
Paths, cycles, trees and
sub(di)graphs in directed graphs

Jørgen Bang-Jensen

University of Southern Denmark

Odense, Denmark

Paths, cycles, trees and sub(di)graphs in directed graphs – p. 1/53



Longest paths and Cycles

Bang-Jensen, Gutin and Yeo 1998: the hamiltonian
cycle problem can be solved in polynomial time for
semicomplete multipartite digraphs.

Problem 1 (Bang-Jensen, Gutin and Yeo, 1998) Is there
a polynomial algorithm for finding a longest cycle in a
semicomplete multipartite digraph?

true for semicomplete bipartite and for extended
semicomplete digraphs.

also true for digraphs that are either locally
semicomplete, quasi-transitive or path-mergeable

Paths, cycles, trees and sub(di)graphs in directed graphs – p. 2/53



A digraph D is hamiltonian-connected if it contains an
(x,y)-hamiltonian path for every choice of distinct
vertices x, y ∈ V (D).

Thomassen 1980: Every 4-strong semicomplete
digraph is hamiltonian-connected.

Bang-Jensen, Manoussakis and Thomassen 1992:
Polynomial algorithm to test whether a given
semicomplete digraph contains an (x, y)-hamiltonian
path.

Problem 2 What is the complexity of finding a longest
(x, y)-path in a semicomplete digraph? Is there a structural
characterization?
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Minimum cycle factors

Given a digraph D with a cycle factor, what is the
minimum number of cycles in a cycle factor of D?

The minimum cycle factor problem is easy for extended
semicomplete digraphs and semicomplete bipartite
digraphs, but seems very difficult for general
semicomplete multipartite digraphs.

Definition 0.1 For every digraph, D, with at least one
cycle and every non-negative integer, i, let
ηi(D) = min{j | D has a j-path-i-cycle factor}.
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Thus η0(D) = pc(D) and ηi(D) = 0 if and only if D has
an i-cycle factor, so for general digraphs the
computation of ηi(D) is NP-hard already for i = 0, 1.

Calculating η0(D) and η1(D) can be done in polynomial
time for quasi-transitive digraphs.

Theorem 0.2 (Bang-Jensen and Nielsen 2006) For
every strong quasi-transitive digraph, D, containing a
cycle factor, we have

kmin(D) = 1 +
∑

i∈I(D)

min{j | ηj(Qi) = mi(D)}.

Furthermore, every cycle factor of D has at least
1 +

∑
i∈I(D)

(pc(Qi) − mi(D)) cycles.
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Theorem 0.3 (Bang-Jensen and Nielsen 2006) For
k ∈ {2, 3} there exist polynomial algorithms to verify
whether a quasi-transitive digraph has a cycle factor
with at most k cycles.

Conjecture 1 (Bang-Jensen and Nielsen 2006) For
each fixed k there is a polynomial algorithm which
determines whether a given quasi-transitive digraph D
has a cycle factor with at most k cycles and, if so, finds
a minimum cycle factor of D.
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Covering a digraph by cycles

Gallai conjectured in 1964 that the vertices of every
strong digraph can be covered by at most α(D) cycles.

Proof of Gallai’s conjecture (Bessy and Thomassé
2006):

Let D = (V,A). Given an ordering E = v1, . . . , vn of V ,
we say that an arc vivj is forward if i < j and backward if
j < i.

An ordering E = v1, . . . , vn is elementary equivalent to
another ordering E′ of V , if one of the following holds:

(i) E′ = vn, v1, . . . , vn−1,
(ii) E′ = v2, v1, v3, . . . , vn and neither v1v2 nor v2v1 is an

arc of D.
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Two orderings E,E′ of V are equivalent if there is a
sequence E = E1, . . . , Ek = E′ such that Ei and Ei+1

are elementary equivalent, for i = 1, . . . , k − 1.

The classes of this equivalence relation are called the
cyclic orders of D.

A cycle C is simple w.r.t. a cyclic order O if C has
precisely one backward arc w.r.t. O.

A cyclic order O is coherent if every arc of D is contained
in a simple cycle.

Theorem 0.4 (Bessy and Thomassé) Every strong
digraph has a coherent cyclic order and one can find
such an ordering in polynomial time.
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An independent set X of D is cyclic independent with
respect to O if there exists an ordering v1, . . . , vn of O
such that X = {v1, . . . , vk}.

The cyclic independence number , denoted α(O), of a
coherent cyclic order O is the maximum k such that D
has a cyclic independent set X with respect to O such
that |X| = k.

