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The Main Character

A rectangular dissection of a rectangle



Rectangular Dissections and Graphs

The bipolar graph induced by R.



Rectangular Dissections and Graphs

A quadrangulation induced by segment contacts.



Rectangular Dissections and Graphs

A separating decomposition of the quadrangulation.



Rectangular Dissections and Graphs

The inner triangulation of a quadrangle.

R is the rectangular dual (a.k.a. floorplan).



Representation Problems

• GB a bipolar graph

find a rectangulation R representing GB.

• Q a plane quadrangulation

find some R representing Q as segment contact graph.

• G a triangualation of a quadrangle

find some R representing G as rectangular dual.

S.F., Rectangle and Square Representations of Planar Graphs,

in Thirty Essays in Geometric Graph Theory,

Pach, János (Ed.), Springer 2013.



Sketch: Bipolar Orientation

From the bipolar orientation compute its dual orientation.

Together they yield a rectangular dissection.
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t′
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coordinates from longest paths



Sketch: Quadrangulation

• Compute a separating decomposition.

• Separate the two alternating trees.



Alternating and Full Binary Trees

Proposition. There is bijection between alternating and

binary trees that preserves types (left/right) of nodes.



Sketch: Quadrangulation

• The two binary trees obtained from the separating

decomposition fit together.



Squarings

A squaring of a rectangle.



Representation Problems

• GB a bipolar graph – find a corresponding squaring.

The Dissection of Rectangles into Squares

Brooks, Smith, Stone and Tutte 1940.

• Q a planar quadrangulation – find a squaring

representing Q as segment contact graph.

• G a triangualation of a quadrangle – find a squaring

representing G as rectangular dual.

Square Tilings with Prescribed Combinatorics

Oded Schramm 1993.
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Squarings and Electricity

View the bipolar graph as electrical network with edge

resistance 1 Ω. Consider electrical s → t flow in

this network. The distribution of flow/current in edges

corresponds to sidelengths of a squaring.

• Kirchhoff’s current law: flow conservation.

• Kirchhoff’s potential law: rotation free flow, i.e.,

potentials exist.

• Ohm’s law: refe = ∆pe, i.e., squares.



Squarings and Electricity

View the bipolar graph as electrical network with edge

resistance 1 Ω. Consider electrical s → t flow in

this network. The distribution of flow/current in edges

corresponds to sidelengths of a squaring.

The explicit solution:

flow(i, j) =

# spanning trees T with (i, j) on the s→ t path in T

− # spanning trees T with (j, i) on the s→ t path in T .



Squarings and Electricity

Instance of more general theory:

• Discrete harmonic functions.

• Rotation free flows.

• Random walks and Markov chains, e.g.

Tilings and Discrete Dirichlet Problems

Richard Kenyon 1998.



Trapezoidal Dissections and Markov
Chains

Transition probabilities for G induced by a trapezoidal

dissection:

For vertices i and j (horizontal segments) let

p(i, j) ∝ m(i, j) =
widthi(Tij)

height(Tij)
.



Trapezoidal Dissections and Markov
Chains

Transition probabilities p(i, j) are induced by a trapezoidal

dissection.

The hights can be recovered:

Proposition. f(i) = yi is harmonic with respect to p for

all i 6∈ {s, t}, i.e., f(i) =
∑
j f(j)p(i, j).



Trapezoidal Dissections and Markov
Chains

Theorem. G planar, p transition probabilities, s, t on the

outer face =⇒ the stationary distribution m on the edges

together with the unique p-harmonic function f on V \
{s, t} and the winding numbers (slopes) yield a trapezoidal

dissection of a rectangle.

If p(i, j) = 1
deg(i) the dissection is a squaring.



Squarings with Segment Contacts



Squarings with Segment Contacts

Step I: Compute a separating decomposition on Q.

This corresponds to a rectangular dissection.



Squarings with Segment Contacts

x4

x6x7 x8x9

x1 = x2 + x3

x5

x1

x2

x3

x1 + x3 + x5 = x7 + x8

x1 + x2 = 1

Step II: Set up a (quadratic) linear system of equations:

AS · x = e1



Squarings with Segment Contacts

x4

x6x7 x8x9

x1 = x2 + x3

x5

x1

x2

x3

x1 + x3 + x5 = x7 + x8

x1 + x2 = 1

Step II: Set up a (quadratic) linear system of equations:

AS · x = e1

det(AS) = ± # matchings of an auxiliary graph 6= 0.



Squarings with Segment Contacts
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Step III: Flip negative faces to get the good separating

decomposition and the squaring.
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Torus Squarings with Segment
Contacts

A torus quadrangulation.



