A logical approach to matroid decomposition

Yann Strozecki

Équipe de Logique Mathématique, Paris 7
(1) Introduction to Matroids
(2) Branch-Width Decomposition
(3) $M S O_{M}$ and reduction to $M S O$ on trees
(4) Applications and an example
(5) Abstract construction of matroids

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms:

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms:
(1) $\varnothing \in \mathcal{I}$

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms:
(1) $\varnothing \in \mathcal{I}$
(2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms:
(1) $\varnothing \in \mathcal{I}$
(2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$
(3) If I_{1} and I_{2} are in \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2}-I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

The first concrete example of matroid is the vector matroid.
Let A be a matrix, the ground set E is the set of the columns and a set of columns is independent if the vectors are linearly independent.

The first concrete example of matroid is the vector matroid.
Let A be a matrix, the ground set E is the set of the columns and a set of columns is independent if the vectors are linearly independent.

$$
\mathbf{A}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent.

The second example is the cycle matroid of a graph.
Let G be a graph, the ground set of his cycle matroid is E the set of his edges.
A set is said to be dependent if it contains a cycle.

The second example is the cycle matroid of a graph.
Let G be a graph, the ground set of his cycle matroid is E the set of his edges.
A set is said to be dependent if it contains a cycle.

3
Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Lemma

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Lemma

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by $1, \ldots, n$ and the edges by $1, \ldots, m$. We build the matrix A such as $A_{i, j}=1$ iff the edge j is incident to the vertex i.

Lemma

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by $1, \ldots, n$ and the edges by $1, \ldots, m$. We build the matrix A such as $A_{i, j}=1$ iff the edge j is incident to the vertex i.
The dependence relation is the same over the edges and over the vectors representing the edges.

Lemma

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by $1, \ldots, n$ and the edges by $1, \ldots, m$. We build the matrix A such as $A_{i, j}=1$ iff the edge j is incident to the vertex i.
The dependence relation is the same over the edges and over the vectors representing the edges.

This matrix represents the former graph:

$$
\mathbf{X}=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Definition

A base of a matroid is an independent set maximal for the inclusion.

Definition

A base of a matroid is an independent set maximal for the inclusion.

Lemma

Every base is of the same length.

Definition

A base of a matroid is an independent set maximal for the inclusion.

Lemma

Every base is of the same length.

In a vector matroid a base is a maximal free family.

Definition

A base of a matroid is an independent set maximal for the inclusion.

Lemma

Every base is of the same length.

In a vector matroid a base is a maximal free family.
In a cycle matroid it is a spanning tree of the graph.

Definition

In a matroid, a circuit is a minimal dependent set.

Definition

In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

Theorem

A set \mathcal{C} of subsets of the set E is the collection of circuits of a matroid if and only if :
(1) $\varnothing \notin \mathcal{C}$

Definition

In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

Theorem

A set \mathcal{C} of subsets of the set E is the collection of circuits of a matroid if and only if :
(1) $\varnothing \notin \mathcal{C}$
(2) $C_{1}, C_{2} \in \mathcal{C}^{2}$ if $C_{1} \subseteq C_{2}$ then $C_{1}=C_{2}$

Definition

In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

Theorem

A set \mathcal{C} of subsets of the set E is the collection of circuits of a matroid if and only if :
(1) $\varnothing \notin \mathcal{C}$
(2) $C_{1}, C_{2} \in \mathcal{C}^{2}$ if $C_{1} \subseteq C_{2}$ then $C_{1}=C_{2}$
(3) $C_{1}, C_{2} \in \mathcal{C}^{2}, e \in C_{1} \cap C_{2} \Rightarrow \exists C \in \mathcal{C}, C \subseteq C_{1} \cup C_{2} \backslash\{e\}$

(1) Introduction to Matroids

(2) Branch-Width Decomposition

(3) MSO_{M} and reduction to $M S O$ on trees

4 Applications and an example

(5) Abstract construction of matroids

Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

$$
X=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s
- E_{s}^{*} is the subspace generated by all the leaves not in the tree rooted in s

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s
- E_{s}^{*} is the subspace generated by all the leaves not in the tree rooted in s
- B_{s} is the intersection of E_{s} and E_{s}^{*}

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The width of a matroid is the minimum of the widths of its branch decompositions.

