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Well Quasi Ordering Theory

Let X be a set and let “<" be a partial ordering relation on X'.
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Well Quasi Ordering Theory

Let X be a set and let “<" be a partial ordering relation on X'.
Antichain: an infinite sequence on non- <-comparable elements.

We say that X is Well-Quasi-Ordered by < if it has no infinite

antichain
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Well Quasi Ordering Theory

Let X be a set and let “<" be a partial ordering relation on X'.
Antichain: an infinite sequence on non- <-comparable elements.
We say that X is Well-Quasi-Ordered by < if it has no infinite

antichain

Examples:
» 2 is not W.Q.O. by set inclusion.
» N is not W.Q.O. by divisibility.

» N* is W.Q.O. by by component-wise ordering.
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Well Quasi Ordering Theory

General question: Given a set X and an ordering relation < on it,

is X W.Q.0. by to <7?
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Well Quasi Ordering Theory

General question: Given a set X and an ordering relation < on it,
is X W.Q.0. by to <7?

The theory of Well-quasi-ordering was first developed by
Graham Higman and Erd6és & Rado

under the name “finite basis property”
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Well Quasi Ordering Theory

General question: Given a set X and an ordering relation < on it,
is X W.Q.0. by to <7?

The theory of Well-quasi-ordering was first developed by
Graham Higman and Erd6és & Rado

under the name “finite basis property”

Remind: This talk is about graphs and algorithms!
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The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:
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The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:

v
e
\v: vertex removal:
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The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:

>.—?—< =
\v: vertex removal:

=«
\e: edge removal: >(—< = > <
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The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:

e
\v: vertex removal:
>-—-< = -<
\e: edge removal:
L
/e: edge contraction
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Graph Minors and algorithms

The minor relation on Graphs

Graph Minors

We define 3 local operations on graphs:

v |:“>
\v: vertex removal: : i
.o
\e: edge removal:
. >.—.< =
/e: edge contraction

Minor Relation:

></\V
.

H < G if H can be obtained from G after a sequence of the above operations
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Wagner's Conjecture
Wagner’s Conjecture:

» The set of all graphs is W.Q.O. by the minor relation
[formulated by Klaus Wagner in the 1930s (?)]
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Wagner's Conjecture
Wagpner’s Conjecture:

» The set of all graphs is W.Q.O. by the minor relation
[formulated by Klaus Wagner in the 1930s (?)]
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.
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Now it is known as the Robertson & Seymour Theorem.
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.

1 k

Now it is known as the Robertson & Seymour Theorem.

Width of the proof: < 10 cm
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.

|

Now it is known as the Robertson & Seymour Theorem.

Width of the proof: < 10 cm (23 papers)
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The Graph Minors Series

This conjecture was proven by Neil Robertson and Paul Seymour in their

Graph Minor series of papers.

\ itk il |
Now it is known as the Robertson & Seymour Theorem.
Width of the proof: < 10 cm (23 papers)
10/11 Fulkerson Prize (2006) (2/3 for N.R. & 4/5 for P.S.)
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The Graph Minors Series

In this talk we will present ( ) the algorithmic

applications of the Graph Minors Series.

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page



Graph Minor algorithms
00000800 o

The Graph Minors Series

In this talk we will present (some of) the algorithmic

applications of the Graph Minors Series.
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Parameterized complexity

We say that a parameterized (by k) problem belongs in the
parameterized complexity class FPT if it can be solved by an

FPT-algorithm, that is an algorithm that runs in
O(f (k) - n°WM) steps

(n is the size of the input, f depends only one the parameter £.)
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Parameterized complexity

We say that a parameterized (by k) problem belongs in the
parameterized complexity class FPT if it can be solved by an

FPT-algorithm, that is an algorithm that runs in
O(f (k) - n°WM) steps

(n is the size of the input, f depends only one the parameter £.)

» Not all parameterized problems admit FPT-algorithms.
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Graph Minors and algorithms

Parameterized complexity

We say that a parameterized (by k) problem belongs in the
parameterized complexity class FPT if it can be solved by an

FPT-algorithm, that is an algorithm that runs in
O(f (k) - n°WM) steps

(n is the size of the input, f depends only one the parameter £.)

