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Strongly sublinear separators and polynomial expansion

Talk based on: Strongly sublinear separators and polynomial
expansion, Dvǒrák and Norin, 2015.

Theorem (Plotkin, Rao, and Smith, 1994)

∀G , polynomial expansion ⇒ strongly sublinear separators.

Theorem (Dvǒrák and Norin, 2015)

∀G , strongly sublinear separators ⇒ polynomial expansion.
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Theorem (Dvǒrák and Norin, 2015)

∀G , strongly sublinear separators ⇒ polynomial expansion.

Jean-Florent Raymond Separators & expansion 2 / 13



Expansion

Reminder of the previous talk:

r -minor of G : obtained by contracting disjoint balls of radius
6 r of a subgraph of G ;

∇r (G ) = max
{
|E(G ′)|
|V (G ′)| , G

′ is a r -minor of G
}

G has bounded expansion if there is a function f such that

∀r ∈ N, ∇r (G ) 6 f (r)

G has polynomial expansion if f is polynomial.
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Separators

separator (A,B): A B

order of (A,B): |A ∩ B|
balanced separator (A,B):

|A \ B|, |B \ A| 6 2

3
|V (G )|

G has c•δ-separators: every H ⊆ G has a balanced separator
of order 6 c |V (H)|δ;
strongly sublinear separators: 0 6 δ < 1.

Example: planar graphs have c•
1
2 -separators (for some constant c).
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Why do we care about (small) separators?

they give structural information;

they are connected to several parameters (e.g. treewidth);

they have algorithmic applications (divide and conquer).

Lemma (Robertson and Seymour, 1986)

Any graph G has a balanced separator of order at most tw(G ) + 1.

Theorem (Dvǒrák and Norin, 2014)

∀c > 1, β ∈ [0, 1), for every graph G ,
G has c•β separators ⇒ ∀H ⊆ G , tw(H) 6 105c |V (H)|β.
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Sublinear separators and polynomial expansion, once again

Recall: G has c•δ-separators ≡ every H ⊆ G has a balanced separator of

order 6 c |V (H)|δ.

Theorem (Plotkin, Rao, and Smith, 1994)

∀d > 0, for every graph G ,

G has expansion O(rd) ⇒ G has c•1−
1

4d+3 -separators
(for some c > 1).

Theorem (Dvǒrák and Norin, 2015)

∀c > 1, δ ∈ (0, 1], for every graph G ,

G has c•1−δ-separators ⇒ G has expansion O(r5/δ
2
).
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A few words about expanders

α-expander G : at least α|A| vertices of G \ A are adjacent to A,
for every A ⊆ V (G ), |A| 6 |V (G )|/2.
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for every A ⊆ V (G ), |A| 6 |V (G )|/2.

Lemma

G is an α-expander ⇒ tw(G ) > α
3(1+α) .

balanced separator (A,B) of order 6 tw(G ) + 1: A B

wlog |B \ A| 6 |V (H)|/2

Jean-Florent Raymond Separators & expansion 7 / 13



A few words about expanders

α-expander G : at least α|A| vertices of G \ A are adjacent to A,
for every A ⊆ V (G ), |A| 6 |V (G )|/2.

Lemma

G is an α-expander ⇒ tw(G ) > α
3(1+α) .

balanced separator (A,B) of order 6 tw(G ) + 1: A B

wlog |B \ A| 6 |V (H)|/2, then |A ∩ B| > α|B \ A|.

Jean-Florent Raymond Separators & expansion 7 / 13



A few words about expanders

α-expander G : at least α|A| vertices of G \ A are adjacent to A,
for every A ⊆ V (G ), |A| 6 |V (G )|/2.

Lemma

G is an α-expander ⇒ tw(G ) > α
3(1+α) .

balanced separator (A,B) of order 6 tw(G ) + 1: A B

wlog |B \ A| 6 |V (H)|/2, then |A ∩ B| > α|B \ A|.
we then use the fact that (A,B) is balanced and
|A ∩ B| 6 tw(G ) + 1 to conclude.
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A few words about expanders

α-expander G : at least α|A| vertices of G \ A are adjacent to A,
for every A ⊆ V (G ), |A| 6 |V (G )|/2.

Lemma

G is an α-expander ⇒ tw(G ) > α
3(1+α) .

Lemma (Dvǒrák and Norin, 2015)

For every ε ∈ (0, 1] and every t large enough,
if G has > f (ε)t4|V (G )|1+ε edges
then ∃H ⊆ G subcubic s.t. |V (H)| 6 f ′(ε)t and tw(G ) > t

25 .
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Outline of the proof

Let c > 1 and δ ∈ (0, 1].
Goal: G has c•1−δ-separators ⇒ G has expansion O(r5/δ

2
).