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The width of a matroid is the minimum of the widths of its branch decompositions.

Theorem

There is an fpt algorithm which computes a branch decomposition of a representable matroid A of width at most $3 t$ if $b w(A) \leq t$. If $b w(A)>t$, the algorithm halts without output.

(1) Introduction to Matroids

(2) Branch-Width Decomposition

(3) $M S O_{M}$ and reduction to $M S O$ on trees

4 Applications and an example
(5) Abstract construction of matroids

The following relations define the monadic second order theory on matroids, called MSO_{M}, which is inspired by the MSO_{2} logic over the graphs.
(1) =, the equality for element and set of the matroid
(2) $e \in F$, where e is an element of the set F
(3) indep (F), where F is a set and the predicate is true iff F is an independent set of the matroid

The following relations define the monadic second order theory on matroids, called $M S O_{M}$, which is inspired by the MSO_{2} logic over the graphs.
(1) $=$, the equality for element and set of the matroid
(2) $e \in F$, where e is an element of the set F
(3) indep (F), where F is a set and the predicate is true iff F is an independent set of the matroid

The fact of being a circuit is definable in this logic.

$$
\operatorname{Circuit}(X)=\neg \operatorname{indep}(X) \wedge \forall Y(Y \nsubseteq X \vee X=Y \vee \operatorname{indep}(Y))
$$

We now want to prove the following theorem :

Theorem

The model checking problem for MSO_{M} is decidable in time $f(t, k, l) \times n^{3}$ over the set of representable matroids, where f is a computable function, k the size of the field, t the branch-width and I the size of the formula.

We now want to prove the following theorem :

Theorem

Let M be a matroid of branch-width less than t, \bar{T} one of its enhanced tree and $\phi(\vec{x})$ a MSO_{M} formula with free variables \vec{x}, we have

$$
(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow(\bar{T}, f(\vec{a})) \models F(\phi(\vec{x}))
$$

Constructing the Enhanced Tree

Constructing the Enhanced Tree

For each node s of a decomposition tree we compute a base of B_{s}, and we put in a characteristic matrix of s the bases of its boundary subspace and the ones of its two children.

Constructing the Enhanced Tree

For each node s of a decomposition tree we compute a base of B_{s}, and we put in a characteristic matrix of s the bases of its boundary subspace and the ones of its two children.

Definition (Enhanced branch decomposition tree)

Let T be a branch decomposition tree of the matroid represented by A, an enhanced branch decomposition tree is T with, on each node, a label representing a characteristic matrix at this node.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F}, denoted $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F}, denoted $\lambda=\left(\lambda_{1}, \ldots, \lambda_{I}\right)$.

Definition (Signatures of a set)

Let A be a matrix representing a matroid and T one of its enhanced tree. Let s be a node of T, X a subset of the columns of A in bijection with the leaves of T_{s}. Let c_{1}, \ldots, c_{l} denote the vectors of the third part of C_{s}, which are a base of B_{s}. Let v an element of B_{s}, obtained by a non trivial linear combination of elements of X. If v is written $\sum_{i} \lambda_{i} c_{i}$ in the base c_{1}, \ldots, c_{l}, we say that X admits the signature $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ at s. X also always admits \varnothing as signature at s.

$$
X=\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) ;\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\} \quad C_{s_{1}}=\left(\begin{array}{l|l|l}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

$$
X=\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) ;\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\} \quad C_{s_{1}}=\left(\begin{array}{l|l|l}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad X \text { admits }(1)
$$

Lemma

Let T be an enhanced tree, s one of its nodes with children s_{1}, s_{2} and $N_{s}=\left(N_{1}\left|N_{2}\right| N_{3}\right)$ the label of $s . X_{1}$ and X_{2} are respectively elements in bijection with leaves of $T_{s_{1}}$ and $T_{s_{2}}$. Assume we have the relation

$$
\begin{equation*}
\sum \mu_{i} N_{1}^{i}+\sum \gamma_{j} N_{2}^{j}=\sum \lambda_{k} N_{3}^{k} \tag{1}
\end{equation*}
$$

then $X=X_{1} \cup X_{2}$ admits λ at s if and only if X_{1} admits μ at s_{1} and X_{2} admits γ at s_{2}.

