Introduction to modern lattice-based cryptography

Damien Stehlé

CNRS/Macquarie University/University of Sydney

Marseille, February 2010
Modern lattice-based cryptography

- **Cryptography**: the study of hiding information.
- “Lattice-based”: the schemes are described with lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won’t be interested in GGH and NTRU. More recent schemes offer similar asymptotic performance and comparable efficiency.
Modern lattice-based cryptography

- Cryptography: the study of hiding information.
- “Lattice-based”: the schemes are described with lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won’t be interested in GGH and NTRU. More recent schemes offer similar asymptotic performance and comparable efficiency.
Modern lattice-based cryptography

- Cryptography: the study of hiding information.
- “Lattice-based”: the schemes are described with lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won’t be interested in GGH and NTRU. More recent schemes offer similar asymptotic performance and comparable efficiency.
Modern lattice-based cryptography

- Cryptography: the study of hiding information.
- “Lattice-based”: the schemes are described with lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won’t be interested in GGH and NTRU. More recent schemes offer similar asymptotic performance and comparable efficiency.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Why lattice-based cryptography?

(why not factoring or discrete log, as usual?)

- LBC provides unmatched security properties: it relies on worst-case hardness assumptions and seems to resist against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.
Goal of this course

To give an overview of recent developments in lattice-based cryptography, and a flavour of the techniques/results.

Disclaimer: This is not a practical crypto course.

Contents: Complexity theory, distributions, quantum computing, cryptography, structured matrices, algebraic number theory, lattices.
Goal of this course

To give an overview of recent developments in lattice-based cryptography, and a flavour of the techniques/results.

Disclaimer: This is not a practical crypto course.

Contents: Complexity theory, distributions, quantum computing, cryptography, structured matrices, algebraic number theory, lattices.
Goal of this course

To give an overview of recent developments in lattice-based cryptography, and a flavour of the techniques/results.

Disclaimer: This is not a practical crypto course.

Contents: Complexity theory, distributions, quantum computing, cryptography, structured matrices, algebraic number theory, lattices.
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
Background on Euclidean lattices

a- Arbitrary lattices.
b- Ideal lattices.
c- Lattice Gaussians.
(Arbitrary) lattices

Lattice \equiv \text{ discrete subgroup of } \mathbb{R}^n \\
\equiv \{ \sum x_i b_i : x_i \in \mathbb{Z} \}

If the b_i’s are linearly independent, they are called a basis.

Hard pbs: short/close vectors.

Lattice minimum:
$\lambda(L) = \min (\|b\| : b \in L \setminus 0)$.
(Arbitrary) lattices

A lattice is a discrete subgroup of \mathbb{R}^n defined as:

$$\text{Lattice} \equiv \{ \sum x_i b_i : x_i \in \mathbb{Z} \}$$

If the b_i's are linearly independent, they are called a **basis**.

Hard problems: short/close vectors.

Lattice minimum:

$$\lambda(L) = \min (\|b\| : b \in L \setminus 0).$$
(Arbitrary) lattices

Lattice \equiv \text{discrete subgroup of } \mathbb{R}^n \\
\equiv \{ \sum x_i b_i : x_i \in \mathbb{Z} \}

If the b_i’s are linearly independent, they are called a basis.

Hard pbs: short/close vectors.

Lattice minimum:
$$\lambda(L) = \min (\|b\| : b \in L \setminus \{0\}).$$
(Arbitrary) lattices

Lattice \equiv discrete subgroup of \mathbb{R}^n
$\equiv \{ \sum x_i b_i : x_i \in \mathbb{Z} \}$

If the b_i’s are linearly independent, they are called a basis.

Hard pbs: short/close vectors.

Lattice minimum:
$\lambda(L) = \min (\|b\| : b \in L \setminus 0)$.
SVP and SIVP

The Shortest Vector Problem: \(\text{SVP}_\gamma \)

Given a basis of \(L \), find \(b \in L \setminus 0 \) such that:

\[
\|b\| \leq \gamma \cdot \min(\|c\| : c \in L \setminus 0).
\]
SVP and SIVP

The Shortest Vector Problem: SVP_γ

Given a basis of L, find $b \in L \setminus \{0\}$ such that:

$$\|b\| \leq \gamma \cdot \min(\|c\| : c \in L \setminus \{0\}).$$

The Shortest Independent Vectors Problem: SIVP_γ

Given a basis of L, find $b_1, \ldots, b_n \in L$ lin. indep. such that:

$$\max \|b_i\| \leq \gamma \cdot \min(\max \|c_i\| : c_1, \ldots, c_n \in L \text{ lin. indep.}).$$
The Shortest Vector Problem: SVP_γ

Given a basis of L, find $\mathbf{b} \in L \setminus \{0\}$ such that:

$$\|\mathbf{b}\| \leq \gamma \cdot \min(\|\mathbf{c}\| : \mathbf{c} \in L \setminus \{0\}).$$

The Shortest Independent Vectors Problem: SIVP_γ

Given a basis of L, find $\mathbf{b}_1, \ldots, \mathbf{b}_n \in L$ lin. indep. such that:

$$\max \|\mathbf{b}_i\| \leq \gamma \cdot \min(\max \|\mathbf{c}_i\| : \mathbf{c}_1, \ldots, \mathbf{c}_n \in L \text{ lin. indep.}).$$

- NP-hard when $\gamma = O(1)$.
- In lattice-based crypto: $\gamma = \mathcal{P}oly(n)$ (most often).
- Solvable in polynomial time when $\gamma = 2^{\tilde{O}(n)}$.
Gram-Schmidt Orthogonalisation

- A lattice may have infinitely many bases.
- Quality of a basis: measured by the Gram-Schmidt Orth.
A lattice may have infinitely many bases.

Quality of a basis: measured by the Gram-Schmidt Orth.

\[b^*_i = \arg\min \|b_i + \sum_{j<i} Rb_j\| \]

Quality measure: \[\max_i \|b^*_i\| \].
Gram-Schmidt Orthogonalisation

- A lattice may have infinitely many bases.
- Quality of a basis: measured by the Gram-Schmidt Orth.

\[b_i^* = \arg\min \| b_i + \sum_{j<i} R b_j \| \]

- Quality measure: \(\max_i \| b_i^* \| \).
From short vectors to a short basis

Let \((b_i)_i\) be a basis of a lattice \(L\).
Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
Can we compute a basis of \(L\) with small GSO?

Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
Let \((c_i)_i = (b_i)_i \cdot U\).
\((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).
Therefore \(\max ||c_i^*|| \leq \max ||s_i^*||\).
From short vectors to a short basis

- Let \((b_i)_i\) be a basis of a lattice \(L\).
- Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
- Can we compute a basis of \(L\) with small GSO?

- Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
 - Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
 - Let \((c_i)_i = (b_i)_i \cdot U\).
 - \((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).
 - Therefore \(\max \|c_i^*\| \leq \max \|s_i^*\|\).
From short vectors to a short basis

- Let \((b_i)_i\) be a basis of a lattice \(L\).
- Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
- Can we compute a basis of \(L\) with small GSO?

- Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
- Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
 Let \((c_i)_i = (b_i)_i \cdot U\).

- \((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).
- Therefore \(\max \|c_i^*\| \leq \max \|s_i^*\|\).
From short vectors to a short basis

- Let \((b_i)_i\) be a basis of a lattice \(L\).
- Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
- Can we compute a basis of \(L\) with small GSO?

- Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
- Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
- Let \((c_i)_i = (b_i)_i \cdot U\).
- \((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).

Therefore \(\max \|c_i^*\| \leq \max \|s_i^*\|\).
From short vectors to a short basis

- Let \((b_i)_i\) be a basis of a lattice \(L\).
- Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
- Can we compute a basis of \(L\) with small GSO?

- Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
- Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
- Let \((c_i)_i = (b_i)_i \cdot U\).
- \((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).
- Therefore \(\max \|c_i^*\| \leq \max \|s_i^*\|\).
From short vectors to a short basis

- Let \((b_i)_i\) be a basis of a lattice \(L\).
- Let \((s_i)_i\) in \(L\) be linearly independent with small GSO.
- Can we compute a basis of \(L\) with small GSO?

- Write \((s_i)_i = (b_i)_i \cdot T\), with \(T \in \mathbb{Z}^{n \times n}\).
- Compute the Hermite Normal Form of \(T\), i.e., \(T = U \cdot T'\) with \(U\) unimodular and \(T' \in \mathbb{Z}^{n \times n}\) upper triangular.
- Let \((c_i)_i = (b_i)_i \cdot U\).
- \((c_i)_i\) is a basis of \(L\) and \((s_i)_i = (c_i)_i \cdot T'\).
- Therefore \(\max \|c_i^*\| \leq \max \|s_i^*\|\).

With a size-reduction, we can get \(\max \|c_i\| \leq \sqrt{n} \cdot \max \|s_i\|\).
Background on lattices

- **a-** Arbitrary lattices.
- **b-** Ideal lattices.
- **c-** Lattice Gaussians.
A lattice L is **ideal** if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1} \\
\end{pmatrix} \in L \\
\Rightarrow \begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2} \\
\end{pmatrix} \in L \\
\Rightarrow \begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3} \\
\end{pmatrix} \in L \\
\Rightarrow \begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4} \\
\end{pmatrix} \in L
\]
A lattice L is **ideal** if:

$$
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1} \\
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2} \\
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3} \\
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
$$
A lattice L is **ideal** if:

$$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1} \\ -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2} \\ -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3} \\ -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4} \end{pmatrix} \in L$$
A lattice L is **ideal** if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix} \in L
\]

\[\Rightarrow\]

\[
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix} \in L
\]

\[\Rightarrow\]

\[
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix} \in L
\]

\[\Rightarrow\]

\[
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix} \in L
\]
A lattice L is **ideal** if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is ideal if

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is ideal if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is **ideal** if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is ideal if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is ideal if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is ideal if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Ideal lattices

A lattice L is ideal if:

\[
\begin{pmatrix}
 b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix}
\in L
\]

\[
\Rightarrow
\begin{pmatrix}
 -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix}
\in L
\]

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.
A lattice L is **ideal** if:

$\begin{pmatrix}
b_0 & b_1 & b_2 & b_3 & \ldots & b_{n-2} & b_{n-1}
\end{pmatrix} \in L$

\Rightarrow

$\begin{pmatrix}
-b_{n-1} & b_0 & b_1 & b_2 & \ldots & b_{n-3} & b_{n-2}
\end{pmatrix} \in L$

\Rightarrow

$\begin{pmatrix}
-b_{n-2} & -b_{n-1} & b_0 & b_1 & \ldots & b_{n-4} & b_{n-3}
\end{pmatrix} \in L$

\Rightarrow

$\begin{pmatrix}
-b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \ldots & b_{n-5} & b_{n-4}
\end{pmatrix} \in L$

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n + 1)$.

Easy property: all minima of an ideal lattice are equal.

$$\lambda_k(L) = \min(r : \dim \text{span}(L \cap B(r)) \geq k).$$
How special are ideal lattices?

Advantages

- The negacyclic structure allows one to save space.
 Warning: an ideal lattice may have no negacyclic basis.
- We can multiply vectors together.
- Fast polynomial arithmetic.
How special are ideal lattices?

Advantages
- The negacyclic structure allows one to save space.
 Warning: an ideal lattice may have no negacyclic basis.
- We can multiply vectors together.
- Fast polynomial arithmetic.

Drawbacks
- NP-hardness results not valid anymore.
- Decisional SVP becomes easier (algebraic number theory).
How special are ideal lattices?

Advantages

- The negacyclic structure allows one to save space.
 Warning: an ideal lattice may have no negacyclic basis.
- We can multiply vectors together.
- Fast polynomial arithmetic.

Drawbacks

- NP-hardness results not valid anymore.
- Decisional SVP becomes easier (algebraic number theory).

But no known computational advantage for Id-SVP/Id-SIVP.
Ideal lattices and algebraic number theory

Let ζ be a primitive $(2n)$-th root of unity and $K = \mathbb{Q}(\zeta) \approx \mathbb{Q}[x]/(x^n + 1)$.

- K is a cyclotomic number field with n canonical embeddings $\sigma_i : K \to \mathbb{C}$.
- For $x \in K$: $T_2(x)^2 := \sum |\sigma_i(x)|^2$ and $N x := \prod |\sigma_i(x)|$.
- The ring of integers \mathcal{O}_K of K is the set of algebraic integers belonging to K. Here, it is $\mathbb{Z}[x]/(x^n + 1)$.
- An ideal lattice L is an ideal of $\mathbb{Z}[x]/(x^n + 1)$ and thus an integral ideal of K, i.e., an ideal of K contained in \mathcal{O}_K. We define $N(L) = [L : \mathcal{O}_K] = \det(L)$.

Damien Stehlé
Ideal lattices and algebraic number theory

- Let ζ be a primitive $(2n)$-th root of unity and $K = \mathbb{Q}(\zeta) \cong \mathbb{Q}[x]/(x^n + 1)$.
- K is a cyclotomic number field with n canonical embeddings $\sigma_i : K \rightarrow \mathbb{C}$.
- For $x \in K$: $T_2(x)^2 := \sum |\sigma_i(x)|^2$ and $N x := \prod |\sigma_i(x)|$.
- The ring of integers \mathcal{O}_K of K is the set of algebraic integers belonging to K. Here, it is $\mathbb{Z}[x]/(x^n + 1)$.
- An ideal lattice L is an ideal of $\mathbb{Z}[x]/(x^n + 1)$ and thus an integral ideal of K, i.e., an ideal of K contained in \mathcal{O}_K. We define $N(L) = [L : \mathcal{O}_K] = \det(L)$.

