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Near-coloring?

Definition - Near-Coloring

A graph G is (dy, ..., dy)-colorable, if and only if,
» V(G)=WiU... UV,
> Vi€ [L k], A(G[VI]) < dj

(2,1)-coloring



v

v

v

v

(0,...,0)-coloring < proper k-coloring
———
k

V(G) = ViU... .UV,
Vi € [1, k], A(G[V;]) = 0

(d,...,d)-coloring < d-improper k-coloring
————
k

V(G) = ViU... UV
Vie[l,k,A(G[V]) < d



Some history

4CT - Appel and Haken '76
Every planar graph is (0,0, 0, 0)-colorable.

Theorem - Cowen, Cowen, and Woodall '86

Every planar graph is (2,2, 2)-colorable.

[list version: Eaton and Hull '99, Skrekovski '99]



Sparse graphs?

= graph with small maximum average degree

mad(G) = max{%, HC G}

Theorem - Havet and Sereni '06

Every graph G with mad(G) < k+ % is d-improperly k-colorable
(in fact d-improperly k-choosable), i.e. (d, ..., d)-coloring.
——

k
Asymptotically sharp:

Theorem - Havet and Sereni '06

There exists a non-d-improperly k-colorable graph whose
maximum average degree tends to 2k when d goes to infinity.



What about (d, 0)-coloring?

Bipartition Vi, V2 of V(G) such that:

A(G[V4]) < d and G[V,] is a stable set



(1,0)-coloring

Theorem - Glebov and Zambalaeva '07
Every planar graph G with g(G) > 16 is (1,0)-colorable.

Theorem - Borodin and Ivanova '09
Every graph G with mad(G) < % is (1,0)-colorable.

= Every planar graph G with g(G) > 14 is (1,0)-colorable.



Theorem - Borodin and Kostochka '11

Every graph G with mad(G) < 22 is (1,0)-colorable.
12

Moreover 3 is sharp.

= Every planar graph G with g(G) > 12 is (1,0)-colorable.

Question
Smallest g such that all planar graphs G with g(G) > g are
(1,0)-colorable?

[Esperet, M. , Ochem, and Pinlou '12: g > 10
(there exist non-(1,0)-colorable planar graphs with girth 9).]



(d,0)-coloring

Theorem - Borodin, Ivanova, M., Ochem, and Raspaud '10

» Let d > 2. Every graph G with mad(G) < 3 is

(d,0)-colorable.

» There exist non-(d, 0)-colorable graphs G with
mad(G) = (3 — d%rz) + d%ﬂ.

_ 2
d+2

Asymptotically sharp.

Theorem - Borodin and Kostochka '11

Let d > 2. Every graph G with mad(G) <3 — d+r1 is
(d,0)-colorable.
Moreover 3 — 2 is sharp.



Problem

» (d,...,d)-coloring
k
» (d,0)-coloring

(d,...,d,0,...,0)-coloring?
——— ——

a b

Partition of V in a+ b sets:
“a" subgraphs with maximum degree at most d
“p" stable sets



What happens when d — o0?

Observation
[Havet and Sereni '06]

kd :
G :mad(G) < k+ PEind (d,...,d)-coloring
N— k
—2k
sharp
[Borodin and Kostochka "11]
1
G :mad(G) <3 — ] = (d, 0)-coloring
———
—3
sharp
Question

G :mad(G) »?=(d,...,d,0,...,0)-coloring
—— T
a
Largest value m such that every graph with mad < m is
(d,...,d,0,...,0)-colorable (d — 00)?
—— —

a b



Case: (?7,7,7)-coloring

(d,d,d)—colorable [Havet and Sereni '06]

(d,d,0)—colorable

(0,0,0)—colorable
K4
madG) 3 4 5 6




Idea

non-(d, ...,d,0,...,0)-colorable graph
N

(d,...,d,0,...,0)-colorable IHI

—_— ——
a b

mad(Q)




Limits
Notation: (d,...,d,0,...,0)-coloring < (d, a, b)*-coloring
——

N——
a b

Theorem - Dorbec, Kaiser, M. and Raspaud '12
Leta+b>0and d > 0.
» Every graph G with mad(G) < a+ b+ % is
(d, a, b)*-colorable.
» There exist non-(d, a, b)*-colorable graphs G with

2 2a+2
mad(G) = 23+ b — GG T @ )T

Asymptotically sharp.
Answer

Largest value m such that every graph with mad < mis
(d,...,d,0,...,0)-colorable?
———— N —
a b
When d — oo: 2a + b.