Theorem (Characterization of dependency)

Let A be a matrix representing a matroid, T one of its enhanced tree and X a set of column of A. X is dependent if and only if there exist a signature λ_{s} for each node s of the tree T such that :
(1) if s_{1} and s_{2} are the children of s labeled by N then $\lambda_{s}, \lambda_{s_{1}}, \lambda_{s_{2}}$ and N satisfy Equation 1
(2) the set of leaves of signature non \varnothing is a non empty subset of X
(3) the signature at the root is $(0, \ldots, 0)$

- A signature is represented by $\overrightarrow{X_{\lambda}}$ indexed by all the signatures of size less than t.
- A signature is represented by $\overrightarrow{X_{\lambda}}$ indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- A signature is represented by $\overrightarrow{X_{\lambda}}$ indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is bounded by a function in t.
- A signature is represented by $\overrightarrow{X_{\lambda}}$ indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is bounded by a function in t.
- Consistency :

$$
\Omega\left(\overrightarrow{X_{\lambda}}\right)=\forall s \bigvee_{\lambda}\left(X_{\lambda}(s) \bigwedge_{\lambda^{\prime} \neq \lambda} \neg X_{\lambda^{\prime}}(s)\right)
$$

The signature satisfy Equation 1 represented by the predicate θ :

$$
\Psi_{1}\left(s, \overrightarrow{X_{\lambda}}\right)=\exists s_{1}, s_{2} \operatorname{lchild}\left(s, s_{1}\right) \wedge \operatorname{rchild}\left(s, s_{2}\right)
$$

$$
\bigwedge_{\lambda_{1}, \lambda_{2}, \lambda, N}\left(\operatorname{label}(s)=N \wedge X_{\lambda_{1}}\left(s_{1}\right) \wedge X_{\lambda_{2}}\left(s_{2}\right) \wedge X_{\lambda}(s)\right) \Rightarrow \theta\left(N, \lambda_{1}, \lambda_{2}, \lambda\right)
$$

The set of leaves of signature non \varnothing is a non empty subset of X :

$$
\begin{gathered}
\Psi_{2}\left(X, \overrightarrow{X_{\lambda}}\right)=\forall s\left[\left(\text { leaf }(s) \wedge \neg X_{\varnothing}(s)\right) \Rightarrow\left(X(s) \wedge X_{(1)}(s)\right)\right] \\
\wedge \exists u\left(\text { leaf }(u) \wedge \neg X_{\varnothing}(u)\right)
\end{gathered}
$$

The signature at the root is $(0, \ldots, 0)$:

$$
\Psi_{3}\left(\overrightarrow{X_{\lambda}}\right)=\exists s \operatorname{root}(s) \wedge X_{(0, \ldots, 0)}(s)
$$

By combination of the three previous formulas we obtain a MSO formula for $\operatorname{Indep}(X)$, of size bounded by a function in k and t.

By combination of the three previous formulas we obtain a MSO formula for $\operatorname{Indep}(X)$, of size bounded by a function in k and t.

By induction we translate ϕ a $M S O_{M}$ formula over a matroid into $F(\phi)$ a $M S O$ formula over enhanced tree.

We have then proved

Theorem

Let M be a matroid of branch-width less than t, \bar{T} one of its enhanced tree and $\phi(\vec{x})$ a MSO_{M} formula with free variables \vec{x}, we have

$$
(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow(\bar{T}, f(\vec{a})) \models F(\phi(\vec{x}))
$$

(1) Introduction to Matroids

(2) Branch-Width Decomposition
(3) $M S O_{M}$ and reduction to $M S O$ on trees
(4) Applications and an example
(5) Abstract construction of matroids

Definition (Spectrum)

The spectrum of a formula ϕ is the set $\operatorname{spec}(\phi)=\{n|M|=\phi$ and $|M|=n\}$.