Damien Stehlé

Introduction to modern lattice-based cryptography
Let ζ be a primitive $(2n)$-th root of unity and $K = \mathbb{Q}(\zeta) \cong \mathbb{Q}[x]/(x^n + 1)$.

K is a cyclo
tomic number field with n canonical embeddings $\sigma_i : K \to \mathbb{C}$.

For $x \in K$: $T_2(x)^2 := \sum |\sigma_i(x)|^2$ and $N x := \prod |\sigma_i(x)|$.

The ring of integers \mathcal{O}_K of K is the set of algebraic integers belonging to K. Here, it is $\mathbb{Z}[x]/(x^n + 1)$.

An ideal lattice L is an ideal of $\mathbb{Z}[x]/(x^n + 1)$ and thus an integral ideal of K, i.e., an ideal of K contained in \mathcal{O}_K. We define $N(L) = [L : \mathcal{O}_K] = \det(L)$.

Ideal lattices and algebraic number theory
Ideal lattices and algebraic number theory

- Let ζ be a primitive $(2n)$-th root of unity and $K = \mathbb{Q}(\zeta) \approx \mathbb{Q}[x]/(x^n + 1)$.
- K is a **cyclo
tom
c field** with n canonical embeddings $\sigma_i : K \to \mathbb{C}$.
- For $x \in K$: $T_2(x)^2 := \sum |\sigma_i(x)|^2$ and $N x := \prod |\sigma_i(x)|$.
- The **ring of integers** \mathcal{O}_K of K is the set of algebraic integers belonging to K. Here, it is $\mathbb{Z}[x]/(x^n + 1)$.
- An ideal lattice L is an ideal of $\mathbb{Z}[x]/(x^n + 1)$ and thus an integral ideal of K, i.e., an ideal of K contained in \mathcal{O}_K.
- We define $N(L) = [L : \mathcal{O}_K] = \det(L)$.
Let \(\zeta \) be a primitive \((2n)\)-th root of unity and \(K = \mathbb{Q}(\zeta) \cong \mathbb{Q}[x]/(x^n + 1) \).

\(K \) is a cyclotomic number field with \(n \) canonical embeddings \(\sigma_i : K \rightarrow \mathbb{C} \).

For \(x \in K \): \(T_2(x)^2 := \sum |\sigma_i(x)|^2 \) and \(\mathcal{N} x := \prod |\sigma_i(x)| \).

The ring of integers \(\mathcal{O}_K \) of \(K \) is the set of algebraic integers belonging to \(K \). Here, it is \(\mathbb{Z}[x]/(x^n + 1) \).

An ideal lattice \(L \) is an ideal of \(\mathbb{Z}[x]/(x^n + 1) \) and thus an integral ideal of \(K \), i.e., an ideal of \(K \) contained in \(\mathcal{O}_K \). We define \(\mathcal{N}(L) = [L : \mathcal{O}_K] = \det(L) \).
Approximating Id-SVP is easy

- The coefficient norm (in $\mathbb{Z}[x]/(x^n + 1)$) is a scaling of factor \sqrt{n} of the T_2-norm.
- For any $x \in K$, we have $(\mathcal{N} x)^{2/n} \leq T_2(x)^{2/n}$.
- For any $x \in L$, we have $(x) \subseteq L$, and thus $\mathcal{N} x = \mathcal{N}(x) \geq \mathcal{N}(L)$. This gives:
 \[
 \sqrt{n} \cdot \mathcal{N}(L)^{1/n} \leq \sqrt{n} \cdot \mathcal{N}(x)^{1/n} \leq T_2(x).
 \]
- Let $s \in L$ reaching $\lambda(L)$. Minkowski’s theorem gives:
 \[
 T_2(s) \leq \sqrt{n} \cdot \text{vol}\,T_2(L)^{1/n} \leq n \cdot \mathcal{N}(L)^{1/n}.
 \]
- Overall, we know $\lambda(L)$ up to a factor \sqrt{n}.

\[\text{ Damien Stehlé
 Introduction to modern lattice-based cryptography
 01/02/2010
 16/81}\]
Approximating \text{Id-SVP} is easy

- The coefficient norm (in $\mathbb{Z}[x]/(x^n + 1)$) is a scaling of factor \sqrt{n} of the T_2-norm.

- For any $x \in K$, we have $(N(x))^{2/n} \leq T_2(x)^{2/n}$.

 For any $x \in L$, we have $(x) \subseteq L$, and thus $N(x) = (x) \geq N(L)$. This gives:

 \[\sqrt{n} \cdot N(L)^{1/n} \leq \sqrt{n} \cdot (x)^{1/n} \leq T_2(x). \]

- Let $s \in L$ reaching $\lambda(L)$. Minkowski’s theorem gives:

 \[T_2(s) \leq \sqrt{n} \cdot \text{vol} \cdot T_2(L)^{1/n} \leq n \cdot N(L)^{1/n}. \]

- Overall, we know $\lambda(L)$ up to a factor \sqrt{n}.
Approximating \textit{Id-SVP} is easy

- The coefficient norm (in $\mathbb{Z}[x]/(x^n + 1)$) is a scaling of factor \sqrt{n} of the T_2-norm.
- For any $x \in K$, we have $(N x)^{2/n} \leq T_2(x)^{2/n}$.
- For any $x \in L$, we have $(x) \subseteq L$, and thus $N x = N(x) \geq N(L)$. This gives:

\[
\sqrt{n} \cdot N(L)^{1/n} \leq N(x)^{1/n} \leq T_2(x).
\]

- Let $s \in L$ reaching $\lambda(L)$. Minkowski’s theorem gives:

\[
T_2(s) \leq \sqrt{n} \cdot \vol_{T_2}(L)^{1/n} \leq n \cdot N(L)^{1/n}.
\]

- Overall, we know $\lambda(L)$ up to a factor \sqrt{n}.
Approximating \text{Id-SVP} is easy

- The coefficient norm (in \(\mathbb{Z}[x]/(x^n + 1) \)) is a scaling of factor \(\sqrt{n} \) of the \(T_2 \)-norm.
- For any \(x \in K \), we have \((N x)^{2/n} \leq T_2(x)^{2/n} \).
- For any \(x \in L \), we have \((x) \subseteq L \), and thus \(\sqrt{n} \leq \sqrt{n} \leq \sqrt{n} \leq \sqrt{n} \).
- Let \(s \in L \) reaching \(\lambda(L) \). Minkowski’s theorem gives:
 \[
 T_2(s) \leq \sqrt{n} \cdot vol_{T_2}(L)^{1/n} \leq n \cdot N(L)^{1/n}.
 \]
- Overall, we know \(\lambda(L) \) up to a factor \(\sqrt{n} \).
Approximating Id-SVP is easy

- The coefficient norm (in $\mathbb{Z}[x]/(x^n + 1)$) is a scaling of factor \sqrt{n} of the T_2-norm.
- For any $x \in K$, we have $(N(x)^{2/n} \leq T_2(x)^{2/n}.$
- For any $x \in L$, we have $(x) \subseteq L$, and thus $N(x) = N(x) \geq N(L).$ This gives:

$$\sqrt{n} \cdot N(L)^{1/n} \leq \sqrt{n} \cdot N(x)^{1/n} \leq T_2(x).$$

- Let $s \in L$ reaching $\lambda(L).$ Minkowski’s theorem gives:

$$T_2(s) \leq \sqrt{n} \cdot \text{vol}_{T_2}(L)^{1/n} \leq n \cdot N(L)^{1/n}.$$

- Overall, we know $\lambda(L)$ up to a factor $\sqrt{n}.$
Background on lattices

a- Arbitrary lattices.
b- Ideal lattices.
c- Lattice Gaussians.
A handy distribution: the discrete Gaussian
A handy distribution: the discrete Gaussian

For $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$:

$$\rho_{\sigma,\mathbf{c}}(\mathbf{b}) := e^{-\pi \frac{\|\mathbf{b} - \mathbf{c}\|^2}{\sigma^2}}.$$

σ is the standard deviation.
A handy distribution: the discrete Gaussian

For $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$:

$$\rho_{\sigma, \mathbf{c}}(\mathbf{b}) := e^{-\pi \frac{\|\mathbf{b} - \mathbf{c}\|^2}{\sigma^2}}.$$

σ is the standard deviation.

For $L \subseteq \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$: $\rho_{\sigma, \mathbf{c}}(L) = \sum_{\mathbf{b} \in L} \rho_{\sigma, \mathbf{c}}(\mathbf{b})$ is finite.

Discrete n-dimensional Gaussian:

$$\forall \mathbf{b} \in L : D_{L, \sigma, \mathbf{c}}(\mathbf{b}) = \frac{\rho_{\sigma, \mathbf{c}}(\mathbf{b})}{\rho_{\sigma, \mathbf{c}}(L)}.$$
The Poisson Summation Formula (PSF)

Dual lattice:

- If $L \subseteq \mathbb{R}^n$ is full rank, its **dual** is

$$\hat{L} = \left\{ \hat{b} : \forall b \in L, \langle \hat{b}, b \rangle \in \mathbb{Z} \right\}.$$

- If $B \in \mathbb{R}^{n \times n}$ is a basis of L, then B^{-T} is a basis of \hat{L}.
The Poisson Summation Formula (PSF)

Dual lattice:

- If $L \subseteq \mathbb{R}^n$ is full rank, its dual is

$$\hat{L} = \left\{ \hat{b} : \forall b \in L, \langle \hat{b}, b \rangle \in \mathbb{Z} \right\}.$$

- If $B \in \mathbb{R}^{n \times n}$ is a basis of L, then B^{-T} is a basis of \hat{L}.

Poisson summation formula for n-dimensional Gaussians (derived from Fourier analysis):

$$\rho_{\sigma, c}(L) = \det(\hat{L}) \cdot \sigma^n \cdot \sum_{\hat{b} \in \hat{L}} \left[\rho_{1/\sigma}(\hat{b}) \cdot \exp(-2\pi i \langle \hat{b}, c \rangle) \right].$$
The Poisson Summation Formula (PSF)

Dual lattice:
- If \(L \subseteq \mathbb{R}^n \) is full rank, its dual is
 \[
 \hat{L} = \left\{ \hat{b} : \forall b \in L, \langle \hat{b}, b \rangle \in \mathbb{Z} \right\}.
 \]
- If \(B \in \mathbb{R}^{n \times n} \) is a basis of \(L \), then \(B^{-T} \) is a basis of \(\hat{L} \).

Poisson summation formula for \(n \)-dimensional Gaussians (derived from Fourier analysis):

\[
\rho_{\sigma, c}(L) = \det(\hat{L}) \cdot \sigma^n \cdot \sum_{\hat{b} \in \hat{L}} \left[\rho_{1/\sigma}(\hat{b}) \cdot \exp(-2\pi i \langle \hat{b}, c \rangle) \right].
\]

Consequence: \(\forall \sigma \geq 1 : \rho_\sigma(L \setminus B(0, \sigma \sqrt{n})) \leq 2^{-n+1} \rho_\sigma(L) \).
The smoothing parameter

- Define $\eta_\varepsilon(L)$ as the smallest σ such that $\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) \leq \varepsilon$.
- If $\sigma \geq \eta_\varepsilon(L)$, then $\rho_{\sigma,c}(L)$ is quasi-constant.

\[
\rho_{\sigma,c}(L) \in \left[(1 - \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n, (1 + \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n\right].
\]

- If $(\mathbf{b}_i)_i$ is a basis of L, we have:

\[
\eta_\varepsilon(L) \leq \max \|\mathbf{b}_i^*\| \cdot \sqrt{\log(3n/\varepsilon)}.
\]
The smoothing parameter

- Define $\eta_\varepsilon(L)$ as the smallest σ such that $\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) \leq \varepsilon$.
- If $\sigma \geq \eta_\varepsilon(L)$, then $\rho_{\sigma,c}(L)$ is quasi-constant.

$$\rho_{\sigma,c}(L) \in \left[(1 - \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n, (1 + \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n \right].$$

- If $(b_i)_i$ is a basis of L, we have:

$$\eta_\varepsilon(L) \leq \max \|b_i^*\| \cdot \sqrt{\log(3n/\varepsilon)}.$$
The smoothing parameter

- Define $\eta_\varepsilon(L)$ as the smallest σ such that $\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) \leq \varepsilon$.
- If $\sigma \geq \eta_\varepsilon(L)$, then $\rho_{\sigma,c}(L)$ is quasi-constant.

$$\rho_{\sigma,c}(L) \in \left[(1 - \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n, (1 + \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n\right].$$

- If $(\mathbf{b}_i)_i$ is a basis of L, we have:

$$\eta_\varepsilon(L) \leq \max \|\mathbf{b}_i^*\| \cdot \sqrt{\log(3n/\varepsilon)}.$$
The smoothing parameter

- Define $\eta_\varepsilon(L)$ as the smallest σ such that $\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) \leq \varepsilon$.
- If $\sigma \geq \eta_\varepsilon(L)$, then $\rho_{\sigma,c}(L)$ is quasi-constant.

$$\rho_{\sigma,c}(L) \in \left[(1 - \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n, (1 + \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n\right].$$

- If $(\mathbf{b}_i)_i$ is a basis of L, we have:

$$\eta_\varepsilon(L) \leq \max \|\mathbf{b}_i^*\| \cdot \sqrt{\log(3n/\varepsilon)}.$$

Typically, we will use $\varepsilon = 2^{-n}$.

$$\rho_{\sigma,c}(L) \in \left[(1 - \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n, (1 + \varepsilon) \cdot \det(\hat{L}) \cdot \sigma^n\right].$$
Proof that $\eta_{2^{-n+2}}(L) \leq \sqrt{n} \cdot \max \| b^*_i \|

- First: $\eta_{2^{-n+2}}(L) \leq \sqrt{n} \lambda(\hat{L})$.

$$\rho_{1/\sigma}(\hat{L} \setminus 0) = \rho(\sigma \hat{L} \setminus B(0, \sqrt{n})) \leq 2^{-n+1} \rho(\sigma \hat{L}) \leq 2^{-n+2}.$$

- Second: $1/\lambda(\hat{L}) \leq \max \| b^*_i \|$.

