
How to capture more ILP

B. Goossens, LP2A/DALI

Archi07, Boussens, 19-23 mars 2007



Instruction Level Parallelism

● Natural program parallelism.

● Enhancing parallelism for the data path.

● Enhancing parallelism for the instruction 
path.

● The ILP wall.

● How can we break the ILP wall?



ILP in the SAXPY procedure

forall (i=0; i<1024; i++) y[i] += x[i] * a;

The source code is parallel as long as it is 
written in an appropriate language (e.g. 
Unified Parallel C).

In this code, there are 1024 independent 
computations (fix i , load x[i] , multiply, load 
y[i] , add, store y[i] ).



An ad hoc hardware

Saxpy 1024 in 4 cycles (load x, multiply and 
load y, add, store) (1024 +,  1024 *).
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SAXPY in machine code

// x in R8, y in R9, n (1024) in R10, i in R1, i-n in R2

// a in F1, x[i] in F2, y[i] in F3, a*x[i] in F4, y[i]+a*x[i] in F5

saxpy ADD R1, 0, 0

loop FLOAD F2, R8(R1)

 FLOAD F3, R9(R1)

 FMUL F4, F1, F2

 FADD F5, F3, F4

 FSTORE F5, R9(R1)

 ADD R1, R1, 1

 SUB R2, R1, R10

 BNE R2, loop

The machine code is not parallel.

There is only one single
computation made of 1 + 8*1024
inter-dependent instructions.



Why isn't the new code parallel?
● Introduction of control (e.g. loop):

Instructions run after a conditional or indirect 
branch depend on the branch.

● Introduction of shared registers:

Instructions writing to and reading from register r  
depend on instructions writing to r .

● Introduction of the load-store model:

Instructions writing to and reading from memory 
address b  depend on instructions writing to 
memory address a  until a  and b  are known.



How can we regain the lost 
parallelism?

● Speculate (start a dependent 
computation, assuming the dependency 
condition is solved).

● Remap (expand the architectural set of 
resources and remap the code on the new 
set, removing part of the dependencies).



How can we regain the lost 
parallelism?

● Predict conditional branch direction and 
indirect jump target (branch predictor and 
target buffer).

● Expand the set of shared registers and 
remap the machine code onto the new set 
(register renaming).

● Speculate on load addresses (speculative 
loads).



SAXPY in-order computation

● Instruction i  starts its computation when 
its dependencies with instructions j<i are 
solved and when instruction i-1 is started 
(pipelining accelerates the process).

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

i, j: instruction j in iteration i
j<i: j precedes i

Distance from
(i,j) to (i+1,j)
is 8.



SAXPY in partial order 
computation

● Instruction i  starts its computation when 
its dependencies with instructions j<i are 
solved (superscalar ooo execution).

1,0
1,1

1,2

1,3 1,4 1,5 1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5 2,6 2,7 2,8

control

WAR

RAW

Distance from
(i,j) to (i+1,j)
is 7.



Dependencies on registers

● RAW: read after write. An instruction that 
reads from register r has a RAW 
dependency with the last preceding 
instruction writing into r .

● WAR: write after read. An instruction that 
writes into register r has a WAR 
dependency with the preceding 
instructions reading from r  up to the last 
preceding instruction writing into r .



Dependencies on registers

● WAW: write after write. An instruction 
that writes into register r has a WAW 
dependency with the last preceding 
instruction writing into r .

● WAW and WAR dependencies can be 
removed by remapping (duplicate reg.).

● RAW and WAR dependencies can be 
removed by speculating (predict rather 
than read).



SAXPY with branch prediction

● Instruction i  starts its computation when 
its dependencies with instructions j<i are 
solved. Speculate on branch direction.

1,0
1,1

1,2

1,3 1,4 1,5 1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5 2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 5.

Need to correct
false predictions.



Branch prediction in the SAXPY 
loop

● Speculate on the direction of the loop 
branch (bet it will be taken).

● Next iteration does not depend anymore 
on the branch computation.

● At the end of the 1024 iterations, the bet 
is lost. It is required to correct: the code 
following the loop has a dependency with 
the branch.



Impact of branch prediction on 
SAXPY ILP

● Control dependencies are removed.

● The next iteration starts when the loop 
counter is updated (instruction (i, 6)), 
which cannot be performed sooner than 
after the current iteration store because 
of the WAR dependency on the loop 
counter register.

● Small impact.



