
How to capture more ILP

B. Goossens, LP2A/DALI

Archi07, Boussens, 19-23 mars 2007

Instruction Level Parallelism

● Natural program parallelism.

● Enhancing parallelism for the data path.

● Enhancing parallelism for the instruction
path.

● The ILP wall.

● How can we break the ILP wall?

ILP in the SAXPY procedure

forall (i=0; i<1024; i++) y[i] += x[i] * a;

The source code is parallel as long as it is
written in an appropriate language (e.g.
Unified Parallel C).

In this code, there are 1024 independent
computations (fix i , load x[i] , multiply, load
y[i] , add, store y[i]).

An ad hoc hardware

Saxpy 1024 in 4 cycles (load x, multiply and
load y, add, store) (1024 +, 1024 *).

x
y

0 1023

l/e x/y a

*

+

l/e x/y a

*

+

SAXPY in machine code

// x in R8, y in R9, n (1024) in R10, i in R1, i-n in R2

// a in F1, x[i] in F2, y[i] in F3, a*x[i] in F4, y[i]+a*x[i] in F5

saxpy ADD R1, 0, 0

loop FLOAD F2, R8(R1)

 FLOAD F3, R9(R1)

 FMUL F4, F1, F2

 FADD F5, F3, F4

 FSTORE F5, R9(R1)

 ADD R1, R1, 1

 SUB R2, R1, R10

 BNE R2, loop

The machine code is not parallel.

There is only one single
computation made of 1 + 8*1024
inter-dependent instructions.

Why isn't the new code parallel?
● Introduction of control (e.g. loop):

Instructions run after a conditional or indirect
branch depend on the branch.

● Introduction of shared registers:

Instructions writing to and reading from register r
depend on instructions writing to r .

● Introduction of the load-store model:

Instructions writing to and reading from memory
address b depend on instructions writing to
memory address a until a and b are known.

How can we regain the lost
parallelism?

● Speculate (start a dependent
computation, assuming the dependency
condition is solved).

● Remap (expand the architectural set of
resources and remap the code on the new
set, removing part of the dependencies).

How can we regain the lost
parallelism?

● Predict conditional branch direction and
indirect jump target (branch predictor and
target buffer).

● Expand the set of shared registers and
remap the machine code onto the new set
(register renaming).

● Speculate on load addresses (speculative
loads).

SAXPY in-order computation

● Instruction i starts its computation when
its dependencies with instructions j<i are
solved and when instruction i-1 is started
(pipelining accelerates the process).

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

i, j: instruction j in iteration i
j<i: j precedes i

Distance from
(i,j) to (i+1,j)
is 8.

SAXPY in partial order
computation

● Instruction i starts its computation when
its dependencies with instructions j<i are
solved (superscalar ooo execution).

1,0
1,1

1,2

1,3 1,4 1,5 1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5 2,6 2,7 2,8

control

WAR

RAW

Distance from
(i,j) to (i+1,j)
is 7.

Dependencies on registers

● RAW: read after write. An instruction that
reads from register r has a RAW
dependency with the last preceding
instruction writing into r .

● WAR: write after read. An instruction that
writes into register r has a WAR
dependency with the preceding
instructions reading from r up to the last
preceding instruction writing into r .

Dependencies on registers

● WAW: write after write. An instruction
that writes into register r has a WAW
dependency with the last preceding
instruction writing into r .

● WAW and WAR dependencies can be
removed by remapping (duplicate reg.).

● RAW and WAR dependencies can be
removed by speculating (predict rather
than read).

SAXPY with branch prediction

● Instruction i starts its computation when
its dependencies with instructions j<i are
solved. Speculate on branch direction.

1,0
1,1

1,2

1,3 1,4 1,5 1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5 2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 5.

Need to correct
false predictions.

Branch prediction in the SAXPY
loop

● Speculate on the direction of the loop
branch (bet it will be taken).

● Next iteration does not depend anymore
on the branch computation.

● At the end of the 1024 iterations, the bet
is lost. It is required to correct: the code
following the loop has a dependency with
the branch.

Impact of branch prediction on
SAXPY ILP

● Control dependencies are removed.