Recall that $B' = B^{\perp}$ is a basis of \hat{L}. We have:

$$\lambda(\hat{L}) = \min \| b' \| \text{ and } \frac{1}{\min \| b' \|} = \max \| b^*_i \|. $$
Proof that $\eta_{2^{-n+2}}(L) \leq \sqrt{n} \cdot \max \|b_i^*\|

- First: $\eta_{2^{-n+2}}(L) \leq \sqrt{n}/\lambda(\hat{L})$.

 $$\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) = \rho(\sigma \hat{L} \setminus B(\mathbf{0}, \sqrt{n})) \leq 2^{n+1} \rho(\sigma \hat{L}) \leq 2^{-n+2}.$$

- Second: $1/\lambda(\hat{L}) \leq \max \|b_i^*\|$.

 Recall that $B' = B^{-T}$ is a basis of \hat{L}. We have:

 $$\lambda(\hat{L}) \geq \min \|b_{i*}''\| \quad \text{and} \quad \frac{1}{\min \|b_{i*}''\|} = \max \|b_{i*}\|.$$
Proof that $\eta_{2^{-n+2}}(L) \leq \sqrt{n} \cdot \max \|b_i^*\|$

- First: $\eta_{2^{-n+2}}(L) \leq \sqrt{n}/\lambda(\hat{L})$.

 \[
 \rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) = \rho(\sigma\hat{L} \setminus \mathcal{B}(\mathbf{0}, \sqrt{n})) \leq 2^{-n+1} \rho(\sigma\hat{L}) \leq 2^{-n+2}.
 \]

- Second: $1/\lambda(\hat{L}) \leq \max \|b_i^*\|$.

 Recall that $B' = B^{-T}$ is a basis of \hat{L}. We have:

 \[
 \lambda(\hat{L}) \geq \min \|b'_i^*\| \text{ and } \frac{1}{\min \|b'_i^*\|} = \max \|b_i^*\|.
 \]
Proof that $\eta_{2^{-n+2}}(L) \leq \sqrt{n} \cdot \max \|b_i^*\|

- First: $\eta_{2^{-n+2}}(L) \leq \sqrt{n}/\lambda(\hat{L})$.

 \[
 \rho_{1/\sigma}(\hat{L} \setminus 0) = \rho(\sigma \hat{L} \setminus B(0, \sqrt{n})) \leq 2^{-n+1} \rho(\sigma \hat{L}) \leq 2^{-n+2}.
 \]

- Second: $1/\lambda(\hat{L}) \leq \max \|b_i^*\|$. Recall that $B' = B^{-T}$ is a basis of \hat{L}. We have:

 \[
 \lambda(\hat{L}) \geq \min \|b'_i^*\| \quad \text{and} \quad \frac{1}{\min \|b'_i^*\|} = \max \|b_i^*\|.
 \]
Sampling according to $D_{L,\sigma}$

Input: A basis $(b_i)_i$ of L, σ.

Output: $b \in L$.

1. $b := 0$. For i from n to 1, do
2. $\sigma_i := \sigma/\|b_i^*\|$, $c_i := -\langle b, b_i^* \rangle / \|b_i^*\|^2$;
3. Sample z_i from $D_{\mathbb{Z},\sigma_i,c_i}$;
4. $b := b + z_i b_i$.
5. Return b.
Sampling according to $D_{L,\sigma}$

Input: A basis $(b_i)_i$ of L, σ.

Output: $b \in L$.

1. $b := 0$. For i from n to 1, do
2. $\sigma_i := \sigma/\|b_i^*\|$, $c_i := -\langle b, b_i^* \rangle/\|b_i^*\|^2$;
3. Sample z_i from $D_{\mathbb{Z},\sigma_i,c_i}$;
4. $b := b + z_i b_i$.
5. Return b.

This is a randomized version of Babai/size-reduction. The 1-dim discrete Gaussian sample can be obtained by rejection from a continuous Gaussian. It can be easily modified to sample according to $D_{L,\sigma,c}$.

Sampling according to $D_{L,\sigma}$

Using the GSO, we have that the probability of returning $b = \sum (-c_i + z_i) b^*_i$ is:

$$\prod D_{\mathbb{Z},\sigma_i,c_i}(z_i) = \prod \frac{\rho_{\sigma_i,c_i}(z_i)}{\rho_{\sigma_i,c_i}(\mathbb{Z})} = \rho_{\sigma}(b) \cdot \prod \rho_{\sigma_i,c_i}^{-1}(\mathbb{Z}).$$
Sampling according to $D_{L,\sigma}$

Using the GSO, we have that the probability of returning $b = \sum (-c_i + z_i) b_i^*$ is:

$$
\prod D_{\mathbb{Z},\sigma_i,c_i}(z_i) = \prod \frac{\rho_{\sigma_i,c_i}(z_i)}{\rho_{\sigma_i,c_i}(\mathbb{Z})} = \rho_\sigma(b) \cdot \prod \rho_{\sigma_i,c_i}^{-1}(\mathbb{Z}).
$$

If $\sigma \geq \sqrt{n} \cdot \max \|b_i^*\|$, each σ_i is $\geq \eta_\varepsilon(\mathbb{Z})$. Thus:

$$
Pr[b] \in \left(\rho_\sigma(b) \cdot \prod \rho_{\sigma_i}^{-1}(\mathbb{Z}) \right) \cdot \left[\frac{1}{(1 + \varepsilon)^n}, \frac{1}{(1 - \varepsilon)^n} \right].
$$
Sampling according to $D_{L,\sigma}$

Using the GSO, we have that the probability of returning $b = \sum(-c_i + z_i)b_i^*$ is:

$$\prod D_{\mathbb{Z},\sigma_i,c_i}(z_i) = \prod \frac{\rho_{\sigma_i,c_i}(z_i)}{\rho_{\sigma_i,c_i}(\mathbb{Z})} = \rho_{\sigma}(b) \cdot \prod \rho_{\sigma_i,c_i}^{-1}(\mathbb{Z}).$$

If $\sigma \geq \sqrt{n} \cdot \max \|b_i^*\|$, each σ_i is $\geq \eta_\varepsilon(\mathbb{Z})$. Thus:

$$\Pr[b] \in \left(\rho_{\sigma}(b) \cdot \prod_i \rho_{\sigma_i}^{-1}(\mathbb{Z}) \right) \cdot \left[\frac{1}{(1+\varepsilon)^n}, \frac{1}{(1-\varepsilon)^n} \right].$$

The statistical distance between $D_{L,\sigma}$ and the output distribution is exponentially small:

$$\sum_{b \in L} |\Pr[b] - D_{L,\sigma}(b)| = 2^{-\Omega(n)}.$$
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
The SIS problem

a- Non structured SIS.
b- Structured SIS.
c- A trapdoor for SIS.
The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{mn \times n}$, find $s \in \mathbb{Z}^{mn} \setminus \mathbf{0}$ such that:
\[\|s\| \leq \beta \quad \text{and} \quad sA = \mathbf{0} \mod q.\]
SIS_{\beta,q,m} \ [\text{Ajtai’96}]

The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{mn \times n}$, find $s \in \mathbb{Z}^{mn} \setminus 0$ such that:

$$||s|| \leq \beta \quad \text{and} \quad sA = 0 \mod q.$$
The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_{q}^{mn \times n}$, find $s \in \mathbb{Z}^{mn} \setminus 0$ such that:

$\|s\| \leq \beta$ and $sA = 0 \mod q$.

Many interpretations:

- Small codeword problem.
- Short lattice vector problem:

$$A^\perp = \{s \in \mathbb{Z}^{mn} : sA = 0 \ [q]\}.$$
Cryptographic application of SIS

- **Hash**: an efficiently computable function $H : \mathcal{D} \mapsto \mathcal{R}$ with $|\mathcal{R}| \ll |\mathcal{D}|$ is collision resistant if finding $x \neq x'$ in \mathcal{D} such that $H(x) = H(x')$ is computationally hard.

- **Applications**: message integrity, password verification, file identification, digital signature, etc.

- **SIS-based hash**: $s \in \{0,1\}^{mn} \mapsto sA [q]$.

- By linearity, SIS reduces to finding a collision.

- **Compression ratio**: $\frac{mn}{n \log q} = \frac{m}{\log q}$.

Cryptographic application of SIS

- Hash: an efficiently computable function $H : \mathcal{D} \mapsto \mathcal{R}$ with $|\mathcal{R}| \ll |\mathcal{D}|$ is collision resistant if finding $x \neq x'$ in \mathcal{D} such that $H(x) = H(x')$ is computationally hard.

- Applications: message integrity, password verification, file identification, digital signature, etc.

- SIS-based hash: $s \in \{0, 1\}^{mn} \mapsto sA \ [q]$.

- By linearity, SIS reduces to finding a collision.

- Compression ratio: $\frac{mn}{n \log q} = \frac{m}{\log q}$.
How hard is SIS? A unique level of security.

Worst-case to average-case reduction

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a **short** basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) **short** random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a **shorter** vector of \(L\).
- Repeat to get a basis **shorter** than the initial one.
- Repeat to get **shorter and shorter** bases of \(L\).
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a short basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) short random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a shorter vector of \(L\).
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of \(L\).
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n^\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a short basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) short random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a shorter vector of \(L\).
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of \(L\).
How hard is SIS? A unique level of security.

Worst-case to average-case reduction ($\gamma \approx n\beta$)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a **short** basis of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample mn **short** random lattice points.
- Look at their coordinates wrt the basis, modulo q.
- A SIS solution provides a **shorter** vector of L.
- Repeat to get a basis **shorter** than the initial one.
- Repeat to get **shorter and shorter** bases of L.
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:
- Start with a short basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) short random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a shorter vector of \(L\).
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of \(L\).
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a **short** basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) **short** random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a **shorter** vector of \(L\).
- Repeat to get a basis **shorter** than the initial one.
- Repeat to get **shorter and shorter** bases of \(L\).
How hard is SIS? A unique level of security.

Worst-case to average-case reduction \((\gamma \approx n\beta)\)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a **short** basis of the lattice \(L \subseteq \mathbb{Z}^n\).
- Sample \(mn\) **short** random lattice points.
- Look at their coordinates wrt the basis, modulo \(q\).
- A SIS solution provides a **shorter** vector of \(L\).
- Repeat to get a basis **shorter** than the initial one.
- Repeat to get **shorter and shorter** bases of \(L\).
The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.
- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.
- With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
- Are their coordinates wrt the b_i's uniform mod q?
- Yes, because $D_{L,\sigma}$ mod qL is (quasi)-uniform.
- $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta_{\varepsilon}(qL) = q \cdot \eta_{\varepsilon}(L)$.
The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.

- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.

 - With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
 - Are their coordinates wrt the b_i’s uniform mod q?
 - Yes, because $D_{L,\sigma} \mod qL$ is (quasi)-uniform.
 - $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta_\epsilon(qL) = q \cdot \eta_\epsilon(L)$.

