A logical approach to matroid decomposition

## A logical approach to matroid decomposition

## Yann Strozecki

Équipe de Logique Mathématique, Paris 7



- 2 Branch-Width Decomposition
- 3  $MSO_M$  and reduction to MSO on trees
- Applications and an example
- 5 Abstract construction of matroids

## Definition

A matroid is a pair  $(E, \mathcal{I})$ , E is a finite set and  $\mathcal{I}$  is included in the power set of E. Elements of  $\mathcal{I}$  are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

## Definition

A matroid is a pair  $(E, \mathcal{I})$ , E is a finite set and  $\mathcal{I}$  is included in the power set of E. Elements of  $\mathcal{I}$  are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

 $\bigcirc \ \ \, \varnothing \in \mathcal{I}$ 

## Definition

A matroid is a pair  $(E, \mathcal{I})$ , E is a finite set and  $\mathcal{I}$  is included in the power set of E. Elements of  $\mathcal{I}$  are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

**2** If  $I \in \mathcal{I}$  and  $I' \subseteq I$ , then  $I' \in \mathcal{I}$ 

## Definition

A matroid is a pair  $(E, \mathcal{I})$ , E is a finite set and  $\mathcal{I}$  is included in the power set of E. Elements of  $\mathcal{I}$  are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

$$\bigcirc \ \ \emptyset \in \mathcal{I}$$

- **2** If  $I \in \mathcal{I}$  and  $I' \subseteq I$ , then  $I' \in \mathcal{I}$
- ③ If  $I_1$  and  $I_2$  are in  $\mathcal{I}$  and  $|I_1| < |I_2|$ , then there is an element e of  $I_2 I_1$  such that  $I_1 \cup e \in \mathcal{I}$ .

The first concrete example of matroid is the vector matroid.

Let A be a matrix, the ground set E is the set of the columns and a set of columns is independent if the vectors are linearly independent.

The first concrete example of matroid is the vector matroid.

Let A be a matrix, the ground set E is the set of the columns and a set of columns is independent if the vectors are linearly independent.

$$oldsymbol{\mathsf{A}} = \left(egin{array}{cccccc} 1 & 0 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 1 & 1 \end{array}
ight)$$

Here the set  $\{1, 2, 4\}$  is independent and  $\{1, 2, 3\}$  is dependent.

The second example is the cycle matroid of a graph.

Let G be a graph, the ground set of his cycle matroid is E the set of his edges.

A set is said to be dependent if it contains a cycle.

The second example is the cycle matroid of a graph.

Let G be a graph, the ground set of his cycle matroid is E the set of his edges.

A set is said to be dependent if it contains a cycle.



Here the set  $\{1,2,4\}$  is independent whereas  $\{1,2,3,4\}$  and  $\{1,2,5\}$  are dependent.

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by  $1, \ldots, n$  and the edges by  $1, \ldots, m$ . We build the matrix A such as  $A_{i,j} = 1$  iff the edge j is incident to the vertex i.

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by  $1, \ldots, n$  and the edges by  $1, \ldots, m$ . We build the matrix A such as  $A_{i,j} = 1$  iff the edge j is incident to the vertex i.

The dependence relation is the same over the edges and over the vectors representing the edges.

Any cycle matroid is a representable matroid, i.e. it is isomorph to a vector matroid.

Label the vertices of a graph by  $1, \ldots, n$  and the edges by  $1, \ldots, m$ . We build the matrix A such as  $A_{i,j} = 1$  iff the edge j is incident to the vertex i.

The dependence relation is the same over the edges and over the vectors representing the edges.

This matrix represents the former graph:

# A base of a matroid is an independent set maximal for the inclusion.

A base of a matroid is an independent set maximal for the inclusion.

#### Lemma

Every base is of the same length.

A base of a matroid is an independent set maximal for the inclusion.

#### Lemma

Every base is of the same length.

In a vector matroid a base is a maximal free family.

A base of a matroid is an independent set maximal for the inclusion.

#### Lemma

Every base is of the same length.