Definition (Spectrum)

The spectrum of a formula ϕ is the set $\operatorname{spec}(\phi)=\{n|M|=\phi$ and $|M|=n\}$.

Definition (Ultimately periodic)

A set X of integers is said to be ultimately periodic if there are two integers a and b such that, for $n>a$ in X we have $n=a+k \times b$.

Definition (Spectrum)

The spectrum of a formula ϕ is the set $\operatorname{spec}(\phi)=\{n|M|=\phi$ and $|M|=n\}$.

Definition (Ultimately periodic)

A set X of integers is said to be ultimately periodic if there are two integers a and b such that, for $n>a$ in X we have $n=a+k \times b$.

Theorem

Let ϕ a formula of $M S O_{M}$, then the spectrum of ϕ restricted to matroids of branch-width t is ultimately periodic.

Theorem (Courcelle)

Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the X_{1}, \ldots, X_{n} such that $t \models \phi\left(X_{1}, \ldots, X_{n}\right)$ with preprocessing time $\mathcal{O}(|t| \times h t(t))$.

Theorem (Courcelle)

Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the X_{1}, \ldots, X_{n} such that $t \models \phi\left(X_{1}, \ldots, X_{n}\right)$ with preprocessing time $\mathcal{O}(|t| \times h t(t))$.

Corollary

Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be an MSO_{M} formula, for every matroid of branch-width t, the enumeration of the sets satisfying ϕ can be done with linear delay after a cubic preprocessing time.

All the previous theorems also work with colored matroids and colored tree.

All the previous theorems also work with colored matroids and colored tree.

A-Circuit is the problem to decide, given a matroid M and a subset A of its elements, if there is a circuit in which A is included.

All the previous theorems also work with colored matroids and colored tree.

A-Circuit is the problem to decide, given a matroid M and a subset A of its elements, if there is a circuit in which A is included.

Generalisation of very natural problems and decidable in linear time over matroids of bounded branch-width.

(1) Introduction to Matroids

(2) Branch-Width Decomposition

(3) $M S O_{M}$ and reduction to $M S O$ on trees

4 Applications and an example
(5) Abstract construction of matroids

How to glue matroids together to form new matroids ?

How to glue matroids together to form new matroids ?

Definition (Boundaried matroid)

A pair (M, γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from $[|1, t|]$ to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

Example of an operation on representable matroid
$N_{1}=\left(M_{1}, \gamma_{1}\right)$ and $N_{2}=\left(M_{2}, \gamma_{2}\right)$ are two t boundaried representable matroids represented by the set of vectors A_{i} in the vector space $E_{i} . E_{1} \times E_{2}$ is the direct product of the two vector spaces and $\left\langle\left\{\gamma_{1}(j)-\gamma_{2}(j)\right\}\right\rangle$ is the subspace generated by the elements of the form $\gamma_{1}(j)-\gamma_{2}(j)$.

Example of an operation on representable matroid
$N_{1}=\left(M_{1}, \gamma_{1}\right)$ and $N_{2}=\left(M_{2}, \gamma_{2}\right)$ are two t boundaried representable matroids represented by the set of vectors A_{i} in the vector space $E_{i} . E_{1} \times E_{2}$ is the direct product of the two vector spaces and $\left\langle\left\{\gamma_{1}(j)-\gamma_{2}(j)\right\}\right\rangle$ is the subspace generated by the elements of the form $\gamma_{1}(j)-\gamma_{2}(j)$.

Definition

Let E be the quotient space of $\left(E_{1} \times E_{2}\right)$ by $\left\langle\left\{\gamma_{1}(j)-\gamma_{2}(j)\right\}\right\rangle$. There are natural injections from A_{1} and A_{2} into $E_{1} \times E_{2}$ and then in E. The elements of $A=\left(A_{1}, \gamma_{1}\right) \bar{\oplus}\left(A_{2}, \gamma_{2}\right)$ are the images of A_{1} and A_{2} by these injections minus the boundary elements. The dependence relation is the linear dependence in E.