Observe that α(O) depends on the choice of O

Bessy and Thomassé proved that for every strong
digraph D and every coherent cyclic order of D, the
maximum cardinality of a cyclic independent set equals
the minimum number of cycles needed to cover V (D).

This clearly implies Gallai’s conjecture.
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A different proof due to Cameron and Edmonds
(1982,1992,2008):

A feedback arc set in a digraph D = (V,A) is a set
F ⊂ A such that D − F is acyclic.

A feedback arc set F is coherent if every arc is contained
in a cycle C such that |C ∩ F | = 1.

By the Bessy-Thomasse Theorem every strong digraph
has a coherent feedback arc set: Just take a coherent
cyclic order and let F be the backward arcs.
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Theorem 0.5 (Coflow theorem) [Cameron and Edmonds
1982] Let D = (V,A), let ω : A → Z0 be a weighting of its
arcs and extend ω to sets of arcs in the obvious way. Then

max{|S| : S ⊆ V ;∀ cycle C, |S ∩ C| ≤ ω(C)}

= min{
∑

C∈C

ω(C) + |V −
⋃

C∈C

V (C)| : C is a family of cycles of D}.
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Apply the coflow theorem to a strongly connected
digraph D with a coherent feedback arc set F , by letting
ω(a) = 1 if a ∈ F and ω(a) = 0 otherwise.

With this choice of ω every S in the formula above is
independent, because every arc uv is contained in a
cycle C with ω(C) = 1. This C shows that S cannot
contain the arc uv.

Also note that the minimum in the theorem is attained
by some family C of cycles which cover all of V : if v is
not covered by C let vw be an arc and add a cycle C
with ω(C) = 1 to C.
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Now we can prove Gallai’s conjecture as follows:

Max |S| where S is independent is at least

max{|S| : S ⊆ V ;∀ cycle C, |S ∩ C| ≤ ω(C)}

which is equal to

min{
∑

C∈C ω(C) : C is a family of cycles covering D}

which is at least the minimum cardinality of a family of
cycles covering V (D), because ω(C) ≥ 1 for every cycle.
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Decompositions

Conjecture 2 (Kelly 1964) Every regular tournament on
2k + 1 vertices has a decomposition into k-arc-disjoint
hamiltonian cycles.

Conjecture 3 (Bang-Jensen and Yeo, 2001) Every
k-arc-strong tournament decomposes into k spanning
strong digraphs.
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Several results which support the conjecture

If D = (V,A) is a 2-arc-strong semicomplete digraph
then it contains 2 arc-disjoint spanning strong
subdigraphs except for one digraph on 4 vertices.

The conjecture is true for every tournament (in fact
semicomplete digraphs) which has a non-trivial cut
(both sides of size at least 2) with precisely k arcs in
one direction.

Every k-arc-strong tournament with minimum in- and
out-degree at least 37k contains k arc-disjoint spanning
subdigraphs H1, H2, . . . , Hk such that each Hi is
strongly connected.
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Arc-disjoint hamiltonian paths and cycles

Conjecture 4 (Thomassen, 1982) Every 3-strong
tournament contains two arc-disjoint hamiltonian cycles.

2-strong tournaments may not have arc-disjoint
hamiltonian cycles. See next page!
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Problem 3 (Bang-Jensen, Huang and Yeo, 2001) Which
tournaments T contain a hamiltonian cycle C such that
λ(T − C) ≥ λ(T ) − 1?

It follows from the family of tournaments below that not
all 2-strong tournaments satisfy this.

2-strong 2-strong
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Conjecture 5 Let T be an arbitrary tournament. Then
either T contains two arc-disjoint hamiltonian cycles or T
contains two arcs a, a′ ∈ A(T ) such that T − {a, a′} has no
hamiltonian cycle.

In Figure 1 above we can destroy all hamiltonian cycles
by removing two arcs, but removing one is not enough!

By a result of Fraisse and Thomassen every k-strong
tournament contains a hamiltonian cycle avoiding any
prescribed set of k − 1 arcs.

Hence, if true, Conjecture 5 would imply Conjecture 4.

Conjecture 6 There exists a polynomial algorithm for
deciding whether a given tournament contains two
arc-disjoint hamiltonian cycles.
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A tournament is almost transitive if it can be obtained
from a transitive tournament by reversing the arc from
the vertex of maximum out-degree to the vertex of
maximum in-degree.