In a vector matroid a base is a maximal free family.

In a cycle matroid it is a spanning tree of the graph.

A logical approach to matroid decomposition Introduction to Matroids Circuit

## Definition

In a matroid, a circuit is a minimal dependent set.

In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

## Theorem

A set C of subsets of the set E is the collection of circuits of a matroid if and only if :



In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

## Theorem

A set C of subsets of the set E is the collection of circuits of a matroid if and only if :

• 
$$\varnothing \notin C$$
  
•  $C_1, C_2 \in C^2$  if  $C_1 \subseteq C_2$  then  $C_1 = C_2$ 

In a matroid, a circuit is a minimal dependent set.

We may alternatively define the matroid by the circuit axioms.

## Theorem

A set C of subsets of the set E is the collection of circuits of a matroid if and only if :

• 
$$\varnothing \notin C$$
  
•  $C_1, C_2 \in C^2 \text{ if } C_1 \subseteq C_2 \text{ then } C_1 = C_2$   
•  $C_1, C_2 \in C^2, e \in C_1 \cap C_2 \Rightarrow \exists C \in C, C \subseteq C_1 \cup C_2 \setminus \{e\}$ 



- 2 Branch-Width Decomposition
- 3  $MSO_M$  and reduction to MSO on trees
- Applications and an example
- 5 Abstract construction of matroids

A logical approach to matroid decomposition

Branch-Width Decomposition

Decomposition tree

## Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

A logical approach to matroid decomposition Branch-Width Decomposition

Decomposition tree

## Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

$$X = \left( egin{array}{cccccc} 1 & 1 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \end{array} 
ight)$$

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.



Three important spaces are defined at each node s of the tree :

• *E<sub>s</sub>* is the subspace generated by all the leaves of the tree rooted in *s* 

A logical approach to matroid decomposition

Branch-Width Decomposition

Decomposition tree



A logical approach to matroid decomposition

Branch-Width Decomposition

Decomposition tree



Three important spaces are defined at each node s of the tree :

- *E<sub>s</sub>* is the subspace generated by all the leaves of the tree rooted in *s*
- $E_s^*$  is the subspace generated by all the leaves not in the tree rooted in s

A logical approach to matroid decomposition

Branch-Width Decomposition

Decomposition tree



Three important spaces are defined at each node s of the tree :

- *E<sub>s</sub>* is the subspace generated by all the leaves of the tree rooted in *s*
- $E_s^*$  is the subspace generated by all the leaves not in the tree rooted in s
- $B_s$  is the intersection of  $E_s$  and  $E_s^*$

A logical approach to matroid decomposition

Branch-Width Decomposition

Decomposition tree



The width at s is the dimension of  $B_s$  and the width of the decomposition is the maximum over all nodes.

The width at s is the dimension of  $B_s$  and the width of the decomposition is the maximum over all nodes.

The width of a matroid is the minimum of the widths of its branch decompositions.

The width at s is the dimension of  $B_s$  and the width of the decomposition is the maximum over all nodes.

The width of a matroid is the minimum of the widths of its branch decompositions.

## Theorem

There is an fpt algorithm which computes a branch decomposition of a representable matroid A of width at most 3t if  $bw(A) \le t$ . If bw(A) > t, the algorithm halts without output.
# 1 Introduction to Matroids

2 Branch-Width Decomposition

# 3 $MSO_M$ and reduction to MSO on trees

- 4 Applications and an example
- 5 Abstract construction of matroids

The following relations define the monadic second order theory on matroids, called  $MSO_M$ , which is inspired by the  $MSO_2$  logic over the graphs.

- $\mathbf{0}$  =, the equality for element and set of the matroid
- 2  $e \in F$ , where e is an element of the set F
- indep(F), where F is a set and the predicate is true iff F is an independent set of the matroid

The following relations define the monadic second order theory on matroids, called  $MSO_M$ , which is inspired by the  $MSO_2$  logic over the graphs.

