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Nothing is particularly hard if you divide it into small jobs.
– Henry Ford (1863–1947)
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MAXIMUM INDEPENDENT SET

MAXIMUM INDEPENDENT SET (MIS)

Input: A graph G = (V,E).
Output: An independent set of G of maximum cardinality.
I ⊆ V is an independent set if the vertices in I are pairwise
non-adjacent.

a b

c d e

f g h
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Branching Algorithm

Branching Algorithm

Selection: Select a local configuration of the problem
instance
Inspection: Determine the possible values this local
configuration can take
Recursion: Recursively solve subinstances based on these
values
Combination: Compute an optimal solution of the instance
based on the optimal solutions of the subinstances

Reduction: transformation (selection, inspection and the
creation of the subinstances for the recursion) of the initial
instance into one or more subinstances
Simplification: reduction to 1 subinstance
Branching: reduction to ≥ 2 subinstances
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Branching Algorithm for MIS

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum i.s. of G.

if ∆(G) ≤ 2 then // G has max degree ≤ 21

return the size of a maximum i.s. of G in polynomial time2

else if ∃v ∈ V : d(v) = 1 then // v has degree 13

return 1 + mis(G \ N[v])4

else if G is not connected then5

Let G1 be a connected component of G6

return mis(G1) + mis(G \ V(G1))7

else8

Select v ∈ V s.t. d(v) = ∆(G) // v has max degree9

return max (1 + mis(G \ N[v]),mis(G \ v))10
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Simple Analysis

Lemma 1

Let A be an algorithm for a problem P, and α > 0, c ≥ 0 be
constants such that for any input instance I, A reduces I to
instances I1, . . . , Ik, solves these recursively, and combines their
solutions to solve I, using time at most O(|I|c) for the reduction
and combination steps (but not the recursive solves) and such
that for any reduction done by Algorithm A,

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2)

Then A solves any instance I in time at most O(|I|c+1)2α·|I|.
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Simple Analysis for mis

Reduction and combination steps: O(n2)
G disconnected:

(∀s : 1 ≤ s ≤ n− 1) 2α·s + 2α·(n−s) ≤ 2α·n. (3)

always satisfied by convexity of the function 2x

branch on vertex of degree d ≥ 3

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (5)
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Compute optimum α

By standard techniques [Kullmann 99], the minimum α satisfying
the constraints is obtained by setting x := 2α, computing the
unique positive real root of each of the characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and taking the maximum of these roots.

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

Alternatively, solve a mathematical program minimizing α subject
to the constraints (the constraint for d = 3 is sufficient as all other
constraints are weaker).
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Simple Analysis: Result

use Lemma 1 with c = 2 and α = 0.464959
running time of Algorithm mis upper bounded by
O(n3) · 20.464959·n = O(20.4650·n) or O(1.3803n)
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Lower bound

v1 v2 v3 v4 v5 v6 vn−1 vn

T(n) = T(n− 5) + T(n− 3)

for this graph, run time is 1.1938 . . . · poly(n)
Run time of algo mis is Ω(1.1938n)
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Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

lower bound Ω(1.1938n)
upper bound O(1.3803n)
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Measure based analysis

Goal, idea
capture more structural changes when reducing an instance
to subinstances

Means
potential-function method, such as

measure used by [Kullmann 1999],
quasiconvex analysis of backtracking algorithms [Eppstein
2004],
Measure & Conquer [FominGK 2005],
linear programming approach [ScottS 2007], and
much older potential-function analyses in mathematics and
physics

Example: Algorithm mis
advantage when degrees of vertices decrease
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Multivariate recurrences

Model running time of mis by

T(n1, n2, . . .), short T
(
{ni}i≥1

)
,

where ni := |{v ∈ V : d(v) = i}|.
G \ v: neighbors’ degree decreases
G \ N[v]: a vertex in N2[v] has its degree decreased

16 / 45



Branching
algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based
Analysis

Optimizing the
measure

Search Trees and
Branching Numbers

Exponential Time
Subroutines

Towards a tighter
analysis
Structures that arise
rarely

State Based Measures

Measure Based
Analysis for
Parameterized
Complexity

Multivariate recurrences (2)