Thomassen 1989: a tournament T contains two
arc-disjoint hamiltonian paths unless it has a strong
component which is an almost transitive tournament of
odd order or has two consecutive strong components of
size 1.
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Problem 4 Characterize those tournaments which contain
two arc-disjoint hamiltonian paths with prescribed start
vertices.

By inspection of the example below we see that no
arc-strong connectivity suffices.

λ = k λ = k

x
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Small certificates for strong connectivity

Problem 5 (The MSSS problem) : Given a strong digraph
D = (V,A)
find a spanning strong subdigraph D′ = (V,A′) of D such
that |A′| is minimum.

The MSSS problem is NP-hard.

Let pc(D) denote the path covering number of D and let
pc∗(D) = 0 if D is hamiltonian and pc∗(D) = pc(D)
otherwise.
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Lowerbound: For every strongly connected digraph D,
every spanning strong subdigraph of D has at least
n + pc∗(D) arcs.
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Quasi-transitive digraphs

A digraph D = (V,A) is quasi-transitive if xy, yz ∈ A
implies that either yz ∈ A or zy ∈ A (possibly both).

Bang-Jensen, Huang and Yeo, 1999: The MSSS
problem is solvable in polynomial time for
quasi-transitive digraphs. Furthermore, if D is a strong
quasi-transitive digraph on n vertices, then the number
of arcs in a minimum spanning strong subdigraph of D
is n + pc∗(D).

Bang-Jensen and Yeo, 1999: The same statement as
above holds for digraphs that are either extended
semicomplete of semicomplete bipartite.
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Bang-Jensen and Yeo, 1999: Let D be a strong digraph
which is either extended semicomplete or
semicomplete bipartite on n vertices, then there exists a
minimum spanning strong subdigraph D′ of D which
contains a longest cycle of D.

Conjecture 7 The MSSS problem is polynomially
solvable for semicomplete multipartite digraphs.

Problem 6 Does every strong semicomplete
multipartite digraph D contain a minimum spanning
strong subdigraph D′ of D which contains a longest
cycle of D?
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A 7
4-approximation algorithm for MSSS

Theorem 0.6 In time O(n2) we can find a 7
4 -approximation

for the MSSS problem in a strong digraph with no cut
vertex.
Proof:

If n = 2, we return D as the optimal solution so we may
assume n ≥ 3.

Since D has no cut vertex it contains a cycle of length at
least 3. Let P0 be such a cycle and add to it a maximal
sequence P1, P2, . . . , Ps of ears of size at least three.

Let X = V (P0) ∪ . . . ∪ V (Ps).

We can show that Y = V (D) − X is an independent set.
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Let D′
X be the strong spanning subdigraph of D〈X〉

consisting of all arcs from P0, P1, . . . , Ps.

Since each ear Pi, i ≤ s, adds at least two new vertices
to X, we have s ≤ |X|−3

2 .

Hence we get

|A(D′
X)| = |X| + s ≤ |X| +

|X| − 3

2
<

3

2
|X|.

By adding each vertex of Y to D′
X as an ear of size two

we obtain a strong spanning subdigraph D′ of D with
m′ = |A(D′

X)| + 2(n − |X|) arcs.
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By the calculation above,

m′ <
3

2
|X| + 2(n − |X|) ≤ 2n −

|X|

2
.(1)

If |X| ≥ n
2 , then we get from (1) that m′ ≤ 7

4n and we are
done.

So assume |X| < n
2 . It follows from the fact that Y is

independent that every strong spanning subdigraph of
D must contain at least 2(n − |X|) arcs (one in and out
from every vertex of Y ).
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Thus the approximation ratio α which we obtain by
returning D′ as our solution is no worse than

m′

2(n−|X|) ≤
2n− |X|

2

2(n−|X|) .

This number is strictly increasing in |X| and as |X| < n
2

we have α ≤ 7
4 .

Best know polynomial approximation guarantee is 3
2

(Vetta 2001).
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Certificates for Higher Connectivities

Every k-arc-strong digraph on n vertices contains a
spanning k-arc-strong digraph with at most 2k(n − 1)
arcs.

(Bang-Jensen, Huang and Yeo, 2000): For any n ≥ 3
and k ≥ 1, every k-arc-strong tournament T on n
vertices contains a spanning k-arc-strong subdigraph
D′ with at most nk + 136k2 arcs. Furthermore, such a
spanning subdigraph can be found in polynomial time.

For any tournament T we denote by δ≥k(T ) the
minimum number of arcs in a spanning subdigraph D of
T in which has δ(D) ≥ k. If δ(T ) < k we let δ≥k(T ) = ∞.