- $\mathbf{0}$  =, the equality for element and set of the matroid
- 2  $e \in F$ , where e is an element of the set F
- indep(F), where F is a set and the predicate is true iff F is an independent set of the matroid

The fact of being a circuit is definable in this logic.

$${\it Circuit}(X) = 
eginal {\it opt}(X) \land orall Y \left(Y 
ot \subseteq X \lor X = Y \lor {\it indep}(Y)
ight)$$

We now want to prove the following theorem :

#### Theorem

The model checking problem for  $MSO_M$  is decidable in time  $f(t, k, l) \times n^3$  over the set of representable matroids, where f is a computable function, k the size of the field, t the branch-width and l the size of the formula.

We now want to prove the following theorem :

#### Theorem

Let M be a matroid of branch-width less than t,  $\overline{T}$  one of its enhanced tree and  $\phi(\vec{x})$  a  $MSO_M$  formula with free variables  $\vec{x}$ , we have

$$(M,\vec{a}) \models \phi(\vec{x}) \Leftrightarrow (\bar{T},f(\vec{a})) \models F(\phi(\vec{x}))$$

### **Constructing the Enhanced Tree**

# **Constructing the Enhanced Tree**

For each node s of a decomposition tree we compute a base of  $B_s$ , and we put in a *characteristic matrix* of s the bases of its boundary subspace and the ones of its two children.

# **Constructing the Enhanced Tree**

For each node s of a decomposition tree we compute a base of  $B_s$ , and we put in a *characteristic matrix* of s the bases of its boundary subspace and the ones of its two children.

### Definition (Enhanced branch decomposition tree)

Let T be a branch decomposition tree of the matroid represented by A, an enhanced branch decomposition tree is T with, on each node, a label representing a characteristic matrix at this node.









# Definition (Signature)

A signature is a sequence of elements of  $\mathbb{F}$ , denoted  $\lambda = (\lambda_1, \dots, \lambda_l).$ 

### Definition (Signature)

A signature is a sequence of elements of  $\mathbb{F}$ , denoted  $\lambda = (\lambda_1, \dots, \lambda_l)$ .

### Definition (Signatures of a set)

Let A be a matrix representing a matroid and T one of its enhanced tree. Let s be a node of T, X a subset of the columns of A in bijection with the leaves of  $T_s$ . Let  $c_1, \ldots, c_l$  denote the vectors of the third part of  $C_s$ , which are a base of  $B_s$ . Let v an element of  $B_s$ , obtained by a non trivial linear combination of elements of X. If v is written  $\sum_i \lambda_i c_i$  in the base  $c_1, \ldots, c_l$ , we say that X admits the signature  $\lambda = (\lambda_1, \ldots, \lambda_l)$  at s. X also always admits  $\emptyset$  as signature at s.

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\} \quad C_{s_1} = \begin{pmatrix} 0 & | 1 & | 1 \\ 0 & | 0 & | 0 \\ 1 & | 1 & | 0 \\ 0 & | 0 & | 0 \end{pmatrix}$$

$$\left(\begin{array}{c}1\\0\\0\\0\end{array}\right) = \left(\begin{array}{c}1\\0\\1\\0\end{array}\right) + \left(\begin{array}{c}0\\0\\1\\0\end{array}\right)$$

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\} \quad C_{s_1} = \left( \begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$\left(\begin{array}{c}1\\0\\0\\0\end{array}\right) = \left(\begin{array}{c}1\\0\\1\\0\end{array}\right) + \left(\begin{array}{c}0\\0\\1\\0\end{array}\right)$$

X admits (1)

#### Lemma

Let T be an enhanced tree, s one of its nodes with children  $s_1$ ,  $s_2$  and  $N_s = (N_1|N_2|N_3)$  the label of s.  $X_1$  and  $X_2$  are respectively elements in bijection with leaves of  $T_{s_1}$  and  $T_{s_2}$ . Assume we have the relation

$$\sum \mu_i N_1^i + \sum \gamma_j N_2^j = \sum \lambda_k N_3^k \tag{1}$$

then  $X = X_1 \cup X_2$  admits  $\lambda$  at s if and only if  $X_1$  admits  $\mu$  at  $s_1$  and  $X_2$  admits  $\gamma$  at  $s_2$ .