A matroid M which is partitioned in three independent sets $\gamma_{i}^{\prime}\left(\left[\left|1, t_{i}\right|\right]\right)$ with $t_{i} \leq t$ for $i=1,2,3$ is called a 3-partitioned matroid.

A matroid M which is partitioned in three independent sets $\gamma_{i}^{\prime}\left(\left[\left|1, t_{i}\right|\right]\right)$ with $t_{i} \leq t$ for $i=1,2,3$ is called a 3-partitioned matroid.

Definition

Let $\overline{N_{1}}=\left(N_{1}, \gamma_{1}\right)$ and $\overline{N_{2}}=\left(N_{2}, \gamma_{2}\right)$ be respectively a t_{1} and a t_{2} boundaried matroids. $\bar{N}=\overline{N_{1}} \odot_{M} \overline{N_{2}}$ is a t_{3} boundaried matroid defined by :
$\left(\overline{N_{1}} \oplus\left(M, \gamma_{1}^{\prime}\right), \gamma_{2}^{\prime}\right) \oplus \overline{N_{2}}$ with boundary γ_{3}^{\prime}.

$\mathrm{M} \oplus \mathrm{N}_{1}$

$\mathrm{N}_{1} \odot_{\mathrm{M}} \mathrm{N}_{2}$

Definition (Terms)

Let \mathcal{L} a finite set of boundaried matroids and \mathcal{M} a finite set of 3-partitioned matroids. A term of $T(\mathcal{L}, \mathcal{M})$ and its value are recursively defined in the following way :

- ϵ is a 0 term whose value is the empty matroid
- an element of \mathcal{L} with a boundary of size t is a term whose value is itself
- Let T_{1} and T_{2} be two terms of value M_{1} and M_{2} which are a t_{1} and a t_{2} boundaried matroids and $M \in \mathcal{M}$ partitioned in three sets of cardinality t_{1}, t_{2} and $t_{3} . M T_{1} T_{2}$ is a term whose value is the t_{3} boundaried matroid $M_{1} \odot_{M} M_{2}$.
$T\left(\Upsilon, \mathcal{M}_{t}^{\mathbb{F}}\right):$
$\mathcal{M}_{t}^{\mathbb{F}}$ is the set of $3 t$ partitioned matrix on the field \mathbb{F}
Υ the set containing the two following matrices with a boundary :
- Υ_{0} is the matrix $\left(\begin{array}{l|l}1 & 0 \\ 0 & 1\end{array}\right)$.
- Υ_{1} is the matrix $(1 \mid 1)$.

We have built something we already know :

Theorem

A finitely representable matroid is in $T\left(\Upsilon, \mathcal{M}_{t}^{\mathbb{F}}\right)$ if and only if it is of branch-width less than t.

Need another operation to have something different.

The set B is an independent set of size t. $i_{1} \circ \gamma_{1}=i_{2} \circ \gamma_{2}$ where γ_{1} and γ_{2} are injective their images are the boundaries and therefore independent sets of M_{1} and M_{2}.

Figure: The diagram of the pushout

A set \mathcal{D} is the set of dependent sets of a matroid if it satisfies :

- $\left(A_{1}\right): D_{1}, D_{2} \in \mathcal{D}^{2}, e \in D_{1} \cap D_{2} \Rightarrow D_{1} \cup D_{2} \backslash\{e\} \in \mathcal{D}$, where \mathcal{D} is the set of its dependent sets.
- $\left(A_{2}\right): D \in \mathcal{D}, D \subset D^{\prime} \Rightarrow D^{\prime} \in \mathcal{D}$

How to construct $M_{1} \oplus M_{2}$?

How to construct $M_{1} \oplus M_{2}$?

- create the set

$$
E=S_{1} \cup S_{2} \cup\left\{e_{1}, \ldots, e_{t}\right\} \backslash\left\{\gamma_{1}([|1, t|]) \cup \gamma_{2}([|1, t|])\right\}
$$

How to construct $M_{1} \oplus M_{2}$?