Hints to the programmer to 
enhance ILP with branches

● Reduce conditional branches in the static 
code (they are frequent in iterative 
programming). e.g. unroll loops, avoid 
very few iterations loops, use conditional 
moves.

● Reduce conditional branches in the 
dynamic code, e.g. sort successive 
branches from the most taken one to the 
least.



Hints to the programmer to 
enhance ILP with branches

● Favour highly predictable branches 
(either one dominating direction -e.g. 
taken for a loop with many iterations- or 
one dominating path for a succession of 
branches -e.g. when one branch is taken, 
next one is also mostly taken -.

● Impact of conditional branches prediction 
correction on ILP is high: many branches 
(10% to 20%), mispredictions (2% to 8%).



Hints to the programmer to 
enhance ILP with branches

● Reduce indirect branches in the static 
code (they are frequent in functional 
programming with return instructions). 
e.g. inlining.

● Return address predictors are very 
accurate and return instructions are not 
very frequent in the dynamic code (2%).

● Impact of indirect branches prediction 
correction on ILP is low.



SAXPY with renaming (no 
branch prediction)

● Instruction i  starts its computation when 
its dependencies with instructions j<i are 
solved. Rename registers.

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

memory

Distance from
(i,j) to (i+1,j)
is 3 (control)
or 4 (compute).



Register renaming

● Assume an infinite set of renaming 
registers.

● Any destination register is remapped to a 
unique renaming register.

● Any source register r is remapped to the 
renaming register assigned to r by the 
last preceding instruction having r as a 
destination.



Register renaming

● WAW dependencies are removed as 
instructions write in a unique renaming 
register.

● WAR dependencies are removed as 
instruction sources are read from a 
unique renaming register. 



When may a renaming register 
be reused?

a: OP R1, R2, R3 //RR1 renames R1

...

b: OP R4, R1, R5 //RR1 used

...

c: OP R1, R6, R7 //RR2 renames R1

...

d: OP R8, R9, R0 //RR1 may rename R8    
//if b has read RR1



Memory dependency

● A load potentially depends on any 
preceding store (RAW mem. dep.).

● The dependency is pending until the load 
and the store addresses have both been 
computed.

● The dependency is confirmed if both 
memory accesses concern at least one 
single common byte.



Memory dependency

● A store potentially depends on any 
preceding load (WAR mem. dep.) and on 
any preceding store (WAW mem. dep.).

● The dependency is pending until the 
addresses have both been computed.

● The dependency is confirmed if both 
memory accesses concern at least one 
single common byte.



Impact of register renaming on 
SAXPY ILP

● WAR + WAW dependencies are removed.

● It builds two parallel sequences: the 
control part (loop counter computation), 
sequentialized by a control dependency; 
the loop body part, sequentialized by a 
memory dependency (the next iterations 
loads cannot be performed before the 
current iteration store).

● Average impact



Hints to the programmer to 
enhance ILP with renaming

● The only limitation to ILP introduced by 
the renaming process is due to the finite 
number of renaming registers.

● Instructions with no destination (e.g. 
store and branch) allocate no register 
(not a hint, just a note).

● Remanent data keep registers allocated 
for a long time. Favour volatile data. (in 
SAXPY, a  is remanent and i  is volatile).



SAXPY with renaming and 
memory address speculation

● Instruction i starts when its dependencies 
with instructions j<i  are solved. Rename 
registers, speculate on memory address.

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 3.

Need to correct
false speculation.



Load address speculation

● The load is performed even though there 
are still some unkown preceding store 
addresses.

● When a store address is resolved, it is 
compared to the addresses of all the 
following loads already run.

● If a match occurs, the run is restarted 
from the incorrect load. This adds a RAW 
mem. dependency.



Store address speculation

● The store is performed even though there 
are still some unkown preceding load or 
store addresses.

● When a load or store address is resolved, 
it is compared to the addresses of all the 
following stores already run.

● If a match occurs, the run is restarted 
from the incorrect load or store. This 
adds a WAR or WAW mem. dependency.



Impact of renaming and mem. 
speculation on SAXPY ILP

● WAR + WAW dependencies are removed.

● Memory load dependencies are removed.

● The loop body part for the next iteration 
is artificially relinked to the current 
iteration loop counter part by the control 
dependency.

● Low impact compared to renaming only.



Hints to the programmer to 
enhance ILP with mem. spec.

● Impact of memory speculation correction 
on ILP may be high: many stores (10% to 
20%).