#### Theorem (Characterization of dependency)

Let A be a matrix representing a matroid, T one of its enhanced tree and X a set of column of A. X is dependent if and only if there exist a signature  $\lambda_s$  for each node s of the tree T such that :

- if  $s_1$  and  $s_2$  are the children of s labeled by N then  $\lambda_s$ ,  $\lambda_{s_1}$ ,  $\lambda_{s_2}$  and N satisfy Equation 1
- If the set of leaves of signature non Ø is a non empty subset of X
- the signature at the root is  $(0, \ldots, 0)$

• A signature is represented by  $\vec{X_{\lambda}}$  indexed by all the signatures of size less than t.

- A signature is represented by  $\vec{X_{\lambda}}$  indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$  holds if and only if  $\lambda$  is the signature at s.

- A signature is represented by  $\vec{X_{\lambda}}$  indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$  holds if and only if  $\lambda$  is the signature at s.
- The number of such variables is bounded by a function in t.

- A signature is represented by  $\vec{X_{\lambda}}$  indexed by all the signatures of size less than t.
- $X_{\lambda}(s)$  holds if and only if  $\lambda$  is the signature at s.
- The number of such variables is bounded by a function in t.
- Consistency :

$$\Omega(ec{X_\lambda}) = orall s igvee_\lambda \left( X_\lambda(s) igwedge_{\lambda' 
eq \lambda} 
eg X_{\lambda'}(s) 
ight)$$

-

The signature satisfy Equation 1 represented by the predicate  $\theta$ :

$$\Psi_1(s, X_{\lambda}) = \exists s_1, s_2 \ lchild(s, s_1) \land rchild(s, s_2)$$
  
 $\bigwedge_{\lambda_1, \lambda_2, \lambda, N} (label(s) = N \land X_{\lambda_1}(s_1) \land X_{\lambda_2}(s_2) \land X_{\lambda}(s)) \Rightarrow \theta(N, \lambda_1, \lambda_2, \lambda)$ 

The set of leaves of signature non  $\varnothing$  is a non empty subset of X :

$$\Psi_2(X, \vec{X_{\lambda}}) = orall s[(leaf(s) \land \neg X_{\varnothing}(s)) \Rightarrow (X(s) \land X_{(1)}(s))]$$
  
  $\land \exists u (leaf(u) \land \neg X_{\varnothing}(u))$ 

The signature at the root is  $(0, \ldots, 0)$ :

$$\Psi_3(ec{X_\lambda}) = \exists s \ root(s) \land X_{(0,...,0)}(s)$$

By combination of the three previous formulas we obtain a MSO formula for Indep(X), of size bounded by a function in k and t.

By combination of the three previous formulas we obtain a MSO formula for Indep(X), of size bounded by a function in k and t.

By induction we translate  $\phi \in MSO_M$  formula over a matroid into  $F(\phi) \in MSO$  formula over enhanced tree.

We have then proved

#### Theorem

Let M be a matroid of branch-width less than t,  $\overline{T}$  one of its enhanced tree and  $\phi(\vec{x})$  a  $MSO_M$  formula with free variables  $\vec{x}$ , we have

$$(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow (\bar{T}, f(\vec{a})) \models F(\phi(\vec{x}))$$



- 2 Branch-Width Decomposition
- 3 MSO<sub>M</sub> and reduction to MSO on trees
- Applications and an example
- 5 Abstract construction of matroids

A logical approach to matroid decomposition Applications and an example Spectra

### Definition (Spectrum)

The spectrum of a formula  $\phi$  is the set  $spec(\phi) = \{n \mid M \models \phi \text{ and } |M| = n\}.$ 

# Definition (Spectrum)

The spectrum of a formula  $\phi$  is the set  $spec(\phi) = \{n \mid M \models \phi \text{ and } |M| = n\}.$ 

### Definition (Ultimately periodic)

A set X of integers is said to be *ultimately periodic* if there are two integers a and b such that, for n > a in X we have  $n = a + k \times b$ .