The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.
- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.
- With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
- Are their coordinates wrt the b_i's uniform mod q?
 - Yes, because $D_{L,\sigma}$ mod qL is (quasi)-uniform.
- $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta(ql) = q \cdot \eta(L)$.
The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.
- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.
- With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
- Are their coordinates wrt the b_i’s uniform mod q?
 - Yes, because $D_{L,\sigma}$ mod qL is (quasi)-uniform.
 - $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta_\varepsilon(qL) = q \cdot \eta_\varepsilon(L)$.
The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.
- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.
- With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
- Are their coordinates wrt the b_i’s uniform mod q?
- Yes, because $D_{L,\sigma}$ mod qL is (quasi)-uniform.
- $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta_\varepsilon(qL) = q \cdot \eta_\varepsilon(L)$.
The $D_{L,\sigma}$ sampler provides valid SIS inputs

- Suppose we start with a basis (b_i) such that $\max \|b_i\| = B$.
- Use the $D_{L,\sigma}$ sampler with $\sigma = \sqrt{nB}$. The output is exponentially close to $D_{L,\sigma}$. Let (c_i) be the samples.
- With high probability: $\forall i : \|c_i\| \leq \sqrt{n\sigma} = nB$.
- Are their coordinates wrt the b_i's uniform mod q?
- Yes, because $D_{L,\sigma}$ mod qL is (quasi)-uniform.
- $D_{qL,\sigma,c}$ is (quasi)-independent of $c \in L$ (PSF), when $\sigma \geq \eta_\varepsilon(qL) = q \cdot \eta_\varepsilon(L)$.
Shortness of the output vectors

- We start with a basis \((b_i)\) with \(\max \|b_i\| = B\).
- The \(c_i\)'s satisfy: \(\forall i : \|c_i\| \leq nB\). Let \(x_i\) be their coordinates vectors, reduced mod \(q\).
- The oracle finds \(s \in \mathbb{Z}^{mn}\) with \(\sum s_i x_i = 0 \pmod{q}\) and \(0 < \|s\| \leq \beta\).
- Consider \(c = \frac{1}{q} \sum s_i c_i\): \(c \in L\) and \(\|c\| \leq \frac{\beta n^2 B}{q}\).
- If \(q\) is large enough, we obtain a shorter lattice vector.
- By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.
Shortness of the output vectors

- We start with a basis \((\mathbf{b}_i)\) with \(\max \| \mathbf{b}_i \| = B\).
- The \(\mathbf{c}_i\)'s satisfy: \(\forall i : \| \mathbf{c}_i \| \leq nB\). Let \(\mathbf{x}_i\) be their coordinates vectors, reduced mod \(q\).
- The oracle finds \(\mathbf{s} \in \mathbb{Z}^{mn}\) with \(\sum s_i \mathbf{x}_i = 0 \ [q]\) and \(0 < \| \mathbf{s} \| \leq \beta\).
- Consider \(\mathbf{c} = \frac{1}{q} \sum s_i \mathbf{c}_i\): \(\mathbf{c} \in L\) and \(\| \mathbf{c} \| \leq \frac{\beta n^2 B}{q}\).
- If \(q\) is large enough, we obtain a shorter lattice vector.
- By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.
Shortness of the output vectors

- We start with a basis \((b_i)\) with \(\max \|b_i\| = B\).
- The \(c_i\)'s satisfy: \(\forall i : \|c_i\| \leq nB\). Let \(x_i\) be their coordinates vectors, reduced mod \(q\).
- The oracle finds \(s \in \mathbb{Z}^{mn}\) with \(\sum s_i x_i = 0 [q]\) and \(0 < \|s\| \leq \beta\).
- Consider \(c = \frac{1}{q} \sum s_i c_i\): \(c \in L\) and \(\|c\| \leq \frac{\beta n^2 B}{q}\).
- If \(q\) is large enough, we obtain a shorter lattice vector.
- By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.
Shortness of the output vectors

- We start with a basis \((b_i)\) with \(\max \|b_i\| = B\).
- The \(c_i\)'s satisfy: \(\forall i : \|c_i\| \leq nB\). Let \(x_i\) be their coordinates vectors, reduced mod \(q\).
- The oracle finds \(s \in \mathbb{Z}^{mn}\) with \(\sum s_i x_i = 0 \ [q]\) and \(0 < \|s\| \leq \beta\).
- Consider \(c = \frac{1}{q} \sum s_i c_i\): \(c \in L\) and \(\|c\| \leq \frac{\beta n^2 B}{q}\).
- If \(q\) is large enough, we obtain a shorter lattice vector.
- By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.
We start with a basis \((b_i)\) with \(\max \|b_i\| = B\).

The \(c_i\)'s satisfy: \(\forall i : \|c_i\| \leq nB\). Let \(x_i\) be their coordinates vectors, reduced mod \(q\).

The oracle finds \(s \in \mathbb{Z}^{mn}\) with \(\sum s_i x_i = 0 [q]\) and \(0 < \|s\| \leq \beta\).

Consider \(c = \frac{1}{q} \sum s_i c_i\): \(c \in L\) and \(\|c\| \leq \frac{\beta n^2 B}{q}\).

If \(q\) is large enough, we obtain a shorter lattice vector.

By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.

We can convert the latter into a short basis.
Shortness of the output vectors

- We start with a basis \((\mathbf{b}_i)\) with \(\max \|\mathbf{b}_i\| = B\).
- The \(\mathbf{c}_i\)'s satisfy: \(\forall i : \|\mathbf{c}_i\| \leq nB\). Let \(\mathbf{x}_i\) be their coordinates vectors, reduced mod \(q\).
- The oracle finds \(\mathbf{s} \in \mathbb{Z}^{mn}\) with \(\sum s_i \mathbf{x}_i = 0 \ [q]\) and \(0 < \|\mathbf{s}\| \leq \beta\).
- Consider \(\mathbf{c} = \frac{1}{q} \sum s_i \mathbf{c}_i\): \(\mathbf{c} \in L\) and \(\|\mathbf{c}\| \leq \frac{\beta n^2 B}{q}\).
- If \(q\) is large enough, we obtain a shorter lattice vector.
- By analyzing the lattice Gaussian further, one can prove that by iterating, with high probability we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.
The SIS problem

- Non structured SIS.
- **Structured SIS.**
- A trapdoor for SIS.
Id-SIS, graphically

- Each block is negacyclic.
- The ith row is: $x^i \cdot a(x) \mod x^n + 1$.
- Structured matrices \equiv polynomials \equiv fast algorithms.
Ideal SIS, algebraically

SIS

Given a uniform \(A \in \mathbb{Z}_{q}^{mn \times n} \), find \(s \in \mathbb{Z}^{mn} \setminus 0 \) such that:

\[
\|s\| \leq \beta \quad \text{and} \quad sA = 0 \pmod{q}.
\]

Id-SIS

Given uniform \(a_1, \ldots, a_m \in \mathbb{Z}_q[x]/(x^n + 1) \), find \(s_1, \ldots, s_m \in \mathbb{Z}[x]/(x^n + 1) \) not all 0 such that:

\[
\|s\| \leq \beta \quad \text{and} \quad \sum s_i a_i = 0 \pmod{(q, x^n + 1)}.
\]
Ideal SIS, algebraically

Id-SIS

Given uniform $a_1, \ldots, a_m \in \mathbb{Z}_q[x]/(x^n + 1)$, find $s_1, \ldots, s_m \in \mathbb{Z}[x]/(x^n + 1)$ not all 0 such that:

$$\|s\| \leq \beta \quad \text{and} \quad \sum s_i a_i = 0 \mod (q, x^n + 1).$$

Worst-case to average-case reduction

Any efficient **Id-SIS** algorithm succeeding with non-negligible probability leads to an efficient **Id-SIVP** algorithm.
Efficient hashing

- **SIS hash**: \(s \in \{0, 1\}^{mn} \mapsto sA \ [q] \).
- **Id-SIS hash**: \(s_1, \ldots, s_m \in \{0, 1\}[x] \) of degrees \(< n\) are mapped to \(\sum s_i(x)a_i(x) \ [q, x^n + 1] \).
- If \(2n|q - 1 \), then \(x^n + 1 \) splits completely mod \(q \).
 \(\Rightarrow \) Fast Discrete Fourier Transform mod \(q \).
- **Storage**: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \); complexity: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \).
Efficient hashing

- **SIS hash**: $s \in \{0, 1\}^{mn} \mapsto sA \ [q]$.

- **Id-SIS hash**: $s_1, \ldots, s_m \in \{0, 1\}[x]$ of degrees $< n$ are mapped to $\sum s_i(x)a_i(x) \ [q, x^n + 1]$.

- If $2n|q - 1$, then $x^n + 1$ splits completely mod q.
 \[\Rightarrow\] Fast Discrete Fourier Transform mod q.

- Storage: $\tilde{O}(n^2) \rightarrow \tilde{O}(n)$; complexity: $\tilde{O}(n^2) \rightarrow \tilde{O}(n)$.

Efficient hashing

- SIS hash: \(s \in \{0, 1\}^{mn} \mapsto sA \mod q \).
- Id-SIS hash: \(s_1, \ldots, s_m \in \{0, 1\}[x] \) of degrees \(< n \) are mapped to \(\sum s_i(x)a_i(x) \mod q, x^n + 1 \).
- If \(2n|q - 1 \), then \(x^n + 1 \) splits completely mod \(q \).
 \(\Rightarrow \) Fast Discrete Fourier Transform mod \(q \).
- Storage: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \); complexity: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \).
Efficient hashing

- SIS hash: \(s \in \{0, 1\}^{mn} \mapsto sA \mod q \).
- Id-SIS hash: \(s_1, \ldots, s_m \in \{0, 1\}[x] \) of degrees \(< n\) are mapped to \(\sum s_i(x)a_i(x) \mod q, x^n + 1 \).
- If \(2n \mid q - 1 \), then \(x^n + 1 \) splits completely mod \(q \).
 \(\Rightarrow \) Fast Discrete Fourier Transform mod \(q \).

- Storage: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \); complexity: \(\tilde{O}(n^2) \rightarrow \tilde{O}(n) \).

This is SWIFFT and it was proposed to the SHA-3 contest.
With \(n = 2^6 \), \(m = 2^4 \), \(q \approx 2^8 \): \(\approx 2^{13}\) bits to store \(A \).
The SIS problem

a- Non structured SIS.

b- Structured SIS.

c- A trapdoor for SIS.
A uniform A with a good basis for A^\perp

If $m = \Omega(\log q)$ then we can efficiently sample $A \in \mathbb{Z}_{q}^{mn \times n}$ and T_A such that

- The statistical distance from A to uniform is $2^{-\Omega(n)}$.
- The rows of T_A are small: $\max \| t_i^* \| = O(\sqrt{n \log q})$.
- $T_A \in \mathbb{Z}^{mn \times mn}$ is a basis of A^\perp.

A uniform \(A \) with a good basis for \(A^\perp \)

If \(m = \Omega(\log q) \) then we can efficiently sample \(A \in \mathbb{Z}_q^{mn \times n} \) and \(T_A \) such that

- The statistical distance from \(A \) to uniform is \(2^{-\Omega(n)} \).
- The rows of \(T_A \) are small: \(\max \|t_i^*\| = O(\sqrt{n \log q}) \).
- \(T_A \in \mathbb{Z}^{mn \times mn} \) is a basis of \(A^\perp \).
A uniform A with a good basis for A^\perp

If $m = \Omega(\log q)$ then we can efficiently sample $A \in \mathbb{Z}_q^{mn \times n}$ and T_A such that

- The statistical distance from A to uniform is $2^{-\Omega(n)}$.
- The rows of T_A are small: $\max \|t_i^*\| = O(\sqrt{n \log q})$.
- $T_A \in \mathbb{Z}^{mn \times mn}$ is a basis of A^\perp.

T_A

(small)

| A | 0 |

Principle:

- Assume $(a_i)_{i \leq k}$ are iid uniform.
- Take $(x_i)_i$ iid uniform in $\{-1, 0, 1\}$.
- Then $a_{k+1} = \sum_{i \leq k} x_i a_i$ is close to uniform.
A trapdoor for SIS

Suppose we know \(u \in \mathbb{Z}_q^n \), \(A \) and \(T_A \). How do we find a small \(s \in \mathbb{Z}^{mn} \) such that \(sA = u \ [q] \)?

- With linear algebra, find \(c \in \mathbb{Z}^{mn} \) such that \(cA = u \ [q] \).
- It suffices to find a vector \(b \) of \(A \perp \) that is close to \(c \): \(\|c - b\| \) is small and \((c - b)A = u \ [q] \).
- Use the sampler from \(D_{L,\sigma,c} \) with:

\[
\sigma = \sqrt{n} \cdot \max \|t^*_i\| = O(n \sqrt{\log q}).
\]

- We have \(\|c - b\| \leq \sigma \sqrt{n} = O(n^{1.5} \sqrt{\log q}) \) with probability \(\geq 1 - 2^{-\Omega(n)} \).
- And we do not leak any information about the trapdoor.
A trapdoor for SIS

- Suppose we know $\mathbf{u} \in \mathbb{Z}_q^n$, A and T_A. How do we find a small $\mathbf{s} \in \mathbb{Z}^{mn}$ such that $sA = u \ [q]$?
- With linear algebra, find $\mathbf{c} \in \mathbb{Z}^{mn}$ such that $cA = u \ [q]$.
- It suffices to find a vector \mathbf{b} of A^\perp that is close to \mathbf{c}: $\|\mathbf{c} - \mathbf{b}\|$ is small and $(\mathbf{c} - \mathbf{b})A = u \ [q]$.
- Use the sampler from $D_{L,\sigma,c}$ with:

$$\sigma = \sqrt{n} \cdot \max \|t_i^*\| = O(n \sqrt{\log q}).$$

- We have $\|\mathbf{c} - \mathbf{b}\| \leq \sigma \sqrt{n} = O(n^{1.5} \sqrt{\log q})$ with probability $\geq 1 - 2^{-\Omega(n)}$.
- And we do not leak any information about the trapdoor.
A trapdoor for SIS

- Suppose we know \(\mathbf{u} \in \mathbb{Z}_q^n \), \(A \) and \(T_A \). How do we find a small \(\mathbf{s} \in \mathbb{Z}^{mn} \) such that \(\mathbf{s} A = \mathbf{u} [q] \)?
- With linear algebra, find \(\mathbf{c} \in \mathbb{Z}^{mn} \) such that \(\mathbf{c} A = \mathbf{u} [q] \).
- It suffices to find a vector \(\mathbf{b} \) of \(A^\perp \) that is close to \(\mathbf{c} \): \(\| \mathbf{c} - \mathbf{b} \| \) is small and \((\mathbf{c} - \mathbf{b}) A = \mathbf{u} [q] \).
- Use the sampler from \(D_{L,\sigma,c} \) with:

\[
\sigma = \sqrt{n} \cdot \max \| \mathbf{t}_i^* \| = O(n^{1.5} \sqrt{\log q}).
\]

- We have \(\| \mathbf{c} - \mathbf{b} \| \leq \sigma \sqrt{n} = O(n^{1.5} \sqrt{\log q}) \) with probability \(\geq 1 - 2^{-\Omega(n)} \).
- And we do not leak any information about the trapdoor.
A trapdoor for SIS

Suppose we know $u \in \mathbb{Z}_q^n$, A and T_A. How do we find a small $s \in \mathbb{Z}^{mn}$ such that $sA = u \mod q$?