● The next iteration starts when the loop
counter is updated (instruction (i, 6)),
which cannot be performed sooner than
after the current iteration store because
of the WAR dependency on the loop
counter register.

● Small impact.

Hints to the programmer to
enhance ILP with branches

● Reduce conditional branches in the static
code (they are frequent in iterative
programming). e.g. unroll loops, avoid
very few iterations loops, use conditional
moves.

● Reduce conditional branches in the
dynamic code, e.g. sort successive
branches from the most taken one to the
least.

Hints to the programmer to
enhance ILP with branches

● Favour highly predictable branches
(either one dominating direction -e.g.
taken for a loop with many iterations- or
one dominating path for a succession of
branches -e.g. when one branch is taken,
next one is also mostly taken -.

● Impact of conditional branches prediction
correction on ILP is high: many branches
(10% to 20%), mispredictions (2% to 8%).

Hints to the programmer to
enhance ILP with branches

● Reduce indirect branches in the static
code (they are frequent in functional
programming with return instructions).
e.g. inlining.

● Return address predictors are very
accurate and return instructions are not
very frequent in the dynamic code (2%).

● Impact of indirect branches prediction
correction on ILP is low.

SAXPY with renaming (no
branch prediction)

● Instruction i starts its computation when
its dependencies with instructions j<i are
solved. Rename registers.

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

memory

Distance from
(i,j) to (i+1,j)
is 3 (control)
or 4 (compute).

Register renaming

● Assume an infinite set of renaming
registers.

● Any destination register is remapped to a
unique renaming register.

● Any source register r is remapped to the
renaming register assigned to r by the
last preceding instruction having r as a
destination.

Register renaming

● WAW dependencies are removed as
instructions write in a unique renaming
register.

● WAR dependencies are removed as
instruction sources are read from a
unique renaming register.

When may a renaming register
be reused?

a: OP R1, R2, R3 //RR1 renames R1

...

b: OP R4, R1, R5 //RR1 used

...

c: OP R1, R6, R7 //RR2 renames R1

...

d: OP R8, R9, R0 //RR1 may rename R8
//if b has read RR1

Memory dependency

● A load potentially depends on any
preceding store (RAW mem. dep.).

● The dependency is pending until the load
and the store addresses have both been
computed.

● The dependency is confirmed if both
memory accesses concern at least one
single common byte.

Memory dependency

● A store potentially depends on any
preceding load (WAR mem. dep.) and on
any preceding store (WAW mem. dep.).

● The dependency is pending until the
addresses have both been computed.

● The dependency is confirmed if both
memory accesses concern at least one
single common byte.

Impact of register renaming on
SAXPY ILP

● WAR + WAW dependencies are removed.

● It builds two parallel sequences: the
control part (loop counter computation),
sequentialized by a control dependency;
the loop body part, sequentialized by a
memory dependency (the next iterations
loads cannot be performed before the
current iteration store).

● Average impact

Hints to the programmer to
enhance ILP with renaming

● The only limitation to ILP introduced by
the renaming process is due to the finite
number of renaming registers.

● Instructions with no destination (e.g.
store and branch) allocate no register
(not a hint, just a note).

● Remanent data keep registers allocated
for a long time. Favour volatile data. (in
SAXPY, a is remanent and i is volatile).

SAXPY with renaming and
memory address speculation

● Instruction i starts when its dependencies
with instructions j<i are solved. Rename
registers, speculate on memory address.

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 3.

Need to correct
false speculation.

Load address speculation

● The load is performed even though there
are still some unkown preceding store
addresses.

● When a store address is resolved, it is
compared to the addresses of all the
following loads already run.

● If a match occurs, the run is restarted
from the incorrect load. This adds a RAW
mem. dependency.

Store address speculation

● The store is performed even though there
are still some unkown preceding load or
store addresses.

● When a load or store address is resolved,
it is compared to the addresses of all the
following stores already run.

● If a match occurs, the run is restarted
from the incorrect load or store. This
adds a WAR or WAW mem. dependency.

Impact of renaming and mem.
speculation on SAXPY ILP

● WAR + WAW dependencies are removed.

● Memory load dependencies are removed.

● The loop body part for the next iteration
is artificially relinked to the current
iteration loop counter part by the control
dependency.