Let us assume that:

1. ∀r , ∀G , if G has c•1−δ-separators, then every r -minor of G has
Oc,δ(r

4/δ)•1−5δ/6-separators;

2. ∀G , if G has c•1−δ-separators, then
|E (G )| 6 Oδ

(
(c log3 c)1/δ

)
· |V (H)|.

We apply (2.) to an r -minor H of G : |E (H)| 6 O
(
r5/δ

2
)
· |V (H)|.

Hence ∇r (G ) = O
(
r5/δ

2
)

.

G has polynomial expansion.
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Strongly sublinear separators force low density

Lemma (2.)

For every G graph, if G has c•1−δ-separators,
then |E (G )| 6 Oδ

(
(c log3 c)1/δ

)
· |V (G )|

Goal: show that |E (G )| 6 fδ(c)|V (G )|
(

1− 1
log |V (G)|

)
.

for some fδ(c) = Oδ
(
(c log3 c)1/δ

)
Let (A,B) be a balanced separator of order 6 c |V (G )|1−δ.

A B

|E (G )| 6 |E (G [A])|+ |E (G [B])|

6 fδ(c)|A|
(

1− 1

log |A|

)
+ fδ(c)|B|

(
1− 1

log |B|

)
6 fδ(c)n

(
1− 1

log n

)
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The densities of bounded-depth minors

Before proving

Lemma (1.)

For every r > 1,
if G has c•1−δ-separators,
then every r -minor of G has Oc,δ(r

4/δ)•1−
5δ
6 -separators.

we show
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Lemma (1.)

For every r > 1,
if G has c•1−δ-separators,
then every r -minor of G has Oc,δ(r

4/δ)•1−
5δ
6 -separators.

we show

Lemma

For every r > 1, ε ∈ (0, 1]
if G has c•1−δ-separators,
then every r -minor H of G has Oc,δ,ε(r

4/δ)|V (H)|1+ε edges.
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For every r > 1, ε ∈ (0, 1]
if G has c•1−δ-separators,
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1. suppose that |E (H)| = Ωc,δ,ε(r
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The densities of bounded-depth minors

Lemma

For every r > 1, ε ∈ (0, 1]
if G has c•1−δ-separators,
then every r -minor H of G has Oc,δ,ε(r

4/δ)|V (H)|1+ε edges.

Goal: |E (H)| = Oc,δ,ε(r
4/δ)|V (H)|1+ε.

1. suppose that |E (H)| = Ωc,δ,ε(r
4/δ)|V (H)|1+ε (by contradiction).

2. ∃F ⊆ H subcubic s.t |V (F )| is small and tw(F ) is large
(using expanders).

3. ∃F ′ ⊆ G subcubic s.t. F 6m F ′ and we have tw(F ) 6 tw(F ′).

4. F ′ has c•1−δ-separators.
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The densities of bounded-depth minors

Lemma

For every r > 1, ε ∈ (0, 1]
if G has c•1−δ-separators,
then every r -minor H of G has Oc,δ,ε(r

4/δ)|V (H)|1+ε edges.

Goal: |E (H)| = Oc,δ,ε(r
4/δ)|V (H)|1+ε.

1. suppose that |E (H)| = Ωc,δ,ε(r
4/δ)|V (H)|1+ε (by contradiction).

2. ∃F ⊆ H subcubic s.t |V (F )| is small and tw(F ) is large
(using expanders).

3. ∃F ′ ⊆ G subcubic s.t. F 6m F ′ and we have tw(F ) 6 tw(F ′).

4. F ′ has c•1−δ-separators.

5. tw(F ′) 6 105c |V (F ′)|1−δ (small).

6. tw(F ) 6 105c |V (F ′)|1−δ and tw(F ) is large: contradiction.
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Strongly sublinear separators in bounded-depth minors

Lemma (1.)

For every r > 1, if G has c•1−δ-separators,
then every r -minor H of G has Oc,δ(r

4/δ)•1−
5δ
6 -separators.
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5δ
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Goal: show that H has a sublinear balanced separator.
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2. Let us find a small subgraph of G containing H as a minor:
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Recap

We proved that

strongly sublinear separators ⇒ polynomial expansion.

In some sense, strongly sublinear separators and polynomial
expansion are equivalent notions.

A class C has strongly sublinear separators if ∃c > 1, δ ∈ (0, 1] such
that every G ∈ C has balanced separators of order 6 c |V (G )|1−δ.

Consequence of the main result

Let C be a subgraph-closed class.
C has strongly sublinear separators iff C has polynomial expansion.

Rk: if C is subgraph-closed then every G ∈ C has c•1−δ separators.
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The end

Conjecture

∃k > 0, ∀c > 1, δ ∈ (0, 1],
if a graph G has c•1−δ separators, then its expansion is O(rk/δ).

Currently: O(r5/δ
2
).

Thank you for your attention!
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