● Mispredictions occur when there is a true 
RAW dependence between a store and 
the following loads.

● Avoid to read a variable that has been 
just written (e.g. avoid a recurrence on a 
variable in memory; avoid push/pop).



SAXPY with b. prediction, 
renaming and m. speculation

1,0 1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

Distance from
(i,j) to (i+1,j)
is 1.



What is the ILP limit in SAXPY 
with b. pred., r. ren., m. spec. 

● Because instruction (i+1, 6) has a RAW 
dependency on R1 with instruction (i, 6), 
the distance between two successive 
iterations is at least 1.

● Hence, instruction (i+1, j) has at least a 
distance of 1 with instruction (i, j) (in 
SAXPY, all the instructions in the loop 
body depend on the iteration counter). 



What is the ILP limit in SAXPY 
with b. pred., r. ren., m. spec. 

● Instructions (i, j) and (i+k, j) (k>0) cannot 
have a distance of 0.

● The set of distance 0 instructions (the 
ones that can be run in parallel) at most 
contains one of each instruction in the 
loop body.

● The ILP limit is the number of instructions 
in the loop body.

● To enhance ILP, unroll the loop.



SAXPY with value, branch and 
memory speculation

● e.g. In ld/st instructions, R1 is predicted 
rather than read in register (RAW and 
WAR dependencies on R1 are removed).

1,0

1,1

1,2

1,3 1,4 1,5

1,6 1,7 1,8

2,1

2,2

2,3 2,4 2,5

2,6 2,7 2,8

WAW

Distance from
(i,j) to (i+1,j)
is 1.



What is the ILP limit in SAXPY 
with b. pred., v. pred., m. spec.

● Because instruction (i+1, 6) has a RAW 
dependency on R1 with instruction (i, 6), 
the distance between two successive 
iterations is at least 1 (as when renaming 
is applied).

● The ILP limit is the number of instructions 
in the loop body.



How to remove dependencies

● Renaming removes WAR and WAW 
dependencies.

● Branch prediction (direction and target) 
removes control dependencies.

● Memory address speculation removes 
load after store dependencies.

● Value prediction removes WAR and RAW 
dependencies.



Fetching instructions in parallel

● The fetch bandwidth bounds the ILP that 
can be captured.

● The instructions should be fetched in-
order to allow the dependency analysis.

● Fetching should be respectful of the 
control dependencies.

● Pipelined, superscalar, speculative 
fetching are needed techniques to 
provide enough instructions to the core.



Scalar fetching for SAXPY

● Instruction i   is fetched when instruction 
i-1  has been fetched (every instruction 
updates the PC).

● No parallelism for the core.

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

b. dir. dep.

n. pc dep.



Superscalar fetching for SAXPY
(single basic block)

● Instructions in a Basic Block (bb) are
fetched in parallel. Only the bb ending 
instruction updates PC. Next bb is 
fetched  when the control dependency 
with the current bb has been solved.

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8



Superscalar fetching

● The parallelism offered to the core is 
bounded by the average basic block size.

● In 5 SPECInt2000 benchmarks, there are 
15% of branch/call/return instructions run 
(average bb size: 6 instructions).

● In 5 SPECfp2000 benchmarks, there are 
4% of branch/call/return instructions run 
(average bb size: 25 instructions). 



Superscalar fetching

● The parallelism offered to the core is also 
bounded by the instruction memory bus 
width (the superscalar fetching degree).

● A bb can span multiple memory accesses 
(large basic blocks) or can occupy a 
small part of a memory access (small bb).

● Bus expansion increases the parallelism 
offered to the core, up to the average bb 
length.



Superscalar fetching for SAXPY 
(4 instructions memory bus)
1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3

2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx

4 aligned instructions fetched

4 aligned instructions fetched

1 aligned instruction fetched

3 aligned instructions fetched

4 aligned instructions fetched

1 aligned instruction fetched

average (2/3 of bus) 2,66 aligned instructions fetched

pc ++ computation dependency

pc ++ computation dependency

pc ++ computation dependency

pc ++ computation dependency

b. dir. computation dependency



Fetched lines dependencies

● PC++ computation.

● Branch direction computation or 
prediction.

● Indirect jump computation (e.g. pop the 
return address) or prediction (e.g. pop the 
return address from a small hardware 
stack).