● Low impact compared to renaming only.

Hints to the programmer to
enhance ILP with mem. spec.

● Impact of memory speculation correction
on ILP may be high: many stores (10% to
20%).

● Mispredictions occur when there is a true
RAW dependence between a store and
the following loads.

● Avoid to read a variable that has been
just written (e.g. avoid a recurrence on a
variable in memory; avoid push/pop).

SAXPY with b. prediction,
renaming and m. speculation

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 1.

What is the ILP limit in SAXPY
with b. pred., r. ren., m. spec.

● Because instruction (i+1, 6) has a RAW
dependency on R1 with instruction (i, 6),
the distance between two successive
iterations is at least 1.

● Hence, instruction (i+1, j) has at least a
distance of 1 with instruction (i, j) (in
SAXPY, all the instructions in the loop
body depend on the iteration counter).

What is the ILP limit in SAXPY
with b. pred., r. ren., m. spec.

● Instructions (i, j) and (i+k, j) (k>0) cannot
have a distance of 0.

● The set of distance 0 instructions (the
ones that can be run in parallel) at most
contains one of each instruction in the
loop body.

● The ILP limit is the number of instructions
in the loop body.

● To enhance ILP, unroll the loop.

SAXPY with value, branch and
memory speculation

● e.g. In ld/st instructions, R1 is predicted
rather than read in register (RAW and
WAR dependencies on R1 are removed).

1,0

1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

WAW

Distance from
(i,j) to (i+1,j)
is 1.

What is the ILP limit in SAXPY
with b. pred., v. pred., m. spec.

● Because instruction (i+1, 6) has a RAW
dependency on R1 with instruction (i, 6),
the distance between two successive
iterations is at least 1 (as when renaming
is applied).

● The ILP limit is the number of instructions
in the loop body.

How to remove dependencies

● Renaming removes WAR and WAW
dependencies.

● Branch prediction (direction and target)
removes control dependencies.

● Memory address speculation removes
load after store dependencies.

● Value prediction removes WAR and RAW
dependencies.

Fetching instructions in parallel

● The fetch bandwidth bounds the ILP that
can be captured.

● The instructions should be fetched in-
order to allow the dependency analysis.

● Fetching should be respectful of the
control dependencies.

● Pipelined, superscalar, speculative
fetching are needed techniques to
provide enough instructions to the core.

Scalar fetching for SAXPY

● Instruction i is fetched when instruction
i-1 has been fetched (every instruction
updates the PC).

● No parallelism for the core.

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

b. dir. dep.

n. pc dep.

Superscalar fetching for SAXPY
(single basic block)

● Instructions in a Basic Block (bb) are
fetched in parallel. Only the bb ending
instruction updates PC. Next bb is
fetched when the control dependency
with the current bb has been solved.

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

Superscalar fetching

● The parallelism offered to the core is
bounded by the average basic block size.

● In 5 SPECInt2000 benchmarks, there are
15% of branch/call/return instructions run
(average bb size: 6 instructions).

● In 5 SPECfp2000 benchmarks, there are
4% of branch/call/return instructions run
(average bb size: 25 instructions).

Superscalar fetching

● The parallelism offered to the core is also
bounded by the instruction memory bus
width (the superscalar fetching degree).

● A bb can span multiple memory accesses
(large basic blocks) or can occupy a
small part of a memory access (small bb).

● Bus expansion increases the parallelism
offered to the core, up to the average bb
length.

Superscalar fetching for SAXPY
(4 instructions memory bus)
1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3

2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx

4 aligned instructions fetched

4 aligned instructions fetched

1 aligned instruction fetched

3 aligned instructions fetched

4 aligned instructions fetched

1 aligned instruction fetched

average (2/3 of bus) 2,66 aligned instructions fetched

pc ++ computation dependency

pc ++ computation dependency

pc ++ computation dependency

pc ++ computation dependency

b. dir. computation dependency

Fetched lines dependencies

● PC++ computation.

● Branch direction computation or
prediction.

● Indirect jump computation (e.g. pop the
return address) or prediction (e.g. pop the
return address from a small hardware
stack).