For every tournament with δ(T ) ≥ k we have
δ≥k(T ) ≤ nk + k(k + 1)/2 and this is sharp. Furthermore,
if T is k-arc-strong δ≥k(T ) ≤ nk + k(k − 1)/2.
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For any k-arc-strong tournament T we denote by i(k, T )
the minimum number of arcs in a spanning k-arc-strong
subdigraph D of T .

Conjecture 8 (Bang-Jensen, Huang and Yeo, 2000) For
every natural number k and every k-arc-strong tournament
T we have i(k, T ) = δ≥k(T ).

Problem 7 Does there exist a function g = g(k) such that
every k-strong tournament contain a spanning k-strong
subdigraph with at most kn + g(k) arcs?
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Arc-disjoint branchings

An out-branching (in-branching ) rooted at s in a directed
multigraph D is a spanning tree in UG(D) which is oriented
in such a way that every vertex except s has precisely one
arc entering (leaving):

s s

F+
s F−

s
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Edmonds 1973: A digraph D contains k arc-disjoint
out-branchings rooted at the vertex s if and only if

d−(X) ≥ k for every X ⊆ V − s.(2)

or, equivalently (by Menger’s theorem), s has k arc-disjoint
paths to every other vertex.
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Out-branchings with few leaves

A leaf of an out-branching F+
s is a vertex of out-degree

zero in F+
s .

By a slight modification of the Gallai-Millgram theorem
and Edmond’s branching theorem, every 2-arc-strong
tournament contains arc disjoint out-branchings
F+

s,1, F
+
s,2 such that each has at most two leaves.

Problem 8 When does a tournament contain two
arc-disjoint out-branchings F+

s,1, F
+
s,2 such that one of these

is a hamiltonian path from s?
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The example in Figure 1 shows that 2-strong connectivity is
not sufficient to guarantee arc-disjoint out-branchings
F+

s,1, F
+
s,2 such that one of these is a hamiltonian path from s.

2-strong 2-strong

Figure 1: A 2-strong tournament
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Arc-disjoint in- and out-branchings

Thomassen 1986: deciding whether a digraph D has
arc-disjoint in- and out-branchings F−

v , F+
v with the

same root is NP-complete

Bang-Jensen 1986: every 2-arc-strong tournament T
has arc-disjoint in- and out-branchings F−

v , F+
v for every

choice of v ∈ V (T )

There is a polynomial algorithm for deciding whether a
given tournament T has arc-disjoint in- and
out-branchings F−

u , F+
v for given u, v ∈ V (T ).

Bang-Jensen and Yeo 2001: Every 74k-arc-strong
tournament contains 2k arc-disjoint branchings
F−

u1
, . . . , F−

uk
, F+

v1
, . . . , F+

vk
.
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Conjecture 9 (Bang-Jensen and Yeo, 2001) Every
2k-arc-strong tournament contains 2k arc-disjoint
branchings F−

u1
, . . . , F−

uk
, F+

v1
, . . . , F+

vk
.

Conjecture 10 (Bang-Jensen and Gutin, 1998) There is
a polynomial algorithm for deciding whether a given digraph
D which is either locally semicomplete or quasi-transitive
has arc-disjoint in- and out-branchings F−

u , F+
v for given

u, v ∈ V (D).
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Conjecture 11 (Thomassen) Every 1010-arc-strong
digraph D has arc-disjoint in- and out-branchings F−

v , F+
v for

every choice of v ∈ V (D).

Very little is known about this problem for general
digraphs.

There exist 2-strong directed multigraph with no
arc-disjoint in- and out branchings rooted at the vertex s.

Problem 9 Try to find a 3-arc-strong digraph D which does
not have arc-disjoint in- and out-branchings F−

v , F+
v for

some choice of v ∈ V (D).
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Edge-disjoint spanning trees in graphs

Theorem 0.7 (Tutte 1961) An undirected graph G = (V,E)
has k edge-disjoint spanning trees if and only if

∑

1≤i<j≤p

|(Vi, Vj)| ≥ k(p − 1),(3)

holds for every partition V1, V2, . . . , Vp of V . Here |(Vi, Vj)|
denotes the number of edges with one end in Vi and the
other in Vj .
Deciding whether a graph has k edge-disjoint trees and
finding the desired trees if they exist can be done in
polynomial time via matroid partition algorithms.

