Separators & expansion

Jean-Florent Raymond

17th JCALM, Montpellier, March 2015

Talk based on: *Strongly sublinear separators and polynomial expansion*, Dvořák and Norin, 2015.

Talk based on: *Strongly sublinear separators and polynomial expansion*, Dvořák and Norin, 2015.

Theorem (Plotkin, Rao, and Smith, 1994)

 $\forall G$, polynomial expansion \Rightarrow strongly sublinear separators.

Theorem (Dvořák and Norin, 2015)

 $\forall G$, strongly sublinear separators \Rightarrow polynomial expansion.

Reminder of the previous talk:

r-minor of *G*: obtained by contracting disjoint balls of radius ≤ *r* of a subgraph of *G*;

•
$$\nabla_r(G) = \max\left\{\frac{|E(G')|}{|V(G')|}, G' \text{ is a } r \text{-minor of } G\right\}$$

• G has bounded expansion if there is a function f such that

$$\forall r \in \mathbb{N}, \ \nabla_r(G) \leq f(r)$$

• G has polynomial expansion if f is polynomial.

- separator (A, B): A
- order of (A, B): $|A \cap B|$
- balanced separator (A, B):

$$|A \setminus B|, |B \setminus A| \leq \frac{2}{3}|V(G)|$$

B

- separator (A, B): A
- order of (A, B): $|A \cap B|$
- balanced separator (A, B):

$$|A \setminus B|, |B \setminus A| \leq \frac{2}{3}|V(G)|$$

R

- G has c •δ-separators: every H ⊆ G has a balanced separator of order ≤ c |V(H)|δ;
- strongly sublinear separators: $0 \leq \delta < 1$.

- separator (A, B): A
- order of (A, B): $|A \cap B|$
- balanced separator (A, B):

$$|A \setminus B|, |B \setminus A| \leq \frac{2}{3}|V(G)|$$

- G has c •δ-separators: every H ⊆ G has a balanced separator of order ≤ c |V(H)|δ;
- strongly sublinear separators: $0 \leq \delta < 1$.

Example: planar graphs have $c \bullet^{\frac{1}{2}}$ -separators (for some constant c).

Why do we care about (small) separators?

- they give structural information;
- they are connected to several parameters (e.g. treewidth);
- they have algorithmic applications (divide and conquer).

- they give structural information;
- they are connected to several parameters (e.g. treewidth);
- they have algorithmic applications (divide and conquer).

Lemma (Robertson and Seymour, 1986)

Any graph G has a balanced separator of order at most $\mathbf{tw}(G) + 1$.

- they give structural information;
- they are connected to several parameters (e.g. treewidth);
- they have algorithmic applications (divide and conquer).

Lemma (Robertson and Seymour, 1986)

Any graph G has a balanced separator of order at most $\mathbf{tw}(G) + 1$.

Theorem (Dvořák and Norin, 2014)

 $\forall c \ge 1, \beta \in [0, 1)$, for every graph G, G has $c \bullet^{\beta}$ separators $\Rightarrow \forall H \subseteq G$, $tw(H) \le 105c|V(H)|^{\beta}$. Recall: *G* has $c \bullet^{\delta}$ -separators \equiv every $H \subseteq G$ has a balanced separator of order $\leq c |V(H)|^{\delta}$.

Recall: *G* has $c \bullet^{\delta}$ -separators \equiv every $H \subseteq G$ has a balanced separator of order $\leq c |V(H)|^{\delta}$.

Theorem (Plotkin, Rao, and Smith, 1994) $\forall d \ge 0$, for every graph G, G has expansion $O(r^d) \Rightarrow G$ has $c \bullet^{1-\frac{1}{4d+3}}$ -separators (for some $c \ge 1$). Recall: *G* has $c \bullet^{\delta}$ -separators \equiv every $H \subseteq G$ has a balanced separator of order $\leq c |V(H)|^{\delta}$.

Theorem (Plotkin, Rao, and Smith, 1994)

 $\forall d \ge 0$, for every graph G,

G has expansion $O(r^d) \Rightarrow G$ has $c \bullet^{1-\frac{1}{4d+3}}$ -separators

Theorem (Dvořák and Norin, 2015)

 $\forall c \ge 1, \delta \in (0, 1]$, for every graph G,

G has $c \bullet^{1-\delta}$ -separators \Rightarrow G has expansion $O(r^{5/\delta^2})$.

(for some $c \ge 1$).

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

Lemma

G is an α -expander \Rightarrow tw(G) $\geq \frac{\alpha}{3(1+\alpha)}$.