With linear algebra, find $c \in \mathbb{Z}^{mn}$ such that $cA = u \mod q$.

It suffices to find a vector b of A^\perp that is close to c: $\|c - b\|$ is small and $(c - b)A = u \mod q$.

Use the sampler from $D_{L,\sigma,c}$ with:

$$\sigma = \sqrt{n} \cdot \max \|t_i^*\| = O(n \sqrt{\log q}).$$

We have $\|c - b\| \leq \sigma \sqrt{n} = O(n^{1.5} \sqrt{\log q})$ with probability $\geq 1 - 2^{-\Omega(n)}$.

And we do not leak any information about the trapdoor.
A trapdoor for SIS

- Suppose we know $u \in \mathbb{Z}_q^n$, A and T_A. How do we find a small $s \in \mathbb{Z}^{mn}$ such that $sA = u \mod q$?
- With linear algebra, find $c \in \mathbb{Z}^{mn}$ such that $cA = u \mod q$.
- It suffices to find a vector b of A^\perp that is close to c: $\|c - b\|$ is small and $(c - b)A = u \mod q$.
- Use the sampler from $D_{L,\sigma,c}$ with:

$$\sigma = \sqrt{n} \cdot \max \|t_i^*\| = O(n \sqrt{\log q}).$$

- We have $\|c - b\| \leq \sigma \sqrt{n} = O(n^{1.5} \sqrt{\log q})$ with probability $\geq 1 - 2^{-\Omega(n)}$.
- And we do not leak any information about the trapdoor.
Cryptographic application: hash-and-sign

- **Signature:** to ensure the authenticity of a document.
 - Signer’s public key: A; private key: T_A.
 - To sign M, use the trapdoor to find s short with $sA = \mathcal{H}(M)$, where \mathcal{H} is a public random oracle.
 - To verify (M, s), see whether $sA = \mathcal{H}(M)$ and $\|s\|$ small.
 - Can be made at least as hard to break as to solve SIS, in the random oracle model.
Cryptographic application: hash-and-sign

- Signature: to ensure the authenticity of a document.
- Signer’s public key: A; private key: T_A.
- To sign M, use the trapdoor to find s short with $sA = \mathcal{H}(M)$, where \mathcal{H} is a public random oracle.
- To verify (M, s), see whether $sA = \mathcal{H}(M)$ and $\|s\|$ small.
- Can be made at least as hard to break as to solve SIS, in the random oracle model.
Cryptographic application: hash-and-sign

- Signature: to ensure the authenticity of a document.
- Signer’s public key: A; private key: T_A.
- To sign M, use the trapdoor to find s short with $sA = \mathcal{H}(M)$, where \mathcal{H} is a public random oracle.
- To verify (M, s), see whether $sA = \mathcal{H}(M)$ and $\|s\|$ small.
- Can be made at least as hard to break as to solve SIS, in the random oracle model.
A trapdoor for Id-SIS

If $m = \Omega(n \log q)$ and $x^n + 1$ has $O(1)$ factors mod q, then we can efficiently sample $a_1, \ldots, a_m \in \mathbb{Z}_q[x]/(x^n + 1)$ and $T_A \in (\mathbb{Z}[x]/(x^n + 1))^{m \times m}$ such that

- The statistical distance from a to uniform is $2^{-\Omega(n)}$.
- The rows of $\text{rot}(T_A)$ are small: $\max \|t_i^*\| = O(\sqrt{n \log q})$.
- $T_A \in \mathbb{Z}^{mn \times mn}$ is a basis of a full-rank sublattice of A^\perp.

Let $\text{rot}(T_A)$ be the Moore-Penrose pseudo-inverse of T_A.

$\text{rot}(T_A)$ can be obtained by singular value decomposition (SVD) of T_A.

The SIS problem

The LWE problem

Cryptanalysis

Recent developments

Conclusion
A trapdoor for Id-SIS

If $m = \Omega(n \log q)$ and $x^n + 1$ has $O(1)$ factors mod q, then we can efficiently sample $a_1, \ldots, a_m \in \mathbb{Z}_q[x]/(x^n + 1)$ and $T_A \in (\mathbb{Z}[x]/(x^n + 1))^{m \times m}$ such that

- The statistical distance from a to uniform is $2^{-\Omega(n)}$.
- The rows of $\text{rot}(T_A)$ are small: $\max \|t_i^*\| = O(\sqrt{n \log q})$.
- $T_A \in \mathbb{Z}^{mn \times mn}$ is a basis of a full-rank sublattice of A^\perp.

```
\begin{array}{c|c|c}
| & & |
\hline
T_A & A & 0 \\
\hline
\end{array}
```

T_A (small)
Comparison with SIS’ trapdoor

Drawbacks (wrt SIS):

- There are non-trivial ideals in $\mathbb{Z}_q[x]/(x^n + 1)$.
- A^\perp has a structure of \mathcal{O}_K-module: a full pseudo-basis of A^\perp could be obtained from T_A using the Cohen-Bosma-Pohst HNF for Dedekind domains.
Comparison with SIS’ trapdoor

Drawbacks (wrt SIS):

- There are non-trivial ideals in $\mathbb{Z}_q[x]/(x^n + 1)$.
- A^\perp has a structure of \mathcal{O}_K-module: a full pseudo-basis of A^\perp could be obtained from T_A using the Cohen-Bosma-Pohst HNF for Dedekind domains.

Advantages:

- Compact trapdoor: $(mn)^2 \log q$ bits $\rightarrow m^2 n \log q$ bits.
- Verifying the signature is faster.
- But there exists a more efficient Id-SIS-based signature anyway [Lyubashevsky'09].
Comparison with SIS’ trapdoor

Drawbacks (wrt SIS):

- There are non-trivial ideals in $\mathbb{Z}_q[x]/(x^n + 1)$.
- A^\perp has a structure of \mathcal{O}_K-module: a full pseudo-basis of A^\perp could be obtained from T_A using the Cohen-Bosma-Pohst HNF for Dedekind domains.

Advantages:

- Compact trapdoor: $(mn)^2 \log q$ bits $\rightarrow m^2 n \log q$ bits.
- Verifying the signature is faster.
- But there exists a more efficient Id-SIS-based signature anyway [Lyubashevsky’09].
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
The LWE problem

a- Non structured LWE.
b- Structured LWE.
c- Encrypting with LWE.
LWE_{α,q,m} [Regev’05]

The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{αq}^{mn}$. Given A and $As + e$ [q], find s.
The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e \pmod{q}$, find s.

\[\begin{array}{c|c|c}
A & s & e \\
\text{uniform} & \text{uniform} & \text{small} \\
\end{array} \]
The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e [q]$, find s.

Many interpretations:
- Given many $\langle a_i, s \rangle + e_i$, find s.
- Resembles LPN (over \mathbb{Z}_2).
- Resembles Subset-Sum [LPS’09].
- Closest codeword problem.
- Lattice problem . . .
LWE as a lattice problem

The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e [q]$, find s.
LWE as a lattice problem

The Learning With Errors Problem

Take A uniform in $\mathbb{Z}^{mn \times n}_q$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}$. Given A and $As + e \pmod{q}$, find s.

Let $L_A = \{b \in \mathbb{Z}^{mn} : \exists x \in \mathbb{Z}_q^n, b = Ax \pmod{q}\}$.
LWE as a lattice problem

The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e \mod q$, find s.

Let $L_A = \{b \in \mathbb{Z}^{mn} : \exists x \in \mathbb{Z}_{q}^{n}, b = Ax \mod q\}$.

- L_A is an (mn)-dimensional lattice and $\hat{L_A} = \frac{1}{q}A^\perp$.
- BDD_{\alpha,q} (bounded distance decoding): Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, take $b \in L_A$ arbitrary and e sampled from $\mathcal{N}_{\alpha q}^{mn}$; given $b + e$, find b.
- If we can solve LWE then we can solve BDD.
LWE as a lattice problem

The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e \pmod{q}$, find s.

Let $L_A = \{b \in \mathbb{Z}^{mn} : \exists x \in \mathbb{Z}_{q}^{n}, b = Ax \pmod{q}\}$.

- L_A is an (mn)-dimensional lattice and $\widehat{L_A} = \frac{1}{q} A^\perp$.
- BDD$_{\alpha,q}$ (bounded distance decoding): Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, take $b \in L_A$ arbitrary and e sampled from $\mathcal{N}_{\alpha q}^{mn}$; given $b + e$, find b.
- If we can solve LWE then we can solve BDD.
The Learning With Errors Problem

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e [q]$, find s.

Let $L_A = \{ b \in \mathbb{Z}^{mn} : \exists x \in \mathbb{Z}_q^n, b = Ax [q] \}$.

- L_A is an (mn)-dimensional lattice and $\widehat{L_A} = \frac{1}{q} A^\perp$.
- BDD$_{\alpha, q}$ (bounded distance decoding): Take A uniform in $\mathbb{Z}_q^{mn \times n}$, take $b \in L_A$ arbitrary and e sampled from $\mathcal{N}_{\alpha q}^{mn}$; given $b + e$, find b.
- If we can solve LWE then we can solve BDD.
LWE as a one-way function

- **OWF**: easy to evaluate and hard to invert.
- **LWE’s one-way function**: \(s \in \mathbb{Z}_q^n \mapsto As + e\, [q] \).
- **Expansion**: \(n \log q \) bits \(\mapsto \) \(mn \log q \) bits.
LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE’s one-way function: $\mathbf{s} \in \mathbb{Z}_q^n \mapsto A\mathbf{s} + \mathbf{e} [q]$.
- Expansion: $n \log q$ bits $\mapsto mn \log q$ bits.

A one-way function with trapdoor.

- Generate A together with T_A.
 - $T_A \cdot (A\mathbf{s} + \mathbf{e}) = T_A\mathbf{e} [q]$.
 - T_A and \mathbf{e} are small: we have $T_A\mathbf{e}$ over \mathbb{Z}.
 We recover \mathbf{e} and then \mathbf{s} by linear algebra.
- Sufficient condition:
 \[
 \frac{q}{2} > \sqrt{n\alpha q} \cdot \max \|t_i\| \iff n^{1.5}\alpha \sqrt{\log q} = o(1).
 \]
LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE’s one-way function: \(\mathbf{s} \in \mathbb{Z}_q^n \mapsto A\mathbf{s} + \mathbf{e} \ [q] \).
- Expansion: \(n \log q \) bits \(\mapsto m n \log q \) bits.

A one-way function with trapdoor.

- Generate \(A \) together with \(T_A \).
- \(T_A \cdot (A\mathbf{s} + \mathbf{e}) = T_A\mathbf{e} \ [q] \).
- \(T_A \) and \(\mathbf{e} \) are small: we have \(T_A\mathbf{e} \) over \(\mathbb{Z} \).
- We recover \(\mathbf{e} \) and then \(\mathbf{s} \) by linear algebra.
- Sufficient condition:

\[
\frac{q}{2} > \sqrt{n} \alpha q \cdot \max \|t_i\| \iff n^{1.5} \alpha \sqrt{\log q} = o(1).
\]
LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE’s one-way function: $s \in \mathbb{Z}_q^n \mapsto As + e [q]$.
- Expansion: $n \log q$ bits $\mapsto mn \log q$ bits.

A one-way function with trapdoor.

- Generate A together with T_A.
- $T_A \cdot (As + e) = T_A e [q]$.
- T_A and e are small: we have $T_A e$ over \mathbb{Z}.
 We recover e and then s by linear algebra.

Sufficient condition:

$$\frac{q}{2} > \sqrt{n} \alpha q \cdot \max \|t_i\| \iff n^{1.5} \alpha \sqrt{\log q} = o(1).$$
LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE’s one-way function: \(s \in \mathbb{Z}_q^n \mapsto As + e \ [q] \).
- Expansion: \(n \log q \) bits \(\mapsto \) \(mn \log q \) bits.

A one-way function with trapdoor.

- Generate \(A \) together with \(T_A \).
- \(T_A \cdot (As + e) = T_Ae \ [q] \).
- \(T_A \) and \(e \) are small: we have \(T_Ae \) over \(\mathbb{Z} \).
 - We recover \(e \) and then \(s \) by linear algebra.
- Sufficient condition:

\[
\frac{q}{2} > \sqrt{n \alpha q \cdot \max \|t_i\|} \iff n^{1.5} \alpha \sqrt{\log q} = o(1).
\]
How hard is LWE?

Quantum worst-case to average-case reduction

Any efficient LWE algorithm succeeding with non-negligible probability leads to an efficient *quantum* SIVP algorithm.
How hard is LWE?

Quantum worst-case to average-case reduction \((\gamma \approx n/\alpha)\)

Any efficient LWE algorithm succeeding with non-negligible probability leads to an efficient quantum SIVP algorithm.
How hard is LWE?

Quantum worst-case to average-case reduction \((\gamma \approx n/\alpha) \)
Any efficient LWE algorithm succeeding with non-negligible probability leads to an efficient \textbf{quantum} SIVP algorithm.

- Efficient quantum computers make LWE more secure!
- [Peikert’09] de-quantumized the reduction, with larger \(q \) or unusual variant of SIVP.
- [SSTX’09]: simpler (but weaker) quantum reduction.
How hard is $\text{BDD}_{\alpha,q}$? Rough intuition.

$L \rightarrow \hat{L}$

Fourier transform
How hard is BDD_{\alpha, q}? Rough intuition.