Superscalar fetching for SAXPY 
(8 instructions memory bus)
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx x xx x xx x

x xx x xx x

average (½ of bus) 4 aligned instructions fetched

8 instructions

1 instruction

7 instructions

1 instruction



Superscalar fetching for SAXPY 
(16 instructions memory bus)
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 x xx

x

x xx

x xx x xx x xx x xx x

x xx x xx x

9 instructions

8 instructions

average (½ of bus) 8 aligned instructions fetched

Further expansion of the memory bus is useless



Compiler hints to improve 
superscalar fetching

● Decrease the number of branch 
instructions (conditional move, loop 
unrolling).

● Align the code (in SAXPY, align the loop 
body).

● Decrease the number of indirect jumps 
(inlining, transform recursion into 
iteration when possible).



SAXPY with aligned body loop 
(8i bus)

1,0

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

x xx x xx x xx x xx x

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8



Superscalar fetching for SAXPY
(multiple basic blocks)

● Multiple bb are  fetched in parallel. Only 
the ending instruction of the last bb 
updates PC. Next set of bb is fetched
when the control dependency with the 
last currently fetched bb has been solved.

● The control dependencies between the 
fetched bb are solved by prediction. The 
predictor must provide the starting 
address of each of the bb to be fetched. 



Multiple block ahead predictor

● For n fetched blocks, the predictor must 
deliver n bb addresses (PC gives the first 
bb address, the predictor gives next PC).

● The inner dependencies to solve can be 
any mix of conditional branch targets, 
function calls (return address to be 
pushed), return addresses, immediate or 
indirect jumps. 



Multiple block ahead predictor

● A major simplification is to concentrate 
the prediction on the conditional 
branches.

● When a bb is ended by an indirect jump, 
this bb ends the set of fetched bb.

● Still, we can fetch multiple function calls 
(push all the return addresses) and a last 
bb ended by a return (pop the last 
address pushed in the same fetch cycle).



Two bb fetch in SAXPY (two 
branch predictions, 16i bus)

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

1,8 2,1 2,2 2,3 2,4 2,5 2,6 2,7

2,8 3,1 3,2 3,3 3,4 3,5 3,6 3,7

3,8 4,1 4,2 4,3 4,4 4,5 4,6 4,7

Compiler alignment
is no more required.



How many branch predictions 
are needed?

● The distribution of control flow 
instructions is not uniform.

● Integer codes have much more control 
flow instructions than floating point 
codes.

● With n predictions, on Int codes, we fetch 
6n instructions on the average. On fp 
codes, we fetch 25n instructions on the 
average.



Available ILP in programs

● Maximum available ILP can be measured 
on a perfect processor (remove all 
dependencies except true data (register 
RAW); no value prediction).

● Perfect processor: Infinite renaming 
registers, perfect branch prediction, 
perfect load/store speculation, infinite 
issue and run capacity, single cycle 
execution.



ILP in SPEC92 (source: Hen-Pat 
Comp. Arch. 3rd edition, 2003)

     















































The ILP wall

● A lot of ILP, but difficult to catch (low ILP 
programs should be parallelized).

● Resources must be provided to remove 
dependencies and to run in parallel with a 
short latency.



The window size limit

● The window is the set of consecutive 
instructions starting from the oldest 
uncompleted one.

● The perfect processor assumes an 
infinite window but a real processor has a 
fixed size window.

● Any instruction out of the window has a 
window limit dependency. The ILP suffers 
from such dependencies.



ILP in a fixed size window 
processor (source Hen-Pat'03)

     



























































The branch prediction limit

● The perfect processor assumes a perfect 
branch prediction but a real processor 
has an imperfect branch predictor.

● The state-of-the-art predictor (97% hits) is 
hybrid, predicting both the loop branches 
(local predictor) and the context-path 
branches (global predictor).



ILP in a processor with br. pred. 
and a 2K window (Hen-Pat'03)

     

















































ILP in a bounded processor

● 128 instructions window. Up to 64 issues 
per cycle. Single cycle latency 
operations. State-of-the-art branch 
predictor. Perfect memory address 
speculation.

● Can the ILP wall be crossed? Actual IPC 
is 2 in a 6-wide issue processor. There is 
still a lot of uncaught ILP (from 2 to 10).



ILP in a bounded proc. (128 
inst. window) (Hen-Pat'03)

     

























































How can we break the ILP wall?

● Fetch must provide more on-the-path 
instructions to the data path.

● Decrease the misprediction rate (improve 
prediction techniques).

● Decrease the misprediction penalty 
(accelerate branch computation).

● Increase the fetch bandwidth (multiple bb 
fetch and multiple branch predictions).