Superscalar fetching for SAXPY
(8 instructions memory bus)
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx x xx x xx x

x xx x xx x

average (½ of bus) 4 aligned instructions fetched

8 instructions

1 instruction

7 instructions

1 instruction

Superscalar fetching for SAXPY
(16 instructions memory bus)
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx x xx x xx x

x xx x xx x

9 instructions

8 instructions

average (½ of bus) 8 aligned instructions fetched

Further expansion of the memory bus is useless

Compiler hints to improve
superscalar fetching

● Decrease the number of branch
instructions (conditional move, loop
unrolling).

● Align the code (in SAXPY, align the loop
body).

● Decrease the number of indirect jumps
(inlining, transform recursion into
iteration when possible).

SAXPY with aligned body loop
(8i bus)

1,0

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

x xx x xx x xx x xx x

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

Superscalar fetching for SAXPY
(multiple basic blocks)

● Multiple bb are fetched in parallel. Only
the ending instruction of the last bb
updates PC. Next set of bb is fetched
when the control dependency with the
last currently fetched bb has been solved.

● The control dependencies between the
fetched bb are solved by prediction. The
predictor must provide the starting
address of each of the bb to be fetched.

Multiple block ahead predictor

● For n fetched blocks, the predictor must
deliver n bb addresses (PC gives the first
bb address, the predictor gives next PC).

● The inner dependencies to solve can be
any mix of conditional branch targets,
function calls (return address to be
pushed), return addresses, immediate or
indirect jumps.

Multiple block ahead predictor

● A major simplification is to concentrate
the prediction on the conditional
branches.

● When a bb is ended by an indirect jump,
this bb ends the set of fetched bb.

● Still, we can fetch multiple function calls
(push all the return addresses) and a last
bb ended by a return (pop the last
address pushed in the same fetch cycle).

Two bb fetch in SAXPY (two
branch predictions, 16i bus)

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8 2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 3,1 3,2 3,3 3,4 3,5 3,6 3,7

3,8 4,1 4,2 4,3 4,4 4,5 4,6 4,7

Compiler alignment
is no more required.

How many branch predictions
are needed?

● The distribution of control flow
instructions is not uniform.

● Integer codes have much more control
flow instructions than floating point
codes.

● With n predictions, on Int codes, we fetch
6n instructions on the average. On fp
codes, we fetch 25n instructions on the
average.

Available ILP in programs

● Maximum available ILP can be measured
on a perfect processor (remove all
dependencies except true data (register
RAW); no value prediction).

● Perfect processor: Infinite renaming
registers, perfect branch prediction,
perfect load/store speculation, infinite
issue and run capacity, single cycle
execution.

ILP in SPEC92 (source: Hen-Pat
Comp. Arch. 3rd edition, 2003)

The ILP wall

● A lot of ILP, but difficult to catch (low ILP
programs should be parallelized).

● Resources must be provided to remove
dependencies and to run in parallel with a
short latency.

The window size limit

● The window is the set of consecutive
instructions starting from the oldest
uncompleted one.

● The perfect processor assumes an
infinite window but a real processor has a
fixed size window.

● Any instruction out of the window has a
window limit dependency. The ILP suffers
from such dependencies.

ILP in a fixed size window
processor (source Hen-Pat'03)

The branch prediction limit

● The perfect processor assumes a perfect
branch prediction but a real processor
has an imperfect branch predictor.

● The state-of-the-art predictor (97% hits) is
hybrid, predicting both the loop branches
(local predictor) and the context-path
branches (global predictor).

ILP in a processor with br. pred.
and a 2K window (Hen-Pat'03)

ILP in a bounded processor

● 128 instructions window. Up to 64 issues
per cycle. Single cycle latency
operations. State-of-the-art branch
predictor. Perfect memory address
speculation.

● Can the ILP wall be crossed? Actual IPC
is 2 in a 6-wide issue processor. There is
still a lot of uncaught ILP (from 2 to 10).

ILP in a bounded proc. (128
inst. window) (Hen-Pat'03)

How can we break the ILP wall?

● Fetch must provide more on-the-path
instructions to the data path.

● Decrease the misprediction rate (improve
prediction techniques).

● Decrease the misprediction penalty
(accelerate branch computation).

● Increase the fetch bandwidth (multiple bb
fetch and multiple branch predictions).