# Definition (Spectrum)

The spectrum of a formula  $\phi$  is the set  $spec(\phi) = \{n \mid M \models \phi \text{ and } |M| = n\}.$ 

### Definition (Ultimately periodic)

A set X of integers is said to be *ultimately periodic* if there are two integers a and b such that, for n > a in X we have  $n = a + k \times b$ .

#### Theorem

Let  $\phi$  a formula of  $MSO_M$ , then the spectrum of  $\phi$  restricted to matroids of branch-width t is ultimately periodic.

### Theorem (Courcelle)

Let  $\phi(X_1, \ldots, X_n)$  be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the  $X_1, \ldots, X_n$  such that  $t \models \phi(X_1, \ldots, X_n)$  with preprocessing time  $\mathcal{O}(|t| \times ht(t))$ .

#### Theorem (Courcelle)

Let  $\phi(X_1, \ldots, X_n)$  be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the  $X_1, \ldots, X_n$  such that  $t \models \phi(X_1, \ldots, X_n)$  with preprocessing time  $\mathcal{O}(|t| \times ht(t))$ .

#### Corollary

Let  $\phi(X_1, ..., X_n)$  be an  $MSO_M$  formula, for every matroid of branch-width t, the enumeration of the sets satisfying  $\phi$  can be done with linear delay after a cubic preprocessing time.
All the previous theorems also work with colored matroids and colored tree.

All the previous theorems also work with colored matroids and colored tree.

A-CIRCUIT is the problem to decide, given a matroid M and a subset A of its elements, if there is a circuit in which A is included.

All the previous theorems also work with colored matroids and colored tree.

A-CIRCUIT is the problem to decide, given a matroid M and a subset A of its elements, if there is a circuit in which A is included.

Generalisation of very natural problems and decidable in linear time over matroids of bounded branch-width.



- 2 Branch-Width Decomposition
- 3 MSO<sub>M</sub> and reduction to MSO on trees
- 4 Applications and an example
- 5 Abstract construction of matroids

## How to glue matroids together to form new matroids ?

## How to glue matroids together to form new matroids ?

## Definition (Boundaried matroid)

A pair  $(M, \gamma)$  is called a *t* boundaried matroid if *M* is a matroid and  $\gamma$  is an injective function from [|1, t|] to *M* whose image is an independent set. The elements of the image of  $\gamma$  are called boundary elements and the others are called internal elements. Example of an operation on representable matroid

 $N_1 = (M_1, \gamma_1)$  and  $N_2 = (M_2, \gamma_2)$  are two *t* boundaried representable matroids represented by the set of vectors  $A_i$  in the vector space  $E_i$ .  $E_1 \times E_2$  is the direct product of the two vector spaces and  $\langle \{\gamma_1(j) - \gamma_2(j)\} \rangle$  is the subspace generated by the elements of the form  $\gamma_1(j) - \gamma_2(j)$ . Example of an operation on representable matroid

 $N_1 = (M_1, \gamma_1)$  and  $N_2 = (M_2, \gamma_2)$  are two *t* boundaried representable matroids represented by the set of vectors  $A_i$  in the vector space  $E_i$ .  $E_1 \times E_2$  is the direct product of the two vector spaces and  $\langle \{\gamma_1(j) - \gamma_2(j)\} \rangle$  is the subspace generated by the elements of the form  $\gamma_1(j) - \gamma_2(j)$ .

#### Definition

Let *E* be the quotient space of  $(E_1 \times E_2)$  by  $\langle \{\gamma_1(j) - \gamma_2(j)\} \rangle$ . There are natural injections from  $A_1$  and  $A_2$  into  $E_1 \times E_2$  and then in *E*. The elements of  $A = (A_1, \gamma_1) \bigoplus (A_2, \gamma_2)$  are the images of  $A_1$ and  $A_2$  by these injections minus the boundary elements. The dependence relation is the linear dependence in *E*. A matroid M which is partitioned in three independent sets  $\gamma'_i([|1, t_i|])$  with  $t_i \leq t$  for i = 1, 2, 3 is called a 3-partitioned matroid.