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

Lemma

G is an α -expander \Rightarrow tw(G) $\geq \frac{\alpha}{3(1+\alpha)}$.

balanced separator (A, B) of order $\leq \mathsf{tw}(G) + 1$:

wlog $|B \setminus A| \leq |V(H)|/2$, then $|A \cap B| \geq \alpha |B \setminus A|$.

A

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

Lemma

G is an α -expander \Rightarrow tw(G) $\geq \frac{\alpha}{3(1+\alpha)}$.

balanced separator (A, B) of order $\leq \mathbf{tw}(G) + 1$:

В

A

wlog $|B \setminus A| \leq |V(H)|/2$, then $|A \cap B| \geq \alpha |B \setminus A|$. we then use the fact that (A, B) is balanced and $|A \cap B| \leq \mathsf{tw}(G) + 1$ to conclude.

 α -expander G: at least $\alpha |A|$ vertices of $G \setminus A$ are adjacent to A, for every $A \subseteq V(G), |A| \leq |V(G)|/2$.

Lemma

G is an α -expander \Rightarrow tw(G) $\geq \frac{\alpha}{3(1+\alpha)}$.

Lemma (Dvořák and Norin, 2015)

For every $\varepsilon \in (0, 1]$ and every t large enough, if G has $\ge f(\varepsilon)t^4|V(G)|^{1+\varepsilon}$ edges then $\exists H \subseteq G$ subcubic s.t. $|V(H)| \le f'(\varepsilon)t$ and $\mathsf{tw}(G) \ge \frac{t}{25}$.

Let $c \ge 1$ and $\delta \in (0, 1]$. Goal: *G* has $c \bullet^{1-\delta}$ -separators $\Rightarrow G$ has expansion $O(r^{5/\delta^2})$.

Let $c \ge 1$ and $\delta \in (0, 1]$. Goal: *G* has $c \bullet^{1-\delta}$ -separators $\Rightarrow G$ has expansion $O(r^{5/\delta^2})$.

Let us assume that:

1. $\forall r, \forall G, \text{ if } G \text{ has } c \bullet^{1-\delta}\text{-separators, then every } r\text{-minor of } G \text{ has } O_{c,\delta}(r^{4/\delta}) \bullet^{1-5\delta/6}\text{-separators;}$

Let $c \ge 1$ and $\delta \in (0, 1]$. Goal: *G* has $c \bullet^{1-\delta}$ -separators $\Rightarrow G$ has expansion $O(r^{5/\delta^2})$.

Let us assume that:

- 1. $\forall r, \forall G, \text{ if } G \text{ has } c \bullet^{1-\delta}\text{-separators, then every } r\text{-minor of } G \text{ has } O_{c,\delta}(r^{4/\delta}) \bullet^{1-5\delta/6}\text{-separators;}$
- 2. $\forall G$, if G has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta}((c \log^3 c)^{1/\delta}) \cdot |V(H)|$.

Let $c \ge 1$ and $\delta \in (0, 1]$. Goal: *G* has $c \bullet^{1-\delta}$ -separators $\Rightarrow G$ has expansion $O(r^{5/\delta^2})$.

Let us assume that:

- 1. $\forall r, \forall G, \text{ if } G \text{ has } c \bullet^{1-\delta}\text{-separators, then every } r\text{-minor of } G \text{ has } O_{c,\delta}(r^{4/\delta}) \bullet^{1-5\delta/6}\text{-separators;}$
- 2. $\forall G$, if G has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta}((c \log^3 c)^{1/\delta}) \cdot |V(H)|$.

We apply (2.) to an *r*-minor *H* of *G*: $|E(H)| \leq O(r^{5/\delta^2}) \cdot |V(H)|$.

Let $c \ge 1$ and $\delta \in (0, 1]$. Goal: *G* has $c \bullet^{1-\delta}$ -separators $\Rightarrow G$ has expansion $O(r^{5/\delta^2})$.

Let us assume that:

- 1. $\forall r, \forall G, \text{ if } G \text{ has } c \bullet^{1-\delta}\text{-separators, then every } r\text{-minor of } G \text{ has } O_{c,\delta}(r^{4/\delta}) \bullet^{1-5\delta/6}\text{-separators;}$
- 2. $\forall G$, if G has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta}((c \log^3 c)^{1/\delta}) \cdot |V(H)|$.

We apply (2.) to an *r*-minor *H* of *G*: $|E(H)| \leq O\left(r^{5/\delta^2}\right) \cdot |V(H)|$. Hence $\nabla_r(G) = O\left(r^{5/\delta^2}\right)$.

G has polynomial expansion.

Lemma (2.)

For every G graph, if G has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta} \left((c \log^3 c)^{1/\delta} \right) \cdot |V(G)|$

Lemma (2.)