» Not all parameterized problems admit FPT-algorithms.
There are parameterized complexity classes like W[1], W[2], or W[P] and
adequate reductions such that when a problem is hard for them is not

expected to have an FPT-algorithm.
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graph parameter: a function p that maps graphs to integers.

A meta-problem:

k-PARAMETER p-CHECKING
Instance: a graph GG and an integer k > 0.
Parameter: k

Question: p(G)< k?
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graph parameter: a function p that maps graphs to integers.

A meta-problem:

k-PARAMETER p-CHECKING
Instance: a graph GG and an integer k > 0.
Parameter: k

Question: p(G)< k?

p can be the minimum VErTEX COVER, DOMINATING SET, EDGE DOMINATING

SET, CHROMATIC NUMBER, FEEDBACK VERTEX SET, e.t.c.
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graph parameter: a function p that maps graphs to integers.

A meta-problem:

k-PARAMETER p-CHECKING
Instance: a graph GG and an integer k > 0.
Parameter: k

Question: p(G)< k?

p can be the minimum VErTEX COVER, DOMINATING SET, EDGE DOMINATING
SET, CHROMATIC NUMBER, FEEDBACK VERTEX SET, e.t.c.

» Holy grail (meta)-question
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Parameters on graphs

graph parameter: a function p that maps graphs to integers.

A meta-problem:

k-PARAMETER p-CHECKING
Instance: a graph GG and an integer k > 0.

Parameter: k

Question: p(G)< k?

p can be the minimum VErTEX COVER, DOMINATING SET, EDGE DOMINATING
SET, CHROMATIC NUMBER, FEEDBACK VERTEX SET, e.t.c.

» Holy grail (meta)-question

For which functions p it holds that A-PARAMETER p-CHECKINGEFPT?

(i.e., thereis an f(k)-n©(M-step algorithm checking whether p(G) < k?)
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A parameter p is minor closed if H < G = p(H) <p(G).
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Parameters on graphs

A parameter p is minor closed if H < G = p(H) <p(G).
Minor-closed parameters:
> vertex cover, vc((7)
» feedback vertex set, fus(G)
» branchwidth/treewidth/pathwidth/tree-depth,
bw(C) /tw(G:) /pw(C) /£ ()
» minimum maximal matching, mmm(G)
» p(G) = |V(G)| — a(G) (a(G) is the max independent set size)
» the genus of a graph, v(G)
» the apex number of a graph, apx(G)
» p(G) =min{k | P, £ G} (LONGEST PATH)
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The meta-algorithmic consequence of GMT

Main meta-algorithmic consequence of GMT:
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Main meta-algorithmic consequence of GMT:

» If p is minor closed then k-PARAMETER p-CHECKING €FPT.
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The meta-algorithmic consequence of GMT

Main meta-algorithmic consequence of GMT:

» If p is minor closed then k-PARAMETER p-CHECKING €FPT.

In other words,
» p(G) < k can be checked in f(k) - n? steps.
» Every minor-closed graph class G can be recognized in O(n3).

[Take p(G) =0 if G € G and p(G) = 1, otherwise]

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms

Page



Graph Minors and algorithms
O sle] lelele]

The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
» p(G) < k can be checked in f(k) - n? steps.

What is f7?
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
» p(G) < k can be checked in f(k) - n? steps.

What is f7?

» Every minor-closed graph class G can be recognized in O(n?3).
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
» p(G) < k can be checked in f(k) - n? steps.

What is f7?

» Every minor-closed graph class G can be recognized in O(n?3).

What is hidden in the O-notation?
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
» p(G) < k can be checked in f(k) - n? steps.

What is f7?

» Every minor-closed graph class G can be recognized in O(n?3).

What is hidden in the O-notation?

2 _question: Is there any practical algorithm here?
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The meta-algorithmic consequence of GMT

Questions on the last two versions of the meta-algorithmic result:
» p(G) < k can be checked in f(k) - n? steps.

What is f7?

» Every minor-closed graph class G can be recognized in O(n?3).

What is hidden in the O-notation?

2 _question: Is there any practical algorithm here?