A matroid M which is partitioned in three independent sets  $\gamma'_i([|1, t_i|])$  with  $t_i \leq t$  for i = 1, 2, 3 is called a 3-partitioned matroid.

#### Definition

Let  $\overline{N_1} = (N_1, \gamma_1)$  and  $\overline{N_2} = (N_2, \gamma_2)$  be respectively a  $t_1$  and a  $t_2$  boundaried matroids.  $\overline{N} = \overline{N_1} \odot_M \overline{N_2}$  is a  $t_3$  boundaried matroid defined by :  $(\overline{N_1} \oplus (M, \gamma'_1), \gamma'_2) \oplus \overline{N_2}$  with boundary  $\gamma'_3$ .

Parse tree





Parse tree



## Definition (Terms)

Let  $\mathcal{L}$  a finite set of boundaried matroids and  $\mathcal{M}$  a finite set of 3-partitioned matroids. A term of  $\mathcal{T}(\mathcal{L}, \mathcal{M})$  and its value are recursively defined in the following way :

- $\epsilon$  is a 0 term whose value is the empty matroid
- an element of  $\mathcal{L}$  with a boundary of size t is a term whose value is itself
- Let  $T_1$  and  $T_2$  be two terms of value  $M_1$  and  $M_2$  which are a  $t_1$  and a  $t_2$  boundaried matroids and  $M \in \mathcal{M}$  partitioned in three sets of cardinality  $t_1$ ,  $t_2$  and  $t_3$ .  $MT_1T_2$  is a term whose value is the  $t_3$  boundaried matroid  $M_1 \odot_M M_2$ .

 $T(\Upsilon, \mathcal{M}_t^{\mathbb{F}})$  :

 $\mathcal{M}_t^{\mathbb{F}}$  is the set of 3t partitioned matrix on the field  $\mathbb{F}$ 

 $\Upsilon$  the set containing the two following matrices with a boundary :

• 
$$\Upsilon_0$$
 is the matrix  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$   
•  $\Upsilon_1$  is the matrix  $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ .

Parse tree



We have built something we already know :

#### Theorem

A finitely representable matroid is in  $T(\Upsilon, \mathcal{M}_t^{\mathbb{F}})$  if and only if it is of branch-width less than t.

Need another operation to have something different.



 $\begin{array}{c|c} B & \xrightarrow{\gamma_1} & M_1 \\ \gamma_2 & & \downarrow_{i_1} \\ M_2 & \xrightarrow{\gamma_2} & M_1 \oplus M_2 \end{array} \end{array} \begin{array}{c} \text{The set } B \text{ is an independent set of size } t. \\ i_1 \circ \gamma_1 &= i_2 \circ \gamma_2 \text{ where } \gamma_1 \text{ and } \gamma_2 \text{ are injective their images are the boundaries and } therefore independent set of the se$ 

Figure: The diagram of the pushout

A set  $\mathcal D$  is the set of dependent sets of a matroid if it satisfies :

•  $(A_1) : D_1, D_2 \in \mathcal{D}^2, e \in D_1 \cap D_2 \Rightarrow D_1 \cup D_2 \setminus \{e\} \in \mathcal{D}$ , where  $\mathcal{D}$  is the set of its dependent sets.

• 
$$(A_2)$$
 :  $D \in \mathcal{D}, D \subset D' \Rightarrow D' \in \mathcal{D}$ 

## How to construct $M_1 \oplus M_2$ ?

How to construct  $M_1 \oplus M_2$  ?

• create the set  $E = S_1 \cup S_2 \cup \{e_1, \dots, e_t\} \setminus \{\gamma_1([|1, t|]) \cup \gamma_2([|1, t|])\}$  How to construct  $M_1 \oplus M_2$  ?