For every *G* graph, if *G* has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta} ((c \log^3 c)^{1/\delta}) \cdot |V(G)|$

Goal: show that $|E(G)| \leq f_{\delta}(c)|V(G)| \left(1 - \frac{1}{\log |V(G)|}\right)$. for some $f_{\delta}(c) = O_{\delta}\left((c \log^{3} c)^{1/\delta}\right)$

Lemma (2.)

For every *G* graph, if *G* has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta} ((c \log^3 c)^{1/\delta}) \cdot |V(G)|$

Goal: show that $|E(G)| \leq f_{\delta}(c)|V(G)| \left(1 - \frac{1}{\log|V(G)|}\right)$. for some $f_{\delta}(c) = O_{\delta}\left((c \log^{3} c)^{1/\delta}\right)$ Let (A, B) be a balanced separator of order $\leq c|V(G)|^{1-\delta}$.

Lemma (2.)

For every G graph, if G has $c \bullet^{1-\delta}$ -separators, then $|E(G)| \leq O_{\delta} ((c \log^3 c)^{1/\delta}) \cdot |V(G)|$

Goal: show that $|E(G)| \leq f_{\delta}(c)|V(G)| \left(1 - \frac{1}{\log|V(G)|}\right)$. for some $f_{\delta}(c) = O_{\delta}\left((c \log^{3} c)^{1/\delta}\right)$ Let (A, B) be a balanced separator of order $\leq c|V(G)|^{1-\delta}$.

$$\begin{split} |E(G)| &\leq |E(G[A])| + |E(G[B])| \\ &\leq f_{\delta}(c)|A| \left(1 - \frac{1}{\log|A|}\right) + f_{\delta}(c)|B| \left(1 - \frac{1}{\log|B|}\right) \\ &\leq f_{\delta}(c)n \left(1 - \frac{1}{\log n}\right) \end{split}$$

Before proving

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Before proving

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

we show

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if *G* has $c \bullet^{1-\delta}$ -separators, then every *r*-minor *H* of *G* has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal: $|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal: $|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal: $|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

- 1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).
- **2.** $\exists F \subseteq H$ subcubic s.t |V(F)| is *small* and $\mathbf{tw}(F)$ is *large* (using expanders).

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal: $|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

- 1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).
- **2.** $\exists F \subseteq H$ subcubic s.t |V(F)| is *small* and $\mathsf{tw}(F)$ is *large* (using expanders).

3. $\exists F' \subseteq G$ subcubic s.t. $F \leq_m F'$ and we have $\mathsf{tw}(F) \leq \mathsf{tw}(F')$.

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal: $|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

- 1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).
- **2.** $\exists F \subseteq H$ subcubic s.t |V(F)| is *small* and $\mathbf{tw}(F)$ is *large* (using expanders).
- **3.** $\exists F' \subseteq G$ subcubic s.t. $F \leq_m F'$ and we have $\mathbf{tw}(F) \leq \mathbf{tw}(F')$. **4.** F' has $c \bullet^{1-\delta}$ -separators.

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal:
$$|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$$

- 1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).
- **2.** $\exists F \subseteq H$ subcubic s.t |V(F)| is *small* and $\mathsf{tw}(F)$ is *large* (using expanders).
- **3.** $\exists F' \subseteq G$ subcubic s.t. $F \leq_m F'$ and we have $\mathbf{tw}(F) \leq \mathbf{tw}(F')$.
- **4.** F' has $c \bullet^{1-\delta}$ -separators.

5. tw(
$$F'$$
) $\leq 105c|V(F')|^{1-\delta}$ (small).

Lemma

For every $r \ge 1, \varepsilon \in (0, 1]$ if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ edges.

Goal:
$$|E(H)| = O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$$

- 1. suppose that $|E(H)| = \Omega_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$ (by contradiction).
- **2.** $\exists F \subseteq H$ subcubic s.t |V(F)| is *small* and $\mathsf{tw}(F)$ is *large* (using expanders).
- **3.** $\exists F' \subseteq G$ subcubic s.t. $F \leq_m F'$ and we have $\mathbf{tw}(F) \leq \mathbf{tw}(F')$.
- **4.** F' has $c \bullet^{1-\delta}$ -separators.
- **5.** $tw(F') \leq 105c|V(F')|^{1-\delta}$ (small).

6. $\operatorname{tw}(F) \leq 105c |V(F')|^{1-\delta}$ and $\operatorname{tw}(F)$ is *large*: contradiction.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Goal: show that H has a sublinear balanced separator.

1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** Let us find a small subgraph of G containing H as a minor:

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** Let us find a small subgraph of G containing H as a minor:

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Goal: show that H has a sublinear balanced separator.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** Let us find a small subgraph of G containing H as a minor:

Every edge of F

- meets two balls;
- contributes to 2*r* vertices.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

Goal: show that H has a sublinear balanced separator.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** Let us find a small subgraph of G containing H as a minor:

Every edge of F

- meets two balls;
- contributes to 2*r* vertices.