The characterization also holds for multigraphs.
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Arc-disjoint out-branchings in digraphs

An out-branching rooted at s in a digraph D = (V,A) is a
connected subdigraph B+

s of D where each vertex distinct
from s has in-degree 1 and s has in-degree 0. I.e it is an
orientation of a spanning tree of UG(D) such that s can
reach every other vertex by a directed path.
Theorem 0.8 (Edmonds 1973) A digraph D = (V,A) has k
arc-disjoint out-branchings rooted at s ∈ V if and only if

d−(X) ≥ k ∀ ∅ 6= X ⊆ V − s.(4)

Deciding whether a digraph has k arc-disjoint
out-branchings rooted at a given vertex s and finding the
desired branchings if they exist can be done in polynomial
time via flows
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Thomassé’s question

Problem 10 (Thomassé 2007?) Find a good
characterization of directed graphs having two disjoint
directed spanning trees such that one of the spanning trees
is an out-branching rooted at a given vertex.

Equivalently: Characterize those digraphs which have an
out-branching B+

s rooted at a given vertex s such that
UG(D − A(B+

s )) is connected.

Problem 11 Is there a polynomial algorithm to decide the
existence of such an out-branching?
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(arc-)disjoint (s,t)-paths in (di)graphs

By Menger’s theorem, a (di)graph H has two
edge-disjoint (arc-disjoint) (s, t)-paths if and only if there
there is no edge (arc) whose removal destroys all
(s, t)-paths.

Easy to find the desired paths in linear time if they exist.

What about the mixed version: Given a digraph D and
vertices s, t. Does UG(D) contain two edge-disjoint
(s, t)-paths P,Q such that P is also a directed (s, t)-path
in D?

If a digraph D contains a branching B+
s such that

UG(D − A(B+
s )) is connected, then for every other

vertex t, UG(D) contains two edge-disjoint st-paths P,Q
so that P is a directed (s, t)-path in D.
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Linkage problems

FORTUNE, HOPCROFT, and WYLLIE proved that most directed
linkage problems are NP-complete. To be more precise let
us consider the following linkage problem. We fix a digraph
P .
Problem 12 (Directed linkage with demand digraph P )
Given a digraph D and an injection h : V (P ) → V (D),
decide if h extends to an injection on V (P )∪A(P ) such that,
for every arc a = st of P , h(a) is an (h(s), h(t))-path in D if
s 6= t and a cycle in D containing h(s) if s = t, and, for each
b ∈ A(P ) − {a}, V (h(a)) ∩ V (h(b)) ⊆ {h(s), h(t)}.

FORTUNE et al. call this the Fixed directed subgraph
homeomorphism problem.

Paths, cycles, trees and sub(di)graphs in directed graphs – p. 42/53



Theorem 0.9 (Fortune, Hopcroft and Wyllie 1980)
Assuming P 6= NP, the linkage problem with demand
digraph P is polynomially solvable precisely when all arcs of
P have the same head or they all have the same tail.

It is an easy consequence of Graph Minors XIII that the
undirected analogue is polynomially solvable for any fixed
demand graph.

Theorem 0.10 (Fortune, Hopcroft and Wyllie, 1980) For
every demand digraph P , there is a polynomial time
algorithm to decide if a given directed acyclic digraph D and
an injection h : V (P ) → V (D) admits an extension of h to a
homeomorphism from P to D.
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Mixed linkages

Let us fix a mixed graph P = (V ′, E′ ∪ A′) with edges E′ and
arcs A′, and consider a digraph D. We call an injection h on
V ′ ∪ A′ ∪ E′ a mixed homeomorphism from P to D, if

(H1) for every vertex x of P , h(x) is a vertex of D,

(H2) for every arc a = st of P , h(a) is an (h(s), h(t))-path in D
if s 6= t and a cycle in D containing h(s) if s = t,

(H3) for every edge e = st of P , h(e) is an h(s)h(t)-path in
UG(D) if s 6= t and a cycle in UG(D) containing h(s) if
s = t, and

(H4) for distinct x, y ∈ A′ ∪ E′, V (h(x)) ∩ V (h(y)) ⊆ h(V (x)),

where V (x) denotes the set of endvertices of an arc or edge
from P
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Problem 13 (Directed linkage with mixed demand graph P )
Given a directed graph D and an injection h : V (P ) → V (D),
decide whether h extends to a mixed homeomorphism from
P to D.
Theorem 0.11 The directed linkage problem with mixed
demand graph P is polynomially solvable in the following
cases:

(a) P has no arcs, or

(b) P has no edges and there is some vertex s in V (P ) that
is either the head of all arcs in P or the tail of all arcs in
P .