• create the set

$$E = S_1 \cup S_2 \cup \{e_1, \ldots, e_t\} \setminus \{\gamma_1([|1, t|]) \cup \gamma_2([|1, t|])\}$$

•  $\mathcal{D}$  is the set  $\{D_1 \cup D_2 | D_1 \text{ dependent in } M_1 \text{ or } D_2 \text{ dependent in } M_2\}$ 

How to construct  $M_1 \oplus M_2$  ?

- create the set
  - $E = S_1 \cup S_2 \cup \{e_1, \ldots, e_t\} \setminus \{\gamma_1([|1, t|]) \cup \gamma_2([|1, t|])\}$
- $\mathcal{D}$  is the set  $\{D_1 \cup D_2 | D_1 \text{ dependent in } M_1 \text{ or } D_2 \text{ dependent in } M_2\}$
- take the closure of  $\mathcal{D}$  by the axiom  $(A_1)$

## Definition

Let  $M_1$  and  $M_2$  two t boundaried matroids with ground sets  $S_i$  and boundaries  $\gamma_i$ . We introduce the elements  $\{e_1, \ldots, e_t\}$ , which are disjoint from  $S_1$  and  $S_2$ . Let  $E = S_1 \cup S_2 \cup \{e_1, \ldots, e_t\} \setminus \{\gamma_1([|1, t|]) \cup \gamma_2([|1, t|])\}$ . Let  $\mathcal{D}$  be the set  $\{D_1 \cup D_2 | D_1$  dependent in  $M_1$  or  $D_2$  dependent in  $M_2\}$ where  $\gamma_1(i)$  and  $\gamma_2(i)$  are changed in  $e_i$ . Then  $M_1 \oplus M_2 = (E, \overline{\mathcal{D}})$ .

## From this operation we define $\odot_M$ operators and terms.

From this operation we define  $\odot_M$  operators and terms.

Let  $\mathcal{L}_k$  be the abstract matroids of size less or equal to k.

Let  $\mathcal{M}_t$  be 3 partitioned matroids of size less than 3t.

We study the terms of  $T(\mathcal{L}_k, \mathcal{M}_t)$ .

The signature returns :

## Definition (Signature)

Let T be a term of value M a boundaried matroid and X a set of elements of M. The signature  $\lambda_s$  of the set X at s a node of T is the set of all the subsets A of the boundary such that  $X \cup A$  is a dependent set in the matroid vale of  $T_s$ . The elements of the boundary are represented in the signature by their index.

#### Theorem (Characterization of dependency)

Let T be a term of  $T(\mathcal{L}_k, \mathcal{M}_t)$  representing the matroid M and X a set of elements of M. X is dependent if and only if there exist a signature  $\lambda_s$  for each node s of T such that :

- if  $s_1$  and  $s_2$  are the children of s of label  $\odot_N$  then  $R(\lambda_{s_1}, \lambda_{s_2}, \lambda_s, N)$
- **2** if s is labeled by an abstract matroid N, then the intersection of X with the elements of N is a set of signature  $\lambda_s$
- Solution is the set of nodes labeled by an abstract matroid of signature non ∅ is non empty
- the signature at the root contains the empty set

# What is important for the theorem is that the relation R does not depend on X and T.

What is important for the theorem is that the relation R does not depend on X and T.

The proof relies on the study of the structure of the dependent sets of  $M_1 \oplus M_2$ .

#### Theorem

Let *M* be a matroid given by  $T \in T(\mathcal{L}_k, \mathcal{M}_t)$  and  $\phi(\vec{x})$  an  $MSO_M$  formula, then  $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$ .

#### Theorem

Let *M* be a matroid given by  $T \in T(\mathcal{L}_k, \mathcal{M}_t)$  and  $\phi(\vec{x})$  an  $MSO_M$  formula, then  $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$ .

Same proof and translation of  $\phi(\vec{x})$  as for the matroids of bounded branch-width !

# Thanks for listening!