- create the set

$$
E=S_{1} \cup S_{2} \cup\left\{e_{1}, \ldots, e_{t}\right\} \backslash\left\{\gamma_{1}([|1, t|]) \cup \gamma_{2}([|1, t|])\right\}
$$

- \mathcal{D} is the set $\left\{D_{1} \cup D_{2} \mid D_{1}\right.$ dependent in M_{1} or D_{2} dependent in $\left.M_{2}\right\}$

How to construct $M_{1} \oplus M_{2}$?

- create the set

$$
E=S_{1} \cup S_{2} \cup\left\{e_{1}, \ldots, e_{t}\right\} \backslash\left\{\gamma_{1}([|1, t|]) \cup \gamma_{2}([|1, t|])\right\}
$$

- \mathcal{D} is the set
$\left\{D_{1} \cup D_{2} \mid D_{1}\right.$ dependent in M_{1} or D_{2} dependent in $\left.M_{2}\right\}$
- take the closure of \mathcal{D} by the axiom $\left(A_{1}\right)$

Definition

Let M_{1} and M_{2} two t boundaried matroids with ground sets S_{i} and boundaries γ_{i}. We introduce the elements $\left\{e_{1}, \ldots, e_{t}\right\}$, which are disjoint from S_{1} and S_{2}. Let
$E=S_{1} \cup S_{2} \cup\left\{e_{1}, \ldots, e_{t}\right\} \backslash\left\{\gamma_{1}([|1, t|]) \cup \gamma_{2}([|1, t|])\right\}$. Let \mathcal{D} be the set $\left\{D_{1} \cup D_{2} \mid D_{1}\right.$ dependent in M_{1} or D_{2} dependent in $\left.M_{2}\right\}$ where $\gamma_{1}(i)$ and $\gamma_{2}(i)$ are changed in e_{i}. Then $M_{1} \oplus M_{2}=(E, \overline{\mathcal{D}})$.

From this operation we define \odot_{M} operators and terms.

From this operation we define \odot_{M} operators and terms.
Let \mathcal{L}_{k} be the abstract matroids of size less or equal to k.
Let \mathcal{M}_{t} be 3 partitioned matroids of size less than $3 t$.
We study the terms of $T\left(\mathcal{L}_{k}, \mathcal{M}_{t}\right)$.

The signature returns:

Definition (Signature)

Let T be a term of value M a boundaried matroid and X a set of elements of M. The signature λ_{s} of the set X at s a node of T is the set of all the subsets A of the boundary such that $X \cup A$ is a dependent set in the matroid vale of T_{s}. The elements of the boundary are represented in the signature by their index.

Theorem (Characterization of dependency)

Let T be a term of $T\left(\mathcal{L}_{k}, \mathcal{M}_{t}\right)$ representing the matroid M and X a set of elements of $M . X$ is dependent if and only if there exist a signature λ_{s} for each node s of T such that :
(1) if s_{1} and s_{2} are the children of s of label \odot_{N} then $R\left(\lambda_{s_{1}}, \lambda_{s_{2}}, \lambda_{s}, N\right)$
(2) if s is labeled by an abstract matroid N, then the intersection of X with the elements of N is a set of signature λ_{s}
(3) the set of nodes labeled by an abstract matroid of signature non \varnothing is non empty
(1) the signature at the root contains the empty set

What is important for the theorem is that the relation R does not depend on X and T.

What is important for the theorem is that the relation R does not depend on X and T.

The proof relies on the study of the structure of the dependent sets of $M_{1} \oplus M_{2}$.

Theorem

Let M be a a matroid given by $T \in T\left(\mathcal{L}_{k}, \mathcal{M}_{t}\right)$ and $\phi(\vec{x})$ an $M_{M} O_{M}$ formula, then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Theorem

Let M be a a matroid given by $T \in T\left(\mathcal{L}_{k}, \mathcal{M}_{t}\right)$ and $\phi(\vec{x})$ an M_{M} formula, then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Same proof and translation of $\phi(\vec{x})$ as for the matroids of bounded branch-width!

Thanks for listening!