Segment Contacts on the Torus

A torus rectangulation.

• Torus rectangulations are periodic tilings of the plane

with a prallelogram as primitive cell.



Segment Contacts on the Torus

Torus quadrangulations can be represented by torus

rectangulations. (Mohar, Rosenstiehl ’98)



Segment Contacts on the Torus

With Timo Strunk:

• A separating decomposition of the torus is a good

separating decomposition if every every alternating

cycle is crossing every monochromatic cycle.

• Good separating decompositions ←→ torus rectangulations.



Torus Squarings with Segment
Contacts

Based on a torus rectangulation and two additional

equations we can again set up a quadratic system of linear

equations:

A · x = e1 + c e2



Torus Squarings with Segment
Contacts

Based on a torus rectangulation and two additional

equations we can again set up a quadratic system of linear

equations:

A · x = e1 + c e2

A solution may have negative variables.

Lemma. The boundary of negative faces is a family of

contractible cycles.

Flipping these cycles yields a torus rectangulation with a

non-negative solution.

=⇒ A torus squaring.



Torus Squarings with Segment
Contacts

Remains to show that there is a solution.

Want that A is non-degenerate.

• The proof for the plane case doesn’t carry over

(odd non-contractible cycles).



Torus Squarings with Segment
Contacts

Proposition. A is non-degenerate.

Proof. A nontrivial solution of A · x = 0 yields a square

tesselation with sidelength |xi|.

Taking the lenght of two independent non-contractible

dual cycles C1, C2 for the additional equations yields a

contradiction:

If `(C1) = `(C1) = 0 then the area Z of a fundamental

cell is 0. However Z =
∑
i

x2
i > 0.



Torus Squarings with Segment
Contacts

C1 = {1, 2} and C2 = {1, 3, 4} with length 22 and 22.

1

3

2

1 9

6
5

8

2

22

3

1

2

9

22

1

4

47

4

7
10

10

9

4



Torus Squarings with Segment
Contacts

C1 = {1, 2} and C2 = {1, 3, 4} with length 30 and 22.
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Torus Squarings with Segment
Contacts

• Degeneracies. How to avoid squares of size 0?

Sufficient conditions from connectivity known.

Can cycle length be appropriately prescribed?

• Which cycles should be taken for the extra equations?

Is it possible to prescribe properties of the fundamental

cell?
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Rectangular Duals

Prescribe corner rectangles.

Still there can be several rectangular duals.



Squarings for Inner Triangulations

The squaring is unique.



Extremal Length

O. Schramm, Square Tilings with prescribed Combinatorics, 1993.

• m : V → IR+ discrete metric on G.

• Length of a path: `m(γ) =
∑
v∈γm(v).

• Distance between sets: `m(A,B) = min
γ∈Γ(A,B)

`m(γ)

• area(m) =
∑
vm(v)2 = ||m||2



Extremal Length

O. Schramm, Square Tilings with prescribed Combinatorics, 1993.

• m : V → IR+ discrete metric on G.

• Length of a path: `m(γ) =
∑
v∈γm(v).

• Distance between sets: `m(A,B) = min
γ∈Γ(A,B)

`m(γ)

• area(m) =
∑
vm(v)2 = ||m||2

• Normalized distance `∗m(A,B) = `m(A,B)2

||m||2

• Extremal length L(A,B) = sup
m
`∗m(A,B)



Extremal Length and Squarings

Theorem. For G with A,B there is a unique extremal

metric (up to scaling).

Proof. Normalized distance is invariant under scaling.

Hence, we only have to look at metrics with

`m(A,B) = min
γ∈Γ(A,B)

`m(γ) = 1.

These m form a polyhedral set P (ineq. `m(γ) ≥ 1).

Extremal metric is the unique m with minimal norm in P .



Extremal Length and Squarings

Theorem. A squaring of G, with A and B at top and

bottom induces an extremal metric.

Proof. Let h = height(R) and w = width(R) we may

assume h · w = 1.

For the side length s(v) :

||s||2 =
∑
s(v)2 = h · w = 1, hence ||s|| = 1.

For t ∈ [0, w] the squaring induces a path γt.

For all m we have:

`m(A,B) ≤
∑
v∈γt

m(v)



Extremal Length and Squarings

w · `m(A,B) ≤
∫ w

0

∑
v∈γtm(v)dt

=
∫ w

0

∑
v∈V m(v)δ[v∈γt]dt

=
∑
v∈V m(v)

∫ w
0
δ[v∈γt]dt

=
∑
v∈V m(v)s(v)

≤ 〈m, s〉 ≤ ||m|| · ||s|| = ||m||

Hence:

`∗m(A,B) =
`m(A,B)2

||m||2
≤ 1

w2
= h2 =

h2

||s||2
= `∗s(A,B)



Extremal Length and Squarings

Theorem. An extremal metric of a triangulation yields a

set of squares that fit together to a squaring representing G.