How can we break the ILP wall?

● The data path must be improved to be
more fully active and must be widened.

● To catch the available ILP (say n), every
cycle a set of at least n independent
instructions must be issued.

● These n instructions get their sources
from the data path or from the registers.

● These n instructions put their results into
the data path and in the registers.

Volatile and remanent data

● A datum is volatile from the time it is sent
out of its computing unit until it is written
to its destination register or discarded.

● A datum is remanent from the time it is
written to its destination register until the
same register is overwritten.

● The source of an instruction is volatile if
the datum it depends on (RAW) is volatile.
It is remanent if the datum is remanent.

Data writing into registers

● A datum is written into its destination
register only if no later instruction is
writing into the same register.

● When a set of instructions are committed
together, if two write to the same register,
only the latest one is performed.

● On 10 Mibench benchmarks, less than 1
write per cycle is performed. It decreases
when the commit width increases.

Remanent writes (source
Parello et al. Sympa'06)

Result writing and remanent
data

● When a datum is written into its
destination register, it becomes
remanent.

● Later dependent sources will have to be
read from the register file.

● Until it is either written or discarded, a
result is a volatile datum.

● A volatile datum is forwarded to all the
dependent sources (RAW).

Volatile and remanent data in
SAXPY

saxpy ADD R1, 0, 0

loop FLOAD F2, R8(R1) R1 volatile, R8 remanent

 FLOAD F3, R9(R1) R1 volatile, R9 remanent

 FMUL F4, F1, F2 F1 remanent, F2 volatile

 FADD F5, F3, F4 F3 and F4 volatile

 FSTORE F5, R9(R1) R1 and F5 volatile, R9 remanent

 ADD R1, R1, 1 R1 volatile

 SUB R2, R1, R10 R1 volatile, R10 remanent

 BNE R2, loop R2 volatile

Volatile and remanent data

● On 10 Mibench benchmarks, less than
30% of the sources are remanent.

● When the issue width is increased, the
proportion of remanent data decreases.

● This is because the latency between
production and consumption is reduced,
turning remanent data into volatile ones.

Remanent sources (Parello et
al, Sympa'06)

Volatile sources (Parello et al,
Sympa'06)

A register file for a wide issue
processor

● Should be placed out of the data path.

● Read remanent sources at dispatch, write
remanent results at commit. No reg
access from issue to writeback.

● 4-issue processor => 2 r and 1 w ports.

● 8-issue processor => 3 r and 1 w ports.

● 16-issue processor => 4 r and 1 w ports.

● Scalable register file.

Critical volatile sources

● A volatile source is critical if it is the
ultimate source of the instruction (when
the source is received, the instruction is
ready to be issued).

● Critical sources are produced ooo.

● In 10 Mibench benchmarks, a 4-issue
processor receives 3.8 critical volatile
sources and 0.7 non critical volatile
sources per cycle.

Critical volatile sources

● In 10 Mibench benchmarks, an 8-issue
processor receives 7 critical volatile
sources and 1.5 non critical volatile
sources per cycle.

● In 10 Mibench benchmarks, a 16-issue
processor receives 13.5 critical volatile
sources and 3.3 non critical volatile
sources per cycle.

Non critical volatile sources
(Parello et al, Sympa'06)

Critical volatile sources (Parello
et al, Sympa'06)

A bypass network for a wide
issue processor

● A bypass network routes the critical volatile
data from the computing units output to the
computing units inputs.

● An instruction is issued when its last source
is scheduled for output.

● Each computing unit is linked to a small
subset to allow the most frequent bypasses.

● The dispatcher maps dependent instructions
on linked units (if any is suitable).

A forwarding network for a wide
issue processor

● Non critical volatile data are routed from
the computing units outputs to the
waiting sources (issue stage).

● As the data are not critical, the route can
be pipelined.

● The scheduler states which data are
critical. It posts a routing protocol for
every volatile source at the producer unit
output.

Conclusion

● Programs have high ILP (or can be re-written
to enhance their ILP).

● There are some hints to think that the
processor issue width is scalable.

● We need more knowledge on how to schedule
the instructions to optimize the captured ILP.

● We need to decrease the impact of branches
(feed the data path with instructions).