... go back to the proofs!
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Meta-algorithms from Graph Minors

» For any minor closed parameter p and any %, we define oby(p) as the

set of minor-minimal elements in
{G | p(G) >k}

» we call oby(p) obstruction family of p.
» Observe: p(G) <k & Vheob,(p) H £ G

» Observe: oby(p) is an antichain.

» GMT Consequence: oby(p) is finite!
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The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.
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The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-MINOR CONTAINMENT problem.
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The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-MINOR CONTAINMENT problem.

k-MINOR CONTAINMENT problem can be solved in O(g(k) - n3) steps

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms Page



The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-MINOR CONTAINMENT problem.
k-MINOR CONTAINMENT problem can be solved in O(g(k) - n3) steps

The whole algorithm takes O(|oby.(p)| - g(k) - n?) steps.
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The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-MINOR CONTAINMENT problem.
k-MINOR CONTAINMENT problem can be solved in O(g(k) - n3) steps

The whole algorithm takes O(|oby.(p)| - g(k) - n?) steps.

Good news: g(k) is constructible!
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The meta-algorithm

An algorithm for the k-PARAMETER p-CHECKING problem

1. for all H € oby(p)

2 check (in O(g(k) - n?) steps) whether H <,n,, G
3. and if this holds, then output NO

4. output YES.

The meta-problem is reduced to the k-MINOR CONTAINMENT problem.
k-MINOR CONTAINMENT problem can be solved in O(g(k) - n3) steps

The whole algorithm takes O(|oby.(p)| - g(k) - n?) steps.

Good news: g(k) is constructible!

B-news: g(k) is hugel
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The meta-algorithm

2 2 facts on the main meta-algorithmic result of GMT.
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The meta-algorithm

2 2 facts on the main meta-algorithmic result of GMT.

1. the above algorithm “exists” but cannot be constructed as we

do not know oby(p)
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The meta-algorithm

2 & facts on the main meta-algorithmic result of GMT.

1. the above algorithm “exists” but cannot be constructed as we

do not know oby(p)
» There is no TM that, given a machine description of p, can

produce obg(p). [Fellows & Langston, JCSS 1994]
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The meta-algorithm

2 2 facts on the main meta-algorithmic result of GMT.

1. the above algorithm “exists” but cannot be constructed as we
do not know oby(p)
» There is no TM that, given a machine description of p, can

produce obg(p). [Fellows & Langston, JCSS 1994]

2. we know oby(p) for few parameters and for small values of &
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The meta-algorithm

2 2 facts on the main meta-algorithmic result of GMT.

1. the above algorithm “exists” but cannot be constructed as we
do not know oby(p)
» There is no TM that, given a machine description of p, can

produce obg(p). [Fellows & Langston, JCSS 1994]
2. we know oby(p) for few parameters and for small values of &

3. when we have upper bounds for |oby(p)|, they are immense.
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Two problems

Robertson & Seymour, proved the following:

Theorem (

The following two problems can be solved in O(g(k) - n®) steps:
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Theorem (

The following two problems can be solved in O(g(k) - n®) steps:

k-MINOR CONTAINMENT
Instance: two graphs G and H.
Parameter: k = |V (H)]|

Question: H < G?
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Theorem (

The following two problems can be solved in O(g(k) - n®) steps:

k-MINOR CONTAINMENT
Instance: two graphs G and H.

Parameter: k = |V (H)]|

Question: H < G?

k-DISJOINT PATHS
Instance: A graph G and a sequence of pairs of terminals
T = (s1,t1), .-, (58, t) € (V(G) x V(Q))*.

Parameter: k.

Question: Are there k pairwise vertex disjoint paths Pi,..., P; in G such that

for every ¢ € {1,...,k}, P; has endpoints s; and ¢;?

Department of Mathematics, UocA
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and algorithms The irrelevant vertex techniqu

Two problems

Both k-MINOR CONTAINMENT and k-DISJOINT PATHS

PROBLEM where solved using the

The irrelevant vertex Technique

introduced in [GM XIII]
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>h Minors a orithms The irrelevant vertex techniqu:

Two problems

Given an instance (G, T, k) of the k-DISJOINT PATHS problem,
a vertex v € V(G) is an irrelevant vertex of G if

(G,T,k) and (G'\ v, T, k) are equivalent instances of the problem.
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>h Minors a orithms The irrelevant vertex techniqu:

Two problems

Given an instance (G, T, k) of the k-DISJOINT PATHS problem,
a vertex v € V(G) is an irrelevant vertex of G if

(G,T,k) and (G'\ v, T, k) are equivalent instances of the problem.