We obtain the following recurrence where the maximum
ranges over all d ≥ 3, all pi, 2 ≤ i ≤ d such that

∑d
i=2 pi = d

and all k such that 2 ≤ k ≤ d:

T
(
{ni}i≥1

)
=

max
d,p2,...,pd,k


T
({

ni − pi + pi+1 − Kδ(d = i)
}

i≥1

)
+T
({

ni − pi − Kδ(d = i)− Kδ(k = i)
+ Kδ(k = i + 1)

}
i≥1

) (6)

where Kδ(F) =

{
1 if F true
0 otherwise
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Solve multivariate recurrence

restrict to max degree 5
[Eppstein 2004]: there exists a set of weights

w1, . . . ,w5 ∈ R+ such that a solution to (6) is within a
polynomial factor of a solution to the corresponding
univariate weighted model (T(

∑5
i=1 ωini) = max . . .).

Definition 2
A measure µ for a problem P is a function from the set of all
instances for P to the set of non negative reals
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From recurrences ...

µ(G) :=
5∑

i=1

wini

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

By Eppstein, there exist weights wi such that a solution to (6)
corresponds to a solution to the following recurrence, where the
maximum ranges over all d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such
that

∑d
i=2 pi = d,

T (µ(G)) = max
d,p2,...,pd,k

T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+T
(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
.
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... to constraints

T (µ(G)) ≥ T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+ T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
for all d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such that

∑d
i=2 pi = d.
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Measure Based Analysis

Lemma 3

Let A be an algorithm for a problem P, c ≥ 0 be a constant, and
µ(·), η(·) be two measures for the instances of P, such that for
any input instance I, A reduces I to instances I1, . . . , Ik, solves
these recursively, and combines their solutions to solve I, using
time at most O(η(I)c) for the reduction and combination steps
(but not the recursive solves) and such that for any reduction
done by Algorithm A,

(∀i) η(Ii) ≤ η(I)− 1, and (7)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (8)

Then A solves any instance I in time at most O(η(I)c+1)2µ(I).
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Applying the lemma

2µ(G) ≥ 2µ(G)−wd−
∑d

i=2 pi·(wi−wi−1) + 2µ(G)−wd−
∑d

i=2 pi·wi−hd

1 ≥ 2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd

i wi hi

1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

With these values for wi, the constraints are satisfied and
µ(G) ≤ 2n/5 for any graph of max degree ≤ 5.
Taking c = 2 and η(G) = n, Lemma 3 shows that mis has run
time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.
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Compute optimal weights

random local search [Fomin, Grandoni, Kratsch 2005, 2007]
quasiconvex programming [Eppstein 2004, 2006]
convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for hd

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

�

(∀i, d : 2 ≤ i ≤ d ≤ 5) hd ≤ wi − wi−1.

Use existing convex programming solvers to find optimum
weights.
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convex program in AMPL

param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;
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Optimal weights

i wi hi

1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

use Lemma 3 with µ(G) =
∑5

i=1 wini ≤ 0.358044 · n, c = 2
and η(G) = n

mis has run time O(n3)20.358044·n = O(1.2817n)
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Search Trees

µ(I)

µ(I1)

. . . . . . . . .

µ(I2)

. . . . . . . . .

. . . µ(Ik)

. . . . . . . . .

Example: execution of mis on a P2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10
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Branching number: Definition

Given a constraint

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I),

its branching number is

2−a1 + · · ·+ 2−ak ,

and is denoted by

(a1, . . . , ak) .

Clearly, any constraint with branching number at most 1 is
satisfied.

29 / 45



Branching
algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based
Analysis

Optimizing the
measure

Search Trees and
Branching Numbers

Exponential Time
Subroutines

Towards a tighter
analysis
Structures that arise
rarely

State Based Measures

Measure Based
Analysis for
Parameterized
Complexity

Branching numbers: Properties

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) ,

as 2−a1 + · · ·+ 2−ak ≤ 2−b1 + · · ·+ 2−bk .
In particular, for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) .