If there are no separating cycles of length ≤ 4 all squares

have size ≥ 0.



The Polyhedral view on Squarings

L. Lovász, Geometric Representations of Graphs, 2009, Sec. 6.3.2.
q1

q4

q3

q2

P = {x ∈ IRV≥0 :
∑
i∈γ xi ≥ 1 for all q1→ q3 paths γ}



Blocking Polyhedra

P = {x ∈ IRn≥0 : aTi x ≥ 1 for ai ∈ IRn≥0, i = 1..k}

The blocker of P is:

P bl = {y ∈ IRV≥0 : xTy ≥ 1 for all x ∈ P}

• (P bl)bl = P .

• p ∈ IRn≥0 is a vertex of P ⇐⇒ p is a facet of P bl.



The Polyhedral view on Squarings
q1

q4

q3

q2

P = {x ∈ IRV≥0 :
∑
i∈γ xi ≥ 1 for all q1→ q3 paths γ}

Q = {x ∈ IRV≥0 :
∑
i∈ρ xi ≥ 1 for all q2→ q4 paths ρ}

Theorem. (P,Q) is a blocking pair of polyhedra.



The Polyhedral view on Squarings

P = {x ∈ IRV≥0 :
∑
i∈γ xi ≥ 1 for all q1→ q3 paths γ}

Q = {x ∈ IRV≥0 :
∑
i∈ρ xi ≥ 1 for all q2→ q4 paths ρ}

Theorem. (P,Q) is a blocking pair of polyhedra.

A criterion for blocking pairs: For all w ∈ IRV≥0

Minimum w-weight of a q1→ q3 path =

Maximum w constrained packing of q2→ q4 paths

Proof. Max-Flow Min-Cut together with the HEX-Lemma

to show that Min-Cut corresponds to a q1→ q3 path.



The Polyhedral view on Squarings

(P,Q) a blocking pair

a ∈ P is minimizing
∑
i x

2
i =⇒

1∑
i a

2
i
a minimizes

∑
i y

2
i over Q.



The Polyhedral view on Squarings

(P,Q) a blocking pair

a ∈ P is minimizing
∑
i x

2
i =⇒

1∑
i a

2
i
a minimizes

∑
i y

2
i over Q.

Theorem. There is a squaring of G inside a rectangle of

height 1 and width 1∑
i a

2
i

where the square of vertex i has

sidelength ai.

dist q1→ i

dist q2→ i
i
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Blocking Polyhedra for the Torus

G a torus triangulation.

γ non-contractible circuit in G.

Γ the class of γ.

P = {x ∈ IRV≥0 :
∑
i∈γ xi ≥ 1 for all γ ∈ Γ}

What is P bl?



Blocking Polyhedra for the Torus

G a torus triangulation.

γ non-contractible circuit in G.

Γ the class of γ.

P = {x ∈ IRV≥0 :
∑
i∈γ xi ≥ 1 for all γ ∈ Γ}

What is P bl?

For a non-contractible circuit ρ let

crΓ(ρ) = min #( of crossings between ρ and some γ′ ∈ Γ).

Q = {y ∈ IRV≥0 :
∑
i∈ρ yi ≥ crΓ(ρ) for all ρ ∈ Γ}



Blocking Polyhedra for the Torus

Theorem. (P,Q) is a blocking pair of polyhedra.

Proof. Let γ0 be a minimum weight circuit in Γ.

• A Max-Flow saturates all vertices on γ0.

(HEX Lemma on the sphere).

• Path decomposition of the flow induces weighted

family of circuits such that
∑
ρ λρcrΓ(ρ) = w(γ0).



Square Duals on the Torus

(P,Q) a blocking pair

a ∈ P is minimizing
∑
i x

2
i =⇒

1∑
i a

2
i
a minimizes

∑
i y

2
i over Q.

Theorem. There is a torus squaring of G where the square

of vertex i has sidelength ai. The fundamental cell has a

basis of width 1 parallel to the x-axis and height 1∑
i a

2
i

Unique if there are no breaklines.



Square Duals on the Torus

• The proof yields a pairing Γ ↔ Γ̂ of classes of non-

contractible cycles. Independent description?

• Efficient computation of the squaring?



The End



The End
Thank you.