H is a minor of some $H' \subseteq G$ s.t. $|V(H')| \leq 2r|E(H)| + |V(H)|.$

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** *H* is a minor of $H' \subseteq G$ with $|V(H')| \leq 2r|E(H)| + |V(H)|$.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** *H* is a minor of $H' \subseteq G$ with $|V(H')| \leq 2r|E(H)| + |V(H)|$.
- **3.** H' has $c \bullet^{1-\delta}$ -separators.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** *H* is a minor of $H' \subseteq G$ with $|V(H')| \leq 2r|E(H)| + |V(H)|$.
- **3.** H' has $c \bullet^{1-\delta}$ -separators.
- 4. $\mathsf{tw}(H) \leq \mathsf{tw}(H') \leq 105c |V(H')|^{1-\delta}$.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** *H* is a minor of $H' \subseteq G$ with $|V(H')| \leq 2r|E(H)| + |V(H)|$.
- **3.** H' has $c \bullet^{1-\delta}$ -separators.
- 4. $\mathsf{tw}(H) \leq \mathsf{tw}(H') \leq 105c |V(H')|^{1-\delta}$.
- **5.** *H* has a balanced separator of order $\leq \mathbf{tw}(H) + 1$.

Lemma (1.)

For every $r \ge 1$, if G has $c \bullet^{1-\delta}$ -separators, then every r-minor H of G has $O_{c,\delta}(r^{4/\delta}) \bullet^{1-\frac{5\delta}{6}}$ -separators.

- 1. we proved that $\forall \varepsilon \in (0,1], |E(H)| \leq O_{c,\delta,\varepsilon}(r^{4/\delta})|V(H)|^{1+\varepsilon}$.
- **2.** *H* is a minor of $H' \subseteq G$ with $|V(H')| \leq 2r|E(H)| + |V(H)|$.
- **3.** H' has $c \bullet^{1-\delta}$ -separators.
- 4. $\mathsf{tw}(H) \leq \mathsf{tw}(H') \leq 105c |V(H')|^{1-\delta}$.
- **5.** *H* has a balanced separator of order $\leq \mathbf{tw}(H) + 1$.
- **6.** *H* has a balanced separator of order $O_{c,\delta}(r^{4/\delta})|V(H)|^{1-\frac{5\delta}{6}}$.

strongly sublinear separators \Rightarrow polynomial expansion.

```
strongly sublinear separators \Rightarrow polynomial expansion.
```

In some sense, strongly sublinear separators and polynomial expansion are equivalent notions.

strongly sublinear separators \Rightarrow polynomial expansion.

In some sense, strongly sublinear separators and polynomial expansion are equivalent notions.

A class C has strongly sublinear separators if $\exists c \ge 1, \delta \in (0, 1]$ such that every $G \in C$ has balanced separators of order $\leq c |V(G)|^{1-\delta}$.

strongly sublinear separators \Rightarrow polynomial expansion.

In some sense, strongly sublinear separators and polynomial expansion are equivalent notions.

A class C has strongly sublinear separators if $\exists c \ge 1, \delta \in (0, 1]$ such that every $G \in C$ has balanced separators of order $\leq c |V(G)|^{1-\delta}$.

Consequence of the main result

Let C be a subgraph-closed class.

C has strongly sublinear separators iff C has polynomial expansion.

strongly sublinear separators \Rightarrow polynomial expansion.

In some sense, strongly sublinear separators and polynomial expansion are equivalent notions.

A class C has strongly sublinear separators if $\exists c \ge 1, \delta \in (0, 1]$ such that every $G \in C$ has balanced separators of order $\leq c |V(G)|^{1-\delta}$.

Consequence of the main result

Let C be a subgraph-closed class.

 ${\mathcal C}$ has strongly sublinear separators iff ${\mathcal C}$ has polynomial expansion.

Rk: if C is subgraph-closed then every $G \in C$ has $c \bullet^{1-\delta}$ separators.

Conjecture

 $\exists k > 0, \ \forall c \ge 1, \delta \in (0, 1],$ if a graph *G* has $c \bullet^{1-\delta}$ separators, then its expansion is $O(r^{k/\delta})$.

Currently: $O(r^{5/\delta^2})$.

Conjecture

 $\exists k > 0, \ \forall c \ge 1, \delta \in (0, 1],$ if a graph *G* has $c \bullet^{1-\delta}$ separators, then its expansion is $O(r^{k/\delta})$.

Currently: $O(r^{5/\delta^2})$.

Thank you for your attention!