Idea: » Find irrelevant vertex and recurse!
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>h Minors a orithms The irrelevant vertex techniqu:

Two problems

Given an instance (G, T, k) of the k-DISJOINT PATHS problem,
a vertex v € V(G) is an irrelevant vertex of G if

(G,T,k) and (G'\ v, T, k) are equivalent instances of the problem.

Idea: » Find irrelevant vertex and recurse!

We give a outline of the idea for the case of k-DISJOINT PATHS.
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The general scheme

The general scheme of the algorithm in [GM XIII] is the following:

Input: An instance (G, T, k) of k-DISJOINT PATHS

Output: An equivalent instance (G, T, k) k-DISJOINT PATHS
1. while G € Gy,

2. find an irrelevant vertex v in G

3. set G+ G\ v

4. output (G, T, k)
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The general scheme

The general scheme of the algorithm in [GM XIII] is the following:

Input: An instance (G, T, k) of k-DISJOINT PATHS

Output: An equivalent instance (G, T, k) k-DISJOINT PATHS
1. while G € Gy,

2. find an irrelevant vertex v in G

3. set G+ G\ v

4. output (G, T, k)

Here G, represents some structural condition for the problem input.
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The general scheme

The algorithmic scheme depends on the parameterized class G5 and
creates an equivalent instance that belongs in Gj.

» It is applied first for

Gr ={G | G is a K}(;;y-minor free graph}
and then for

Gr ={G | G is a I'j(;)-minor free graph},

for some suitable choice of recursive functions h,j : N — N.
» I, is the (r x r)-grid.
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Assume now that the input graph excludes the clique Kj,(;) as a minor.

Combinatorial question: How such graphs look like?
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Assume now that the input graph excludes the clique Kj,(;) as a minor.
Combinatorial question: How such graphs look like?

Two answers:
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Assume now that the input graph excludes the clique Kj,(;) as a minor.
Combinatorial question: How such graphs look like?

Two answers:

» Weak Structure Theorem [GM XIII]
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The general scheme

Assume now that the input graph excludes the clique Kj,(;) as a minor.
Combinatorial question: How such graphs look like?

Two answers:

» Weak Structure Theorem [GM XIII]
» Strong Structure Theorem [GM XVI|
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Weak structure theorem
Theorem ( )

There exists recursive functions g; : N x N — N and g» : N — N, such
that for every graph G and every r,q € N, one of the following holds:
K, is a minor of GG,

Ly, (rq) s not a minor of G,

3X C V(@) with | X| < go(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height ¢
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Weak structure theorem
Theorem ( )

There exists recursive functions g; : N x N — N and g» : N — N, such
that for every graph G and every r,q € N, one of the following holds:
K, is a minor of GG,

Ly, (rq) s not a minor of G,

3X C V(@) with | X| < go(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height ¢
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Weak structure theorem
Theorem ( )

There exists recursive functions g; : N x N — N and g» : N — N, such
that for every graph G and every r,q € N, one of the following holds:
K, is a minor of G,  (This is now excluded for r = h(k))

Ly, (rq) s not a minor of G,

3X C V(@) with | X| < go(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height ¢
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Weak structure theorem
Theorem ( )

There exists recursive functions g; : N x N — N and g» : N — N, such
that for every graph G and every r,q € N, one of the following holds:
K, is a minor of G,  (This is now excluded for r = h(k))

L'y, (r,q) is not a minor of G, (This is what we want to achieve!)

3X C V(@) with | X| < go(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height ¢

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph Minors: turning Combinatorics to Algorithms

Page



Weak structure theorem

Theorem ( )

There exists recursive functions g; : N x N — N and g» : N — N, such

that for every graph G and every r,q € N, one of the following holds:
K, is a minor of G,  (This is now excluded for r = h(k))
L'y, (r,q) is not a minor of G, (This is what we want to achieve!)