The problem is NP-complete for all other mixed demand
graphs P .
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Corollary 0.12 The following problems are all
NP-complete for digraphs. Decide whether for a given
input digraph D and vertices s 6= t, p 6= q, there exist

(a) a cycle B in D containing s and a cycle C in UG(D)
containing p with V (B) ∩ V (C) ⊆ {s} ∩ {p};

(b) an (s, t)-path P in D and a cycle C in UG(D) containing
p with V (P ) ∩ V (C) ⊆ {s, t} ∩ {p};

(c) a cycle B in D containing s and a pq-path Q in UG(D)
with V (B) ∩ V (Q) ⊆ {s} ∩ {p, q};

(d) an (s, t)-path P in D and a pq-path Q in UG(D) with
V (P ) ∩ V (Q) ⊆ {s, t} ∩ {p, q}. ⋄
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Note that, by Corollary 0.12(d), it is already NP-complete
to decide whether the underlying graph of a given digraph
D contains two internally disjoint (s, t)-paths P1, P2 so that
P1 is also a path in D.

Paths, cycles, trees and sub(di)graphs in directed graphs – p. 47/53



The acyclic case

Theorem 0.13 The directed linkage problem with mixed
demand graph P is polynomially solvable for acyclic
digraphs in the following cases:

(a) P has no arcs, or

(b) P has no edges, or

(c) P contains a directed cycle.

The problem is NP-complete for all other mixed demand
graphs.
Corollary 0.14 It is NP-complete to decide for a given
acyclic digraph D and vertices s, t whether UG(D) contains
contains two edge-disjoint st-paths P,Q so that P is a
directed (s, t)-path in D.

Paths, cycles, trees and sub(di)graphs in directed graphs – p. 48/53



Disjoint (un)directed cycles in a digraph

Lovász (1965) characterized those undirected graphs
that do not have two disjoint cycles. The
characterization leads to a polynomial algorithm to
decide the existence of such cycles.

A digraph is inter-cyclic if it does not contain two disjoint
cycles.

McQuaig characterized inter-cyclic digraphs with
minimum in- and out-degree at least 2.

His characterization leads to a polynomial algorithm for
deciding whether a given digraph is inter-cyclic.

Problem 14 What is the complexity of deciding for a given
digraph D whether UG(D) contains two disjoint cycles B,C
such that B is also a cycle in D?
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Theorem 0.15 There exists a polynomial algorithm for
deciding whether the underlying graph of a given strongly
connected digraph D contains two disjoint cycles B,C so
that B is also a cycle of D.

Seems non-trivial to prove. Our proof uses

McCuaig’s characterization of inter-cyclic digraphs,

Thomassen’s solution of the 2-path-problem for acyclic
digraphs and

a non-trivial algorithm for the case of cycle transversal
number one.
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Why so difficult?

In the mixed version we can not, like in the directed case,
employ three important concepts:

(i) Symmetry of the objects we are looking for,
(ii) strongly connectedness — the general directed version

reduces immediately to this case, whereas here we
needed to add it as a condition to the input digraph —,
and, finally,

(iii) reduction by contracting an arc which is either the
unique out-arc at their tail or the unique in-arc at their
tail — in the directed case, this does not change the
answer, so that we can immediately assume that all
vertices have in- and out-degree at least 2.
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Every 6-connected graph is 2-linked [Seymour 1980,
Thomassen 1980].

For every natural number k there exists and k-strong
digraph which is not 2-linked [Thomassen 1991].

Let us call digraph D 2-mixed-linkable if, for every choice of
vertices s1, s2, t1, t2 ∈ V (D), the underlying graph of D
contains a pair of internally disjoint paths P1, P2 such that P1

is an s1t1 path in the underlying graph of D and P2 is a
directed (s2, t2)-path.
Problem 15 Does there exist an integer N so that every
N -strong digraph is 2-mixed-linkable?
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Conjecture 12 (Bang-Jensen and Yeo, 2002) There
exists an integer N such that every N -arc-strong digraph D
contains arc-disjoint spanning strong subdigraphs D1, D2.
Conjecture 13 There exists an integer N such that every
N -arc-strong digraph D contains a spanning strong
subdigraph D′ such that the underlying graph of D − A(D′)
is (2-edge-)connected.
Theorem 0.16 (BJ+Yeo 09) It is NP-complete to decide
whether a 2-regular digraph D contains a spanning strong
subdigraph D′ such that the underlying graph of D − A(D′)
is connected.
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