- The Fourier transform of the distribution is implemented with the quantum Fourier transform.
- The input quantum state is built with the LWE oracle.
- The measurement gives a small SIS solution.
More formally

- If D is a distribution over a finite domain \mathcal{D} that can be sampled efficiently (classically), then the quantum state $\sum_{x \in \mathcal{D}} \sqrt{D(x)} |x\rangle$ can be built efficiently.
- When a state $\sum_{x \in \mathcal{D}} \sqrt{D(x)} |x\rangle$ is measured, then $x_0 \in \mathcal{D}$ is returned with probability $D(x)$.
- Apart from measurements, only invertible (unitary) operations can be applied to states.
- We want to build the state

$$\sum_{e \in \mathbb{R}^n, b \in L} \rho_{\alpha q}(e) |b + e\rangle.$$
More formally

- If D is a distribution over a finite domain \mathcal{D} that can be sampled efficiently (classically), then the quantum state $\sum_{x \in \mathcal{D}} \sqrt{D(x)} |x\rangle$ can be built efficiently.

- When a state $\sum_{x \in \mathcal{D}} \sqrt{D(x)} |x\rangle$ is measured, then $x_0 \in \mathcal{D}$ is returned with probability $D(x)$.

- Apart from measurements, only invertible (unitary) operations can be applied to states.

- We want to build the state

$$\sum_{e \in \mathbb{R}^n, b \in L} \rho_{\alpha q}(e) |b + e\rangle.$$
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.

1. We build $\sum_{e \in L/R, \|e\| \leq \alpha q \sqrt{n}} \rho_{\alpha q}(e) \ket{e} \ket{e}$.
2. We reduce mod L: $\sum \rho_{\alpha q}(e) \ket{e \mod L} \ket{e}$.
3. We use the BDD oracle: $\sum \rho_{\alpha q}(e) \ket{e \mod L} \ket{0}$.
4. Applying the quantum Fourier transform and measuring provides a sample from $\widetilde{D}_{L,1/(\alpha q)}$, i.e., $D_{A^\perp,1/\alpha}$.
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.

1. We build $\sum_{e \in L/R, \|e\| \leq \alpha q \sqrt{n}} \rho_{\alpha q}(e) |e\rangle |e\rangle$.
2. We reduce mod L: $\sum \rho_{\alpha q}(e) |e \mod L\rangle |e\rangle$.
3. We use the BDD oracle: $\sum \rho_{\alpha q}(e) |e \mod L\rangle |0\rangle$.
4. Applying the quantum Fourier transform and measuring provides a sample from $D_{\hat{L_A},1/(\alpha q)}$, i.e., $D_{A\perp,1/\alpha}$.
More details, but still informal

- L is infinite \Rightarrow we work modulo L.
- \mathbb{R}^n is infinite \Rightarrow we work in a very fine grid L/R.
- Gaussians vanish quickly \Rightarrow we neglect their tails.

1. We build $\sum_{e \in L/R, \|e\| \leq \alpha q \sqrt{n}} \rho_{\alpha q}(e) |e\rangle |e\rangle$.
2. We reduce mod L: $\sum \rho_{\alpha q}(e) |e \mod L\rangle |e\rangle$.
3. We use the BDD oracle: $\sum \rho_{\alpha q}(e) |e \mod L\rangle |0\rangle$.
4. Applying the quantum Fourier transform and measuring provides a sample from $D_{\hat{L}^{\perp},1/(\alpha q)}$, i.e., $D_{A^{\perp},1/\alpha}$.

Additional difficulty: the oracle may solve LWE with probability $\ll 1$. Use the trace distance.
The LWE problem

- **Non structured LWE.**
- **Structured LWE.**
- **Encrypting with LWE.**
Ideal LWE [SSTX’09]

Id-LWE: Take a block negacylic LWE matrix (as for Id-SIS).

Any efficient **Id-LWE** algo. succeeding with non-negligible probability leads to an efficient quantum **Id-SIVP** algo.
Id-LWE: Take a block negacylic LWE matrix (as for Id-SIS).

Any efficient **Id-LWE** algo. succeeding with non-negligible probability leads to an efficient quantum **Id-SIVP** algo.

Polynomial interpretation:
Let $a_1, \ldots, a_m \in \mathbb{Z}_q[x]/(x^n + 1)$ be the polynomials corresponding to the block matrix. Then $A \cdot s$ corresponds to:

$$(\bar{a}_i(x) \cdot s(x) \mod (q, x^n + 1))_{i \leq m},$$

where $\bar{a}(x) = a_0 - \sum_{1 \leq k < n} a_{n-k}x^k$.
A faster trapdoor one-way function

- Evaluation cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- For the inversion, use the structured T_A from Id-SIS.
- $T_A \cdot (As + e) = T_A e$ over the integers. Multiply by T_A^{-1} to recover e, and then s.
- Evaluation/inversion cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- Less practical than Id-SIS hash, because we cannot take q such that $x^n + 1$ splits completely mod q.

A faster trapdoor one-way function

- Evaluation cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- For the inversion, use the structured T_A from Id-SIS.
- $T_A \cdot (As + e) = T_Ae$ over the integers. Multiply by T_A^{-1} to recover e, and then s.
- Evaluation/inversion cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- Less practical than Id-SIS hash, because we cannot take q such that $x^n + 1$ splits completely mod q.
A faster trapdoor one-way function

- Evaluation cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- For the inversion, use the structured T_A from Id-SIS.
 \[T_A \cdot (A \mathbf{s} + \mathbf{e}) = T_A \mathbf{e} \] over the integers. Multiply by T_A^{-1} to recover \mathbf{e}, and then \mathbf{s}.
- Evaluation/inversion cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- Less practical than Id-SIS hash, because we cannot take q such that $x^n + 1$ splits completely mod q.
A faster trapdoor one-way function

- Evaluation cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- For the inversion, use the structured T_A from Id-SIS.

 $$T_A \cdot (As + e) = T_A e \text{ over the integers. Multiply by } T_A^{-1}$$

 to recover e, and then s.
- Evaluation/inversion cost: $\tilde{O}(n^2) \Rightarrow \tilde{O}(n)$ bit operations.
- Less practical than Id-SIS hash, because we cannot take q such that $x^n + 1$ splits completely mod q.

The LWE problem

- Non structured LWE.
- Structured LWE.
- Encrypting with LWE.
Decisional-LWE

Computational-LWE

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e \ [q]$, find s.

Decisional-LWE

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Distinguish between the distributions $(A, As + e \ [q])$ and uniform over $\mathbb{Z}_{q}^{mn \times n} \times \mathbb{Z}_{q}^{mn}$.
Decisional-LWE

Computational-LWE

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e [q]$, find s.

Decisional-LWE

Take A uniform in $\mathbb{Z}_q^{mn \times n}$, s uniform in \mathbb{Z}_q^n and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Distinguish between the distributions $(A, As + e [q])$ and uniform over $\mathbb{Z}_q^{mn \times n} \times \mathbb{Z}_q^{mn}$.

Regev proved that Dec-LWE is at least as hard as Comp-LWE.
Decisional-LWE

Computational-LWE

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Given A and $As + e [q]$, find s.

Decisional-LWE

Take A uniform in $\mathbb{Z}_{q}^{mn \times n}$, s uniform in \mathbb{Z}_{q}^{n} and e sampled from $\mathcal{N}_{\alpha q}^{mn}$. Distinguish between the distributions $(A, As + e [q])$ and uniform over $\mathbb{Z}_{q}^{mn \times n} \times \mathbb{Z}_{q}^{mn}$.

Regev proved that Dec-LWE is at least as hard as Comp-LWE. The adaptation to Id-LWE is not known to hold.
Encrypting with LWE

\[A \quad s + \quad e \]

\[A' \quad e' + \left\lfloor \frac{q}{2} \right\rfloor \cdot M \]
Encrypting with LWE

- Public key: \(A \in \mathbb{Z}_q^{mn \times n}, A' \in \mathbb{Z}_q^{n \times n}; \) private key: \(T_A \).
- Encrypting \(M \in \{0, 1\}^n \): generate \(s \in \mathbb{Z}_q^n, e \in \mathbb{Z}_q^{mn} \) and \(e' \in \mathbb{Z}_q^n \); compute \([As + e; A's + e' + \lfloor \frac{q}{2} \rfloor \cdot M]\).
- Decryption: recover \(s \) from the first part of the ciphertext, using \(T_A \); compute \(A's \) to obtain \(e' + \lfloor \frac{q}{2} \rfloor M \); round to the closest multiple of \(\lfloor \frac{q}{2} \rfloor \) to recover \(M \).
Encrypting with LWE

- Public key: $A \in \mathbb{Z}_q^{mn \times n}$, $A' \in \mathbb{Z}_q^{n \times n}$; private key: T_A.
- Encrypting $M \in \{0, 1\}^n$: generate $s \in \mathbb{Z}_q^n$, $e \in \mathbb{Z}_q^{mn}$ and $e' \in \mathbb{Z}_q^n$; compute $[As + e; A's + e' + \left\lfloor \frac{q}{2} \right\rfloor \cdot M]$.
- Decryption: recover s from the first part of the ciphertext, using T_A; compute $A's$ to obtain $e' + \left\lfloor \frac{q}{2} \right\rfloor M$; round to the closest multiple of $\left\lfloor \frac{q}{2} \right\rfloor$ to recover M.

A CPA attack would lead to an algorithm for Decisional-LWE.
Encrypting with Id-LWE

- We cannot use the decisional variant of Id-LWE.
- But we have a trapdoor one-way function which is at least as hard to invert as solving Computational-Id-LWE.
Encrypting with Id-LWE

- We cannot use the decisional variant of Id-LWE.
- But we have a trapdoor one-way function which is at least as hard to invert as solving Computational-Id-LWE.
- There is a generic transformation from trapdoor OWF to CPA-secure encryption scheme (Goldreich-Levin).
 - Encryption: evaluate the OWF with a random s; let ρ be the used random bits, seen as a vector in \mathbb{Z}_2^ℓ; multiply ρ with a random public Toeplitz matrix over \mathbb{Z}_2; use the output vector to mask the message M.
 - Decryption: use the trapdoor to recover s; apply the Toeplitz matrix to recover M.
Encrypting with Id-LWE

- There is a generic transformation from trapdoor OWF to CPA-secure encryption scheme (Goldreich-Levin).

- Encryption: evaluate the OWF with a random s; let ρ be the used random bits, seen as a vector in \mathbb{Z}_2^ℓ; multiply ρ with a random public Toeplitz matrix over \mathbb{Z}_2; use the output vector to mask the message M.

- Decryption: use the trapdoor to recover s; apply the Toeplitz matrix to recover M.
Encrypting with Id-LWE

- There is a generic transformation from trapdoor OWF to CPA-secure encryption scheme (Goldreich-Levin).
- Encryption: evaluate the OWF with a random s; let ρ be the used random bits, seen as a vector in \mathbb{Z}_2^ℓ; multiply ρ with a random public Toeplitz matrix over \mathbb{Z}_2; use the output vector to mask the message M.
- Decryption: use the trapdoor to recover s; apply the Toeplitz matrix to recover M.
- Encryption/decryption of $\tilde{\Omega}(n)$ bits in time $\tilde{O}(n)$.
- CPA-secure if $\text{Id-SVP} \tilde{O}(n^2)$ is hard for sub-exponential quantum algorithms.
- But impractical because of the generic transformation.
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^\perp = \{ s \in \mathbb{Z}^{mn} : sA = 0 \ [q] \}$.

- Generalized birthday attack: may be feasible if m is large. Its cost is easily determined [MR’09].

- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).
Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^\perp = \{s \in \mathbb{Z}^{mn} : sA = 0 \ [q]\}$.
- Generalized birthday attack: may be feasible if m is large. Its cost is easily determined [MR’09].
- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).
Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^\perp = \{ s \in \mathbb{Z}^{mn} : sA = 0 \ [q] \}$.
- Generalized birthday attack: may be feasible if m is large. Its cost is easily determined [MR’09].
- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).
Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^\perp = \{ s \in \mathbb{Z}^{mn} : sA = 0 \ [q] \}$.
- Generalized birthday attack: may be feasible if m is large. Its cost is easily determined [MR’09].
- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).

But... although quite old (Lagrange, Gauss, Hermite, Minkowski, etc)... lattice reduction is not so well understood.
Lattice reduction

- Principle: start from an arbitrary basis of the lattice, and progressively improve it.
- Quality of a basis: measured by the Gram-Schmidt Orth.
Lattice reduction

- **Principle:** start from an arbitrary basis of the lattice, and progressively improve it.

- **Quality of a basis:** measured by the Gram-Schmidt Orth.

\[b_i^* = \text{argmin} \| b_i + \sum_{j<i} \mathbb{R} b_j \| \]

- Quality measure: \((\| b_i^* \|)_{i=1..n} \).

Why?

- The slower the \(\| b_i^* \| \)'s decrease, the more orthogonal.

- Their product is constant.

- If they decrease slowly, then \(b_1 \) must be small.
Lattice reduction

- Principle: start from an arbitrary basis of the lattice, and progressively improve it.
- Quality of a basis: measured by the Gram-Schmidt Orth.

\[b_i^* = \text{argmin} \| b_i + \sum_{j<i} \mathbb{R} b_j \| \]

- Quality measure: \((\| b_i^* \|)_{i=1..n} \).

Why?

- The slower the \(\| b_i^* \| \)'s decrease, the more orthogonal.
- Their product is constant.
- If they decrease slowly, then \(b_1 \) must be small.
Lattice reduction

- Principle: start from an arbitrary basis of the lattice, and progressively improve it.
- Quality of a basis: measured by the Gram-Schmidt Orth.
 \[
 \mathbf{b}_i^* = \arg\min \| \mathbf{b}_i + \sum_{j<i} \mathbb{R} \mathbf{b}_j \|
 \]
- Quality measure: \((\| \mathbf{b}_i^* \|)_{i=1..n}\).