3X C V(@) with | X| < go(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height ¢

.(irrelevant vertex wanted...)
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Weak structure theorem

A subdivided Wall W of heigh 5:

Dimitrios M. Thilikos Department of Mathematics, UoA

Algorithmic Graph M turning Combinatorics to Algorithms Page



The irrelevant vertex technique
slelele] lelelelelole

Weak structure theorem

The compass is the part of the G \ X that is “inside” the perimeter of the
subdivided wall W. The perimeter is as a separator between the internal

compass vertices and the part of G \ X that is outside the perimeter
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Weak structure theorem

The compass can be decomposed to graphs of bounded treewidth (flaps) whose
“roots” have size < 3 and form a planar hypergraph inside the disk bounded by

the perimeter
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Weak structure theorem

Weak structure theorem — sunny forest theorem!

s
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Weak structure theorem

We examine only the simpler case where X = ().

[the forest is dark!]
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The middle vertex of the subdivided wall W
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A way to avoid the middle vertex
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Is it always possible to avoid the middle vertex?
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The answer is YES given that the height of W is at least A(k)!
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Linkages

Therefore, if the height of W is "big enough”, then we can safely

detect an irrelevant vertex (and remove it)!
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Theorem ( )
There exists recursive functions g1 : N X N — N and g2 : N — N, such that for every
graph G and every r,q € N, one of the following holds:

K, is a minor of G,  (This is now excluded for r = h(k))

Ty, (rq) is not a minor of i, (This is what we want to achieve!)

3X C V(G) with | X| < ga(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height g

z and the compass of W has a rural division D such that each internal flap of D

has treewidth at most g1 (r,q). (irrelevant vertex wanted...)
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Linkages

Theorem ( )

There exists recursive functions g1 : N X N — N and g2 : N — N, such that for every

graph G and every r,q € N, one of the following holds:
K, is a minor of G,  (This is now excluded for r = h(k))
Ty, (rq) is not a minor of i, (This is what we want to achieve!)

3X C V(G) with | X| < ga(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height g

z and the compass of W has a rural division D such that each internal flap of D

has treewidth at most g1 (r,q). (irrelevant vertex wanted...)

» After the second phase, we have an equivalent instance satisfying cond. .
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Theorem ( )
There exists recursive functions g1 : N X N — N and g2 : N — N, such that for every
graph G and every r,q € N, one of the following holds:

K, is a minor of G,  (This is now excluded for r = h(k))

Ty, (rq) is not a minor of i, (This is what we want to achieve!)

3X C V(G) with | X| < ga(r) such that G \ X contains as a
subgraph a flat subdivided wall W where W has height g

z and the compass of W has a rural division D such that each internal flap of D

has treewidth at most g1 (r,q). (irrelevant vertex wanted...)

» After the second phase, we have an equivalent instance satisfying cond. .
» This means that GG has treewidth bounded by some function of k: the

problem can be solved using dynamic programming.
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We can reroute the k disjoint path, given that the height of W is at least A(k)!
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We can reroute the k disjoint path, given that the height of W is at least A(k)!
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» Proved in [GM XXI].
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We can reroute the k disjoint path, given that the height of W is at least A(k)!
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» Proved in [GM XXI].

» The proof uses the " Vital Linkage Lemma” (proved in [GM XXI]) and

the " Strong Structural Theorem of GMT" (proved in [GM XVI])
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What is the estimation of A\(k
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We can reroute the k disjoint path, given that the height of W is at least A(k)!
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» Proved in [GM XXI].

» The proof uses the " Vital Linkage Lemma” (proved in [GM XXI]) and

the " Strong Structural Theorem of GMT" (proved in [GM XVI])
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The irrelevant vertex technique

Parameteric dependance

David Johnson mentioned in his ongoing guide on NP-completeness:

“for any instance G = (V, E) that one could fit into the known universe,
one would easily prefer V|70 to even constant time, if that constant had

to be one of Robertson and Seymour’s”.
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Parameteric dependance

David Johnson mentioned in his ongoing guide on NP-completeness:

“for any instance G = (V, E) that one could fit into the known universe,
one would easily prefer V|70 to even constant time, if that constant had

to be one of Robertson and Seymour’s”.