How can we break the ILP wall?

● The data path must be improved to be 
more fully active and must be widened.

● To catch the available ILP (say n), every 
cycle a set of at least n independent 
instructions must be issued.

● These n instructions get their sources 
from the data path or from the registers.

● These n instructions put their results into 
the data path and in the registers.



Volatile and remanent data

● A datum is volatile from the time it is sent 
out of its computing unit until it is written 
to its destination register or discarded.

● A datum is remanent from the time it is 
written to its destination register until the 
same register is overwritten.

● The source of an instruction is volatile if 
the datum it depends on (RAW) is volatile. 
It is remanent if the datum is remanent.



Data writing into registers

● A datum is written into its destination 
register only if no later instruction is 
writing into the same register.

● When a set of instructions are committed 
together, if two write to the same register, 
only the latest one is performed.

● On 10 Mibench benchmarks, less than 1 
write per cycle is performed. It decreases 
when the commit width increases.



Remanent writes (source 
Parello et al. Sympa'06)

  




















































Result writing and remanent 
data

● When a datum is written into its 
destination register, it becomes 
remanent.

● Later dependent sources will have to be 
read from the register file.

● Until it is either written or discarded, a 
result is a volatile datum.

● A volatile datum is forwarded to all the 
dependent sources (RAW).



Volatile and remanent data in 
SAXPY

saxpy ADD R1, 0, 0

loop FLOAD F2, R8(R1) R1 volatile, R8 remanent

 FLOAD F3, R9(R1) R1 volatile, R9 remanent

 FMUL F4, F1, F2 F1 remanent, F2 volatile

 FADD F5, F3, F4 F3 and F4 volatile

 FSTORE F5, R9(R1) R1 and F5 volatile, R9 remanent

 ADD R1, R1, 1 R1 volatile

 SUB R2, R1, R10 R1 volatile, R10 remanent

 BNE R2, loop R2 volatile



Volatile and remanent data

● On 10 Mibench benchmarks, less than 
30% of the sources are remanent.

● When the issue width is increased, the 
proportion of remanent data decreases.

● This is because the latency between 
production and consumption is reduced, 
turning remanent data into volatile ones.



Remanent sources (Parello et 
al, Sympa'06)

  










































































Volatile sources (Parello et al, 
Sympa'06)

  






























































A register file for a wide issue 
processor

● Should be placed out of the data path.

● Read remanent sources at dispatch, write 
remanent results at commit. No reg 
access from issue to writeback.

● 4-issue processor => 2 r and 1 w ports.

● 8-issue processor => 3 r and 1 w ports.

● 16-issue processor => 4 r and 1 w ports.

● Scalable register file.



Critical volatile sources

● A volatile source is critical if it is the 
ultimate source of the instruction (when 
the source is received, the instruction is 
ready to be issued).

● Critical sources are produced ooo.

● In 10 Mibench benchmarks, a 4-issue 
processor receives 3.8 critical volatile 
sources and 0.7 non critical volatile 
sources per cycle.



Critical volatile sources

● In 10 Mibench benchmarks, an 8-issue 
processor receives 7 critical volatile 
sources and 1.5 non critical volatile 
sources per cycle.

● In 10 Mibench benchmarks, a 16-issue 
processor receives 13.5 critical volatile 
sources and 3.3 non critical volatile 
sources per cycle.



Non critical volatile sources 
(Parello et al, Sympa'06)

  

















































































Critical volatile sources (Parello 
et al, Sympa'06)

  














































































A bypass network for a wide 
issue processor

● A bypass network routes the critical volatile 
data from the computing units output to the 
computing units inputs.

● An instruction is issued when its last source 
is scheduled for output.

● Each computing unit is linked to a small 
subset to allow the most frequent bypasses.

● The dispatcher maps dependent instructions 
on linked units (if any is suitable).



A forwarding network for a wide 
issue processor

● Non critical volatile data are routed from 
the computing units outputs to the 
waiting sources (issue stage).

● As the data are not critical, the route can 
be pipelined.

● The scheduler states which data are 
critical. It posts a routing protocol for 
every volatile source at the producer unit 
output.



Conclusion

● Programs have high ILP (or can be re-written 
to enhance their ILP).

● There are some hints to think that the 
processor issue width is scalable.

● We need more knowledge on how to schedule 
the instructions to optimize the captured ILP.

● We need to decrease the impact of branches 
(feed the data path with instructions).