Why?

- The slower the \(\| \mathbf{b}_i^* \|\)’s decrease, the more orthogonal.
- Their product is constant.
- If they decrease slowly, then \(\mathbf{b}_1\) must be small.
BKZ: a trade-off between LLL and HKZ

\[\log \| b_i^* \| \]

LLL

\[\log \| b_i^* \| \]

HKZ

\[i \]
BKZ: a trade-off between LLL and HKZ

\[\log \|b_i^*\| \]

LLL too weak

HKZ too costly

\[\log \|b_i\| \]
BKZ: a trade-off between LLL and HKZ

- [Schnorr’87]: use HKZ within smaller-dimensional blocks.
- BKZ is the best practical variant [SE’94].
- Best theoretical variant: [GN’08].
BKZ: a trade-off between LLL and HKZ

- [Schnorr’87]: use HKZ within smaller-dimensional blocks.
- BKZ is the best practical variant [SE’94].
- Best theoretical variant: [GN’08].
Schnorr’s hierarchy

- Theoretical rule of the thumb for block-size k:
 \[\text{Cost} \ Poly(n) \cdot 2^k \text{ and } \text{SVP approximation factor } n^{n/k}. \]

- Seems satisfied by BKZ for small block-sizes.

- But the cost unexpectedly blows up with block-size ≈ 30.
Schnorr’s hierarchy

- Theoretical rule of the thumb for block-size k:
 Cost $\mathcal{P}oly(n) \cdot 2^k$ and SVP approximation factor $n^{n/k}$.
- Seems satisfied by BKZ for small block-sizes.
- But the cost unexpectedly blows up with block-size ≈ 30.

Warnings

- The runtime of BKZ is not polynomial in the block-size.
- BKZ is the only implemented/available variant of Schnorr’s hierarchy.
Solving SVP: see workshop session

It is not known yet how far we can solve SVP.
Solving SVP: see workshop session

It is not known yet how far we can solve SVP.

- [KFP’83] is the best deterministic algorithm.
- Cost: time $n^{n/(2e)}$, space $\mathcal{P}oly(n)$ [HS’07].
- Tree pruning, parallelisation, hardware implementation (in progress).
Solving SVP: see workshop session

It is not known yet how far we can solve SVP.

- [KFP’83] is the best deterministic algorithm.
 Cost: time $n^{n/(2e)}$, space $\mathcal{P}oly(n)$ [HS’07].
- Tree pruning, parallelisation, hardware implementation (in progress).

- [AKS’01] is the best probabilistic algorithm.
 Cost: time $2^{3.2n}$, space $2^{1.3n}$ [MV’09].
- Fresh new result: time $2^{2.5n}$ and space $2^{1.2n}$ [PS’09].
- Heuristically: time $2^{0.4n}$ and space $2^{0.2n}$ [MV’09].
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
More recent developments

a- **Identity-based encryption.**

b- **Fully homomorphic encryption.**
(H)-IBE

- Identity-based encryption: encryption scheme for which the public key of a user is uniquely determined by its identity; the user’s private key is computed by a trusted authority, using a master private key. No need for a public key distribution infrastructure.
- Given as an open problem in 1984, by Shamir.
- First realization by Boneh and Franklin in 2001, using bilinear pairings on elliptic curves.
Identity-based encryption: encryption scheme for which the public key of a user is uniquely determined by its identity; the user’s private key is computed by a trusted authority, using a master private key. No need for a public key distribution infrastructure.

Given as an open problem in 1984, by Shamir.

First realization by Boneh and Franklin in 2001, using bilinear pairings on elliptic curves.

Hierarchical identity-based encryption: same as IBE, but each entity in level k of a hierarchy can generate the private keys of all entities of lower levels in the hierarchy.
HIBE using LWE

- Encode an identity id as a string of bits of length $\leq k$.
- An identity id is higher in the hierarchy than an identity id' if id is a prefix of id'.
- The master has identity $\{}$.
HIBE using LWE

- Encode an identity id as a string of bits of length $\leq k$.
- An identity id is higher in the hierarchy than an identity id' if id is a prefix of id'.
- The master has identity $\{\}$.
- Sample $A \in \mathbb{Z}_q^{mn \times n}$ together with a trapdoor T_A (a short basis for A^\perp). These are the master’s keys.
- Generate $(A^0_1, A^1_1), \ldots, (A^0_k, A^1_k)$ iid uniformly in $\mathbb{Z}_q^{mn \times n}$.
- User $id = i_1 \ldots i_\ell$ has public key A_{id}, the vertical concatenation of $A, A^i_1, \ldots, A^i_\ell$.
- The private key of user id is a short basis of A_{id}^\perp.
- The encryption scheme is the LWE encryption scheme.
Private key extraction

- Suppose id is a prefix of id'. How does user id extract a private key for user id' from his/her own private key?
- How to obtain a $T_{A_{id}}$ from a $T_{A_{id'}}$?
- Writing the new rows as combinations of the previous ones suffices to obtain a basis of $A_{id'}^\perp$ with small GSO.
Private key extraction

- Suppose \(id \) is a prefix of \(id' \). How does user \(id \) extract a private key for user \(id' \) from his/her own private key?
- How to obtain a \(T_{A_{id}} \) from a \(T_{A_{id'}} \)?
- Writing the new rows as combinations of the previous ones suffices to obtain a basis of \(A_{id'}^\perp \) with small GSO.
Private key extraction

- Suppose \(id \) is a prefix of \(id' \). How does user \(id \) extract a private key for user \(id' \) from his/her own private key?
- How to obtain a \(T_{A_{id}} \) from a \(T_{A_{id'}} \)?
- Writing the new rows as combinations of the previous ones suffices to obtain a basis of \(A_{id'}^\perp \) with small GSO.

\[
T_A \\
A = 0 \\
A' = UA \\
\Rightarrow \\
T_A \\
0 \\
A = 0 \\
\begin{array}{|c|c|c|}
- \quad U & Id & A' \\
\end{array}
\]
Private key randomization

- But now id' knows the private key of id!
- id has to randomize the private key of id' to hide its own.
 - Use the previous basis of $A_{id'}^\perp$ with small GSO to sample from $D_{A_{id'}^\perp,\sigma}$ for a small σ.
 - With sufficiently many samples, we obtain a full rank set of short vectors in $A_{id'}^\perp$.
 - Convert it into a short basis.
 - The output distribution is independent of the initial basis.
Private key randomization

- But now id' knows the private key of id!
- id has to randomize the private key of id' to hide its own.
- Use the previous basis of $A_{id'}^\perp$ with small GSO to sample from $D_{A_{id'}^\perp,\sigma}$ for a small σ.
- With sufficiently many samples, we obtain a full rank set of short vectors in $A_{id'}^\perp$.
- Convert it into a short basis.
- The output distribution is independent of the initial basis.
Private key randomization

- But now id' knows the private key of id!
- id has to randomize the private key of id' to hide its own.
- Use the previous basis of $A_{id'}$ with small GSO to sample from $D_{A_{id'},\sigma}$ for a small σ.
- With sufficiently many samples, we obtain a full rank set of short vectors in $A_{id'}$.
- Convert it into a short basis.
- The output distribution is independent of the initial basis.
Private key randomization

- But now id' knows the private key of id!
- id has to randomize the private key of id' to hide its own.
- Use the previous basis of $A_{id'}^\perp$ with small GSO to sample from $D_{A_{id'}^\perp, \sigma}$ for a small σ.
- With sufficiently many samples, we obtain a full rank set of short vectors in $A_{id'}^\perp$.
- Convert it into a short basis.
- The output distribution is independent of the initial basis.
Concluding on IBE

- We have an HIBE that is secure under worst-case lattice assumptions, for selective identity CPA attacks..
- This leads to adaptative identity CPA secure HIBE, CCA2-secure encryption, etc.
- Similar techniques lead to signatures that are secure in the standard model (without the random oracle).
Concluding on IBE

- We have an HIBE that is secure under worst-case lattice assumptions, for selective identity CPA attacks.
- This leads to adaptative identity CPA secure HIBE, CCA2-secure encryption, etc.
- Similar techniques lead to signatures that are secure in the standard model (without the random oracle).

Open problems

- Improving the efficiency.
- The SVP approximation factor increases quickly with the number of levels in the hierarchy: $\gamma = n^{O(k)}$. Can we avoid this?
Recent developments

- Identity-based encryption.
- Fully homomorphic encryption.
Homomorphic encryption

Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?

E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1 + m_2}$.

An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i’s can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g: D[g(E(M_1), \ldots, E(M_k))] = f(M_1, \ldots, M_k).$$

The bit-size of the output of g must be independent of the circuit size of f.
Homomorphic encryption

- Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?
- E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1+m_2}$.
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i's can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g : D[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$$

- The bit-size of the output of g must be independent of the circuit size of f.
Homomorphic encryption

- Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?
- E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1+m_2}$.
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i’s can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g : \mathcal{D}[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$$

- The bit-size of the output of g must be independent of the circuit size of f.
Homomorphic encryption

- Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?
- E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1+m_2}$.
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i’s can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g : \mathcal{D}[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$$

- The bit-size of the output of g must be independent of the circuit size of f.
Homomorphic encryption

- Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?
- E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1+m_2}$.
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i’s can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g : \mathcal{D}[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$$

- The bit-size of the output of g must be independent of the circuit size of f.
Homomorphic encryption

Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some f, without decrypting?

E.g., for ElGamal: $g^{m_1} \cdot g^{m_2} = g^{m_1 + m_2}$.

An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i’s can be evaluated in the ciphertext domain:

$$\forall k, \forall f, \exists g : D[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$$

The bit-size of the output of g must be independent of the circuit size of f.

Many applications:
- Use untrusted parties to run programs (cloud computing).
- Search over private data (PIR), etc.
The 'holy grail' of cryptography

- The question was first asked by Rivest, Adleman and Dertouzous in 1978.
- Solved by Craig Gentry in 2009, using ideal lattices.
The 'holy grail' of cryptography

- The question was first asked by Rivest, Adleman and Dertouzous in 1978.
- Solved by Craig Gentry in 2009, using ideal lattices.
The 'holy grail' of cryptography

- The question was first asked by Rivest, Adleman and Dertouzous in 1978.
- Solved by Craig Gentry in 2009, using ideal lattices.

IBM announcement (25/06/09): An IBM Researcher has solved a thorny mathematical problem that has confounded scientists since the invention of public-key encryption several decades ago. The breakthrough, called "privacy homomorphism," or "fully homomorphic encryption," makes possible the deep and unlimited analysis of encrypted information [...] without sacrificing confidentiality.
A somewhat homomorphic scheme

- Sample a good basis B_{j}^{sk} of an ideal lattice J of “large” determinant, i.e., large minimum, large successive minima, large covering radius, etc.
- Let B_{j}^{pk} be the HNF of B_{j}^{sk}.
- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{j}^{pk}$.
- To decrypt: if C is within distance $\ll \lambda(J)$ of J, then Babai’s rounding-off algorithm finds $M + 2r$:
 $$C - B_{j}^{sk} [(B_{j}^{sk})^{-1} C] \Rightarrow M + 2r.$$
A somewhat homomorphic scheme

- Sample a good basis B_{sk}^j of an ideal lattice J of “large” determinant, i.e., large minimum, large successive minima, large covering radius, etc.
- Let B_{pk}^j be the HNF of B_{sk}^j.
- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{pk}^j$.
- To decrypt: if C is within distance $\ll \lambda(J)$ of J, then Babai’s rounding-off algorithm finds $M + 2r$:

$$C - B_{sk}^j [(B_{sk}^j)^{-1} C] \Rightarrow M + 2r.$$
A somewhat homomorphic scheme

- Sample a good basis B_{sk}^J of an ideal lattice J of “large” determinant, i.e., large minimum, large successive minima, large covering radius, etc.
- Let B_{pk}^J be the HNF of B_{sk}^J.
- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{pk}^J$.
- To decrypt: if C is within distance $\ll \lambda(J)$ of J, then Babai’s rounding-off algorithm finds $M + 2r$:

$$C - B_{sk}^J \lfloor (B_{sk}^J)^{-1} C \rfloor \Rightarrow M + 2r.$$
A somewhat homomorphic scheme

- Sample a good basis B_{sk}^J of an ideal lattice J of “large” determinant, i.e., large minimum, large successive minima, large covering radius, etc.
- Let B_{pk}^J be the HNF of B_{sk}^J.
- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{pk}^J$.
- To decrypt: if C is within distance $\ll \lambda(J)$ of J, then Babai’s rounding-off algorithm finds $M + 2r$:

$$C - B_{sk}^J \left[(B_{sk}^J)^{-1} C \right] \Rightarrow M + 2r.$$
Correctness and security

- **Correctness.** We must have

\[r_{Enc} := \max_{M,r} \| M + 2r \| < r_{Babai,B_{sk}^J}(J) =: r_{Dec}(J). \]

- **Security:** BDD must be hard to solve without \(B_{sk}^J \).
- With lattice reduction, in time \(\approx 2^k \) we can solve this BDD if \(r_{Enc} \leq 2^{n/k} \cdot r_{Dec} \). Gentry takes \(r_{Dec} \approx 2^{\sqrt{n}} \cdot r_{Enc} \).
Correctness and security

- **Correctness.** We must have

\[r_{Enc} := \max_{\mathbf{M}, r} \| \mathbf{M} + 2r \| < r_{Babai,B_j}^{sk}(J) =: r_{Dec}(J). \]

- **Security:** BDD must be hard to solve without \(B_j^{sk} \).