David Johnson also estimated that just one constant in the parametric

dependence of the strong structural Theorem to be roughly

222T2T®(7')
T2

where 217 denotes a tower 22°  involving r 2's.
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Parameteric dependance

Improvements!
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The irrelevant vertex technique

Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using

the " Strong Structural Theorem of GMT".
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The irrelevant vertex technique

Parameteric dependance

Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using

the " Strong Structural Theorem of GMT".

Target 2: Find an alternative proof of the " Strong Structural Theorem of

GMT" that has " better constants”.
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Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using
the " Strong Structural Theorem of GMT".
Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan]: A shorter proof of

the graph minor algorithm: the unique linkage theorem. STOC 2010

Target 2: Find an alternative proof of the " Strong Structural Theorem of

GMT" that has " better constants”.
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Parameteric dependance

Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using
the " Strong Structural Theorem of GMT".
Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan]: A shorter proof of

the graph minor algorithm: the unique linkage theorem. STOC 2010

Target 2: Find an alternative proof of the " Strong Structural Theorem of
GMT" that has "better constants”.
Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan: A simpler algorithm

and shorter proof for the graph minor decomposition. STOC 2011]
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Parameteric dependance

Improvements!

Target 1: Prove that we can reroute the k disjoint paths without using
the " Strong Structural Theorem of GMT".
Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan]: A shorter proof of

the graph minor algorithm: the unique linkage theorem. STOC 2010

Target 2: Find an alternative proof of the " Strong Structural Theorem of
GMT" that has "better constants”.

Achieved! By [Ken-ichi Kawarabayashi, Paul Wollan: A simpler algorithm
and shorter proof for the graph minor decomposition. STOC 2011]

On going work by: [ Reed, Li, Ken-ichi Kawarabayashi]: On going work
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Fact: [Ken-ichi Kawarabayashi, Paul Wollan, STOC 2010]: Gives an

estimation of A(k)

Parameteric dependance
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Fact: [Ken-ichi Kawarabayashi, Paul Wollan, STOC 2010]: Gives an
5225
This, still, gives an algorithm of 22 steps

estimation of A(k)
for the k-DiSJOINT PATHS PROBLEM

Parameteric dependance
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Parameteric dependance

Can we make things better?
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The irrelevant vertex technique

DO000

Parameteric dependance

Can we make things better?

Planar graphs: By [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh,
Thilikos: Tight Bounds for Linkages in Planar Graphs. ICALP 2011]
it follows that A(k) = 2009,
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Parameteric dependance

Can we make things better?

Planar graphs: By [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh,
Thilikos: Tight Bounds for Linkages in Planar Graphs. ICALP 2011]
it follows that A(k) = 2009,

q q Q(k) g
This gives an algorithm for the k-Disjoint PaTis PROBLEM
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Can we make things better?

Planar graphs: By [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh,
Thilikos: Tight Bounds for Linkages in Planar Graphs. ICALP 2011]
it follows that A(k) = 2009,

q q Q(k) g
This gives an algorithm for the k-Disjoint PaTis PROBLEM
Z-Limits of the irrelevant vertex technique:

steps is optimal as A(k) = 2%
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Can we make things better?

Planar graphs: By [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh,
Thilikos: Tight Bounds for Linkages in Planar Graphs. ICALP 2011]
it follows that A(k) = 2009,

q q Q(k) g
This gives an algorithm for the k-Disjoint PaTis PROBLEM
Z-Limits of the irrelevant vertex technique:

steps is optimal as A(k) = 2%

» A non-& algorithm for the k-D1sjoINT PATHS PROBLEM (and

related problems) would require radically different techniques!
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The irrelevant vertex technique

Some problems

Last words on Algorithmic Graph Minors Theory...

Some recent FPT-Algorithms using the irrelevant vertex technique or variants of it:

m BIPARTITE CONTRACTION, PARTIAL VERTEX COVER, PARTIAL DOMINATING

SET,
m TOPOLOGICAL MINOR CONTAINMENT, IMMERSION CONTAINMENT,

m BOUNDED GENUS CONTRACTION CONTAINMENT, ODD CYCLE INDUCED

PACKING,

m OpD CYCLE PACKING, INDUCED CYCLE, OPTIMAL EMBEDDING IN A SURFACE
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The irrelevant vertex technique

Mondrian

Piet Mondrian, Composition with Yellow, Blue, and Red, 1921
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