Maximal Acyclic Subtournaments

Serge Gaspers (formerly LIRMM)

Matthias Mnich

(Eindhoven Univ of Technology, The Netherlands)

Tournaments & Acyclicity

Tournament: orientation of a complete graph.

- A tournament is acyclic / transitive if it does not contain any directed cycles.
- Maximal acyclic subtournament: not properly contained in any other acyclic subtournament.

Problem and Results

 How many maximal acyclic subtournaments can a tournament with n vertices have?

Application:
Banks winner in Elections

Upper Bound

Moon (1971): at most 1.717ⁿ. Gaspers & M. (2009): at most 1.667ⁿ.

Lower Bound

Moon (1971): at least 1.4570ⁿ. Gaspers & M. (2009): at least 1.5448ⁿ.

Strong Tournaments & Acyclicity

Folklore: tournament acyclic \leftrightarrow no 3-cycles.

A tournament T is **strong** if there is a directed path between any pair of vertices.

Lower bound: $21^{n/7} \approx 1.5448^{n}$

Payley digraph of quadratic residues mod 7 Fano plane generator

Upper Bound I: Branching

Property: Every vertex beats $\leq n-2$ other vertices.

Example Case: v beats n-2 other vertices.

b ∉ W: source *v*, f(n-2) many

b \in W, $v \in$ W: source (b,v), f(n-4) many

b \in W, $v \notin$ W: source c_1 or c_2 , 2f(n-3) many

 $f(T) \le f(n-2) + 2f(n-3) + f(n-4) \le f(n)$ for $f(n) = 1.6181^n$

Upper Bound II: Scores

- The **score** of a vertex *v* is its outdegree.
- The score sequence of a tournament is the non-decreasing sequence of out-degrees: $s = s(T) = (s_1,...,s_n)$ with $s_1 \le ... \le s_n$
- Landau (1953, "On dominance and the structure of animal societies"): s is the score sequence of a tournament \leftrightarrow

$$\sum_{v=1}^{k} s_v \ge \binom{k}{2} + 1 \text{ for all } k = 1, \dots, n-1, \text{ and}$$

$$\sum_{v=1}^{n} s_v = \binom{n}{2}$$

Upper Bound II: Special Sequences

$$S_n = \{s = (s_1, ..., s_n) \colon 3 \le s_1 \le ... \le s_n \le n-4\}.$$

$$G \colon S_n \to IR_+, G(s) = \sum \beta^{s_i}$$

$$\sigma = (3,3,3,3,3,5,7,7,7,7,7) \qquad \text{if } n = 11$$

$$\sigma = (3,3,3,3,3,3,3,8,8,8,8,8,8) \qquad \text{if } n = 12$$

$$\sigma = (3,3,3,3,3,3,3,6,9,9,9,9,9) \qquad \text{if } n = 13$$

$$\sigma = (3,3,3,3,3,3,3,4,7,8,..., n-9,n-8,n-5,n-4,n-4,n-4,n-4,n-4) \text{ if } n \ge 14.$$

Lemma: $G(s) \leq G(\sigma)$ for all $s \in S_n$.

Upper Bound II: Convexity

Lemma: $G(s) \le G(\sigma)$ for all $s \in S_n$. Technical proof by strict convexity of G.

$$\sigma = (3,3,3,3,3,3,6,9,9,9,9,9)$$
 if $n = 13$

Corollary:

f(T) ≤ G(s) ≤ G(σ) =
$$6\beta^3 + \beta^6 + 6\beta^9 \le \beta^n$$

for β ≥ 1.6259

Lemma: $G(s) \leq G(\sigma)$ for all $s \in S_n$.

$$\sigma = (3,3,3,3,3,3,4,7,8,...,n-9,n-8,n-5,n-4,n-4,n-4,n-4,n-4,n-4)$$

Prove claims based on G being strictly convex:

Let $s \in S_n$ be a maximizer of G. Then...

Claim 1: score c appears multiple times \rightarrow c \in {3,n-4}.

Claim 2: scores c \in {3,n-4} appear 2-6 times each.

Claim 3: scores c \in {3,n-4} appear exactly 6 times.

Claim 4: $s = \sigma$.

Summary

f(n): maximum number of maximal acyclic subtournaments of a tournament with *n* vertices

- Moon (1971): $1.4570^{n} \le f(n) \le 1.717^{n}$
- Gaspers & M. (2009): $1.5448^n \le f(n) \le 1.667^n$
- Exact bounds for small tournaments.

Open Problems (and Conjectures)

- We can improve the bound slightly at the expense of a much longer proof. New technique for better upper bounds?
- Conjecture: f(n) = 1.5448ⁿ.
- More general digraphs?
- Approach applicable to Tournament Dominating Sets?