 With lattice reduction, in time \(\approx 2^k \) we can solve this BDD if \(r_{Enc} \leq 2^{n/k} \cdot r_{Dec} \). Gentry takes \(r_{Dec} \approx 2^{\sqrt{n}} \cdot r_{Enc} \).
Correctness and security

- Correctness. We must have

\[r_{Enc} := \max_{M, r} \| M + 2r \| < r_{Babai,B_j^{sk}}(J) =: r_{Dec}(J). \]

- Security: BDD must be hard to solve without \(B_j^{sk} \).
- With lattice reduction, in time \(\approx 2^k \) we can solve this BDD if \(r_{Enc} \leq 2^{n/k} \cdot r_{Dec} \). Gentry takes \(r_{Dec} \approx 2^{\sqrt{n}} \cdot r_{Enc} \).
Correctness and security

- Correctness. We must have

\[r_{Enc} := \max_{M,r} \| M + 2r \| < r_{Babai,B_j^{sk}}(J) =: r_{Dec}(J). \]

- Security: BDD must be hard to solve without \(B_j^{sk} \).

- With lattice reduction, in time \(\approx 2^k \) we can solve this BDD if \(r_{Enc} \leq 2^{n/k} \cdot r_{Dec} \). Gentry takes \(r_{Dec} \approx 2^{\sqrt{n}} \cdot r_{Enc} \).

If \(J \) and \(B_j^{sk} \) are chosen according to a well specified efficiently samplable distribution, if \(M \in \{0,1\} \) and if \(r \) is sampled from some discrete Gaussian, then the latter scheme can be made CPA-secure under the assumption that \(\text{Id-SVP}_\gamma \) is hard to solve for quantum polynomial-time algorithms, for some \(\gamma \) that grows faster than any polynomial in \(n \).
Correctness and security

- Security: BDD must be hard to solve without B_{sk}^J.
- With lattice reduction, in time $\approx 2^k$ we can solve this BDD if $r_{Enc} \leq 2^{n/k} \cdot r_{Dec}$. Gentry takes $r_{Dec} \approx 2^{\sqrt{n}} \cdot r_{Enc}$.

If J and B_{sk}^J are chosen according to a well specified efficiently samplable distribution, if $M \in \{0, 1\}$ and if r is sampled from some discrete Gaussian, then the latter scheme can be made CPA-secure under the assumption that Id-SVP_γ is hard to solve for quantum polynomial-time algorithms, for some γ that grows faster than any polynomial in n.

This is a dimension-preserving worst-case to average-case reduction, but much weaker than the Id-SIS/Id-LWE ones.
Why is it homomorphic?

- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_j^{pk}$.

- Addition: $C_i = M_i + 2r_i \mod B_j^{pk}$ implies

 $$C_1 + C_2 = (M_1 + M_2) + 2(r_1 + r_2) \mod B_j^{pk}.$$

- Multiplication (we have polynomials):

 $$C_1 \times C_2 = (M_1 \times M_2) + 2(r_1 \times M_2 + r_2 \times M_1 + 2r_1 \times r_2) \mod B_j^{pk}.$$
Why is it homomorphic?

- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{pk}^n$.

- Addition: $C_i = M_i + 2r_i \mod B_{pk}^n$ implies

 $$C_1 + C_2 = (M_1 + M_2) + 2(r_1 + r_2) \mod B_{pk}^n.$$

- Multiplication (we have polynomials):

 $$C_1 \times C_2 = (M_1 \times M_2) + 2(r_1 \times M_2 + r_2 \times M_1 + 2r_1 \times r_2) \mod B_{pk}^n.$$
Why is it homomorphic?

- To encrypt $M \in \{0, 1\}[x]$, take a small random $r \in \mathbb{Z}[x]/(x^n + 1)$ and output $C = M + 2r \mod B_{j}^{pk}$.

- Addition: $C_i = M_i + 2r_i \mod B_{j}^{pk}$ implies

$$C_1 + C_2 = (M_1 + M_2) + 2(r_1 + r_2) \mod B_{j}^{pk}.$$

- Multiplication (we have polynomials):

$$C_1 \times C_2 = (M_1 \times M_2) + 2(r_1 \times M_2 + r_2 \times M_1 + 2r_1 \times r_2) \mod B_{j}^{pk}.$$
Why is it only “somewhat” homomorphic?
Why is it only “somewhat” homomorphic?

The more operations are applied the further away from J.
Why is it only “somewhat” homomorphic?

The more operations are applied the further away from J.

- $\text{dist}(\mathbf{C}_1 + \mathbf{C}_2, J) \leq \text{dist}(\mathbf{C}_1, J) + \text{dist}(\mathbf{C}_2, J)$.
- $\text{dist}(\mathbf{C}_1 \times \mathbf{C}_2, J) \leq K \cdot \text{dist}(\mathbf{C}_1, J) \cdot \text{dist}(\mathbf{C}_2, J)$.
Why is it only “somewhat” homomorphic?

The more operations are applied the further away from J.

- $\text{dist}(\mathbf{C}_1 + \mathbf{C}_2, J) \leq \text{dist}(\mathbf{C}_1, J) + \text{dist}(\mathbf{C}_2, J)$.
- $\text{dist}(\mathbf{C}_1 \times \mathbf{C}_2, J) \leq K \cdot \text{dist}(\mathbf{C}_1, J) \cdot \text{dist}(\mathbf{C}_2, J)$.

E.g.: If we have t ciphertexts to multiply, then $K^t \cdot r_{Enc}^t$ may become larger than r_{Dec}.
Making the scheme fully homomorphic

- If many operations have been applied, we try to “refresh” the ciphertext.
- We cannot decrypt using the private key.
- Trick: encode $C = E(M, J_{pk}^1)$ further using a second public key, and decode homomorphically using the encryption of the first private key.

$$D(E(C, J_{pk}^2), E(J_{sk}^1, J_{pk}^2)) = E(D(C, J_{sk}^1), J_{pk}^2)$$

- Refreshing as many times as required, we can apply any circuit privately.
Making the scheme fully homomorphic

- If many operations have been applied, we try to “refresh” the ciphertext.
- We cannot decrypt using the private key.
- Trick: encode $C = \mathcal{E}(M, J_{1}^{pk})$ further using a second public key, and decode homomorphically using the encryption of the first private key.

$$D \left(\mathcal{E}(C, J_{1}^{pk}), \mathcal{E}(J_{1}^{pk}, J_{2}^{pk}) \right) = \mathcal{E} \left(D \left(C, J_{1}^{sk} \right), J_{2}^{sk} \right).$$

- Refreshing as many times as required, we can apply any circuit privately.
Making the scheme fully homomorphic

- If many operations have been applied, we try to “refresh” the ciphertext.
- We cannot decrypt using the private key.
- Trick: encode $C = \mathcal{E}(M, J_{1}^{pk})$ further using a second public key, and decode homomorphically using the encryption of the first private key.

\[
\mathcal{D} \left(\mathcal{E}(C, J_{2}^{pk}), \mathcal{E}(J_{1}^{sk}, J_{2}^{pk}) \right) = \mathcal{E}(\mathcal{D}(C, J_{1}^{sk}), J_{2}^{pk}).
\]

- Refreshing as many times as required, we can apply any circuit privately.
Making the scheme fully homomorphic

- If many operations have been applied, we try to “refresh” the ciphertext.
- We cannot decrypt using the private key.
- Trick: encode $C = \mathcal{E}(M, J_{1}^{pk})$ further using a second public key, and decode homomorphically using the encryption of the first private key.

\[D \left(\mathcal{E}(C, J_{2}^{pk}), \mathcal{E}(J_{1}^{sk}, J_{2}^{pk}) \right) = \mathcal{E}(D \left(C, J_{1}^{sk} \right), J_{2}^{pk}) \].

- Refreshing as many times as required, we can apply any circuit privately.
Making the scheme fully homomorphic

- If many operations have been applied, we try to “refresh” the ciphertext.
- We cannot decrypt using the private key.
- Trick: encode $C = \mathcal{E}(M, J_{1}^{pk})$ further using a second public key, and decode homomorphically using the encryption of the first private key.

$$\mathcal{D} \left(\mathcal{E}(C, J_{2}^{pk}), \mathcal{E}(J_{1}^{sk}, J_{2}^{pk}) \right) = \mathcal{E}(\mathcal{D}(C, J_{1}^{sk}), J_{2}^{pk})$$

- Refreshing as many times as required, we can apply any circuit privately.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: $C - B^s_k [(B^s_k)^{-1}C]$ provides $M + 2r$.
- $B^s_k [(B^s_k)^{-1}C]$ seems too complicated.
- We need to “squash” the decryption circuit.
Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
Decryption: \(\mathbf{C} - B_j^{sk} \lfloor (B_j^{sk})^{-1} \mathbf{C} \rfloor \) provides \(\mathbf{M} + 2r \).
\(B_j^{sk} \lfloor (B_j^{sk})^{-1} \mathbf{C} \rfloor \) seems too complicated.
We need to “squash” the decryption circuit.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: $C - B_j^{sk} \lfloor (B_j^{sk})^{-1} C \rfloor$ provides $M + 2r$.
- $B_j^{sk} \lfloor (B_j^{sk})^{-1} C \rfloor$ seems too complicated.
- We need to “squash” the decryption circuit.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: \(C - B^s_j \lfloor (B^s_j)^{-1} C \rfloor \) provides \(M + 2r \).
- \(B^s_j \lfloor (B^s_j)^{-1} C \rfloor \) seems too complicated.
- We need to “squash” the decryption circuit.

Outline of Gentry’s solution:

- There exists \(v^s_j \) with: \(\forall C: B^s_j \lfloor (B^s_j)^{-1} C \rfloor = \lfloor v^s_j C \rfloor \).
- Generate random public \(v_i \)'s with a secret sparse subset \(S \) which sums to \(v^s_j \): \(\sum_{i \in S} v_i = v^s_j \).
- The \(v_i C \)'s can be computed, and then the decryption reduces to summing up the few correct ones.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: \(C - B_{j}^{sk} \lfloor (B_{j}^{sk})^{-1}C \rfloor \) provides \(M + 2r \).
- \(B_{j}^{sk} \lfloor (B_{j}^{sk})^{-1}C \rfloor \) seems too complicated.
- We need to “squash” the decryption circuit.

Outline of Gentry’s solution:

- There exists \(v_{j}^{sk} \) with: \(\forall C : B_{j}^{sk} \lfloor (B_{j}^{sk})^{-1}C \rfloor = \lfloor v_{j}^{sk}C \rfloor \).
- Generate random public \(v_{i} \)'s with a secret sparse subset \(S \) which sums to \(v_{j}^{sk}: \sum_{i \in S} v_{i} = v_{j}^{sk} \).
- The \(v_{i}C \)'s can be computed, and then the decryption reduces to summing up the few correct ones.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: \(C - B_j^{sk} \lfloor (B_j^{sk})^{-1} C \rfloor \) provides \(M + 2r \).
- \(B_j^{sk} \lfloor (B_j^{sk})^{-1} C \rfloor \) seems too complicated.
- We need to “squash” the decryption circuit.

Outline of Gentry’s solution:

- There exists \(v_j^{sk} \) with: \(\forall C : B_j^{sk} \lfloor (B_j^{sk})^{-1} C \rfloor = \lfloor v_j^{sk} C \rfloor \).
- Generate random public \(v_i \)'s with a secret sparse subset \(S \) which sums to \(v_j^{sk} \): \(\sum_{i \in S} v_i = v_j^{sk} \).
- The \(v_i C \)'s can be computed, and then the decryption reduces to summing up the few correct ones.
The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?

- Decryption: \(C - B_{j^k} \lfloor (B_{j^k})^{-1} C \rfloor \) provides \(M + 2r \).

- \(B_{j^k} \lfloor (B_{j^k})^{-1} C \rfloor \) seems too complicated.

- We need to “squash” the decryption circuit.

Outline of Gentry’s solution:

- There exists \(v_{j^k} \) with: \(\forall C : B_{j^k} \lfloor (B_{j^k})^{-1} C \rfloor = \lfloor v_{j^k} C \rfloor \).

- Generate random public \(v_i \)’s with a secret sparse subset \(S \) which sums to \(v_{j^k} \): \(\sum_{i \in S} v_i = v_{j^k} \).

- The \(v_i C \)’s can be computed, and then the decryption reduces to summing up the few correct ones.
Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- More recent developments.
Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- Lattice reduction is improving.

- But still not many schemes are implemented.
- Lattice reduction can probably still be improved much.
- Mainly one library used for cryptanalysis (Shoup’s NTL), and it is known to behave oddly [GN’08].
Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- Lattice reduction is improving.
- But still not many schemes are implemented.
- Lattice reduction can probably still be improved much.
- Mainly one library used for crytanalysis (Shoup’s NTL), and it is known to behave oddly [GN’08].
Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- Lattice reduction is improving.
- But still not many schemes are implemented.
- Lattice reduction can probably still be improved much.
- Mainly one library used for cryptanalysis (Shoup’s NTL), and it is known to behave oddly [GN’08].
Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- Lattice reduction is improving.
- But still not many schemes are implemented.
- Lattice reduction can probably still be improved much.
- Mainly one library used for cryptanalysis (Shoup’s NTL), and it is known to behave oddly [GN’08].
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.
Open problems

- Can we adapt (some of) the techniques to linear codes?
- Can quantum computers improve lattice algorithms?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Are ideal lattices weaker than general lattices?
- Assess the practical limits of lattice reduction.