Sketch of the proof

[1] reducible configurations + discharging procedure

[2] exhibit a non-(d, a, b)*-colorable graph G + compute mad(G)



[1] - (d, a, b)*-coloring

Let G be a counterexample with the minimum order.

Claim 0
5(G)>a+b

Define 3 objects:

Small vertex vidg(v)<a+b+d-1
Medium vertex v:a+b+d<dg(v)<a+b+2d—1
Big vertex v:dg(v)>a+b+2d

a+b+d—1 a+b+2d—1
. S ——— .
| smal T, medium T 1 big :
1 1 [ |

~ = —_—— —_———
a+b a+b+d a+b+2d




Reducible configurations

Claim 1

A small vertex is adjacent to at least “a" non-small vertices.

Light small vertex:
A small vertex adjacent to exactly “a" non-small vertices.

Claim 2

A medium vertex is adjacent to at least “a — 1" non-small vertices
and to at least "a — 1 + b" non-(light small) vertices

Claim 3

A big vertex is adjacent to at least “b" non-(light small) vertices



Discharging procedure - Aim
Set m = mad(G)

Step 1 Assign to each vertex a charge equal to its degree:

Vv € V(G),w(v) = dg(v)

Observe that:

Y wv) < V(G)|-m

veV(G)
Step 2 Move charges in order to have on each vertex v a new charge
w*(v) such that :
Vv e V(G),w*(v) > m
Step 3 The contradiction completes the proof:

IV(G)|-m < Z Z w(v) < |[V(G)|-m

veV(G) veEV(G)



Observation

» Small vertices need charge.
» Medium vertices have enough charge but not too much.

> Big vertices have charge.

Idea

R1. A medium/big vertex gives r; to each adjacent light small
vertex.

R2. A medium/big vertex gives r, to each adjacent small vertex
that is not light.

(Wlth rn > I’2)



Let v be a vertex of degree k.

llight smallj v:a+ b<dg(v)<a+b+d-1
>
>

w*(v) k+ax r by R1.
atb+axn>m

[non-light small] v:a+b<dg(v)<a+b+d-1
w*(v) > k+(a+1)xrbyR2
>

at+b+(a+1)xn>m

[medium] v:a+b+d<ds(v)<a+b+2d-1
w'(v) > k—(k—a—-b+1)n—(a+b—-1-(a—1))r by R1, R2, C2
> a+b+d—(d+1)n—brn>m

2d
k — (k — b)n — br, by R1, R2, C3
a+b+2d—(a+2d)n—brn>m

[big] v:dg(v) >a+ b+
w*(v) >
>



llight smalll] a+b+axrn>m
[non-light small] a+b+(a+1)xrn>m
[medium] a+b+d—(d+1)n—brn>m
[big] a+b+2d—(a+2d)n—brr,>m

Find r1, ro, m maximizing m

d(a+1)
(a+d+1)(a+1)+ab
da
(a+d+1)(a+1)+ab
da(a+1)
(a+d+1)(a+1)+ab

n =

rn =

m = a+b+




Vv e V(G),w"(v) > m

V@) -m< Yy wi(v)= ) wv)<|V(G)-m

veVv(G) veVv(G)



[2] a non-(d, a, b)*-colorable graph: Gy

By induction on a.
Case a=0: Ggo,p = Kpy1-

not (d, 0, b)*-colorable



[2] a non-(d, a, b)*-colorable graph: Gy,

From ato a+ 1.

Gr,l.a,b

d + 1 copies

Gd,a,b

Gg,2,p NOt (d, a, b)*-colorable =

in any (d,a+ 1, b)*-coloring, each copy contains a vertex of each
color [ for1<i<a+1=

x must be colored with color 0; for some i € {1,..., b}



[2] a non-(d, a, b)*-colorable graph: Gy,

Fromatoa—+1: Gd,a—i—l,b

not (d,a+ 1, b)*-colorable



[2] mad( Gd,a,b)?

Not so easy...

(d+1)™ b+ -1
(d+1)(b+1)—1

n=(b+1)

(d+1)""(b+1)"((a+ 2)(d+1)(b+1) —1) — 1) — (g

71) (d+1)(b+1)+ 2

e=(b+1) (Dbl 12

mad(G) = ad(G) = —



Conclusion

da(a+1)

f(d,a,b):a+b+(a+d+1)(a+1)+ab

2 2a+2

d.a, b) =2a+b—
g( ,a, ) a+ (d+1)(b+1)_1+(d+1)a+1(b—|—1)a+1_1

asymptotically sharp when d — oo

Largest value m such that every graph with mad < mis
(d, a, b)*-colorable?

f(d,a,b) < m < g(d,a,b)



