian path or the leaves of T_o are independent.

Lemma 7

MIST on cubic graphs has a (2k + 2) kernel.

Hamiltonian Path can be solved in time $O(1.251^n) = 1.5651^k n^{O(1)}$ on cubic graphs.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

$$\mu(G, T, k) := k - \omega |X| - |Y|, \text{ where}$$

$$X := \{ v \in V \mid d_G(v) = 3, d_T(v) = 2 \},$$

$$Y = \{ v \in V \mid d_G(v) = d_T(v) \ge 2 \}, \text{ and}$$

$$\omega = 0.45346.$$

Analyse configurations to obtain branching factors $(\omega, 1)$, $(2 - \omega, 1 - \omega)$ and $(1 - \omega, 2 - \omega, 2 - \omega)$ (see blackboard).

Theorem 8

MIST can be solved in time $2.7321^k n^{\mathcal{O}(1)}$ on cubic graphs.

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise rarely State Based Measures

Measure Based Analysis for Parameterized Complexity

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Thank you!

Questions?

Comments?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Branching algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based Analysis

Optimizing the measure

Search Trees and Branching Numbers

Exponential Time Subroutines

Towards a tighter analysis Structures that arise

State Based Measures