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b + ε)

by convexity of 2x.
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Exponential time subroutines

Lemma 4

Let A be an algorithm for a problem P, B be an algorithm for
(special instances of) P, c ≥ 0 be a constant, and µ(·), µ′(·), η(·)
be three measures for the instances of P, such that for any input
instance I, µ′(I) ≤ µ(I) and for any input instance I, A either
solves P on I by invoking B with running time at most
O(η(I)c+1)2µ

′(I), or reduces I to instances I1, . . . , Ik, solves these
recursively, and combines their solutions to solve I, using time at
most O(η(I)c) for the reduction and combination steps (but not
the recursive solves) and such that for any reduction done by
Algorithm A,

(∀i) η(Ii) ≤ η(I)− 1, and (9)

2µ(I1) + · · ·+ 2µ(Ik) ≤ 2µ(I). (10)

Then A solves any instance I in time O(η(I)c+1)2µ(I).
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Algorithm mis on general graphs

use Lemma 4 with A = B = mis, c = 2, µ(G) = 0.35805n,
µ′(G) =

∑5
i=1 wini, and η(G) = n

for every instance G, µ′(G) ≤ µ(G) because ∀i,wi ≤ 0.35805
for each d ≥ 6,

(0.35805, (d + 1) · 0.35805) ≤ 1

Thus, Algorithm mis has running time O(1.2817n) for graphs
of arbitrary degrees
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Rare Configurations

Branching on a local configuration C does not influence
overall running time if C is selected only a constant number
of times on the path from the root to a leaf of any search
tree corresponding to the execution of the algorithm
Can be proved formally by using measure

µ′(I) :=

{
µ(I) + c if C may be selected in the current subtree
µ(I) otherwise.
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Avoid branching on regular instances in mis

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of

minimum degree
return max (1 + mis(G \ N[v]),mis(G \ v))

New measure:

µ′(G) = µ(G) +
5∑

d=3

Kδ(G has a d-regular subgraph)Cd

where Cd, 3 ≤ d ≤ 5, are constants.
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Resulting Branching numbers

For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that
∑d

i=2 pi = d
and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1),wd +
d∑

i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of
weights on the next slide
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Result

i wi hi

1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Thus, the modified Algorithm mis has running time
O(20.3480·n) = O(1.2728n).
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State based measures

“bad” branching always followed by “good” branchings
amortize over branching numbers

µ′(I) := µ(I) + Ψ(I),

where Ψ : I → R+ depends on global properties of the instance.

regular not
regular

−R

+R
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Measure in Parameterized Complexity

So far: only State Based Measure
e.g. Wahlström’s 3-HITTING SET algorithm analysed with
measure k −Ψ(I) where Ψ : I → R+ depends on the
number of 2-sets
Here: use unrestricted measure

41 / 45



Branching
algorithms

S. Gaspers

Introduction

Simple Analysis

Measure Based
Analysis

Optimizing the
measure

Search Trees and
Branching Numbers

Exponential Time
Subroutines

Towards a tighter
analysis
Structures that arise
rarely

State Based Measures

Measure Based
Analysis for
Parameterized
Complexity

MIST

Definition 5

Max Internal Spanning Tree (MIST): Given a graph G = (V,E)
and a parameter k, does G have a spanning tree with at least k
internal nodes?

We consider MIST on graphs of maximum degree 3.
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Preliminaries

Lemma 6 (Prieto, Sloper 2005)

An optimal solution To to MIST is a Hamiltonian path or the
leaves of To are independent.

Lemma 7

MIST on cubic graphs has a (2k + 2) kernel.

Hamiltonian Path can be solved in time O(1.251n) = 1.5651knO(1)

on cubic graphs.
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Measure

µ(G,T, k) := k − ω|X| − |Y|, where

X := {v ∈ V | dG(v) = 3, dT(v) = 2},
Y = {v ∈ V | dG(v) = dT(v) ≥ 2}, and
ω = 0.45346.

Analyse configurations to obtain branching factors (ω, 1),
(2− ω, 1− ω) and (1− ω, 2− ω, 2− ω) (see blackboard).

Theorem 8

MIST can be solved in time 2.7321knO(1) on cubic graphs.
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Thank you!

Questions? Comments?
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