(Non-)Existence of full shift factors for \mathbb{Z}^d shifts of finite type

(joint work with Mike Boyle and Mike Boyle & Ronnie Pavlov)

Michael H. Schraudner

Centro de Modelamiento Matemático
Universidad de Chile

mschraudner@dim.uchile.cl
www.cmm.uchile.cl/~mschraudner

MathInfo 2010

February 15th, 2010 – CIRM, Luminy
Preliminaries

A some finite alphabet

d-dimensional full shift: \(A^\mathbb{Z}^d, \ \forall \vec{j} \in \mathbb{Z}^d : \sigma_{\vec{j}} : A^\mathbb{Z}^d \to A^\mathbb{Z}^d \ (x_{\vec{i}+\vec{j}})_{\vec{i} \in \mathbb{Z}^d} \mapsto (x_{\vec{i}})_{\vec{i} \in \mathbb{Z}^d} \)

d-dimensional subshift: \(X \subseteq A^\mathbb{Z}^d \) shift invariant, closed subset

d-dimensional shift of finite type (SFT):

\(X \) is a \(\mathbb{Z}^d \) SFT \(\iff \exists S \subset \mathbb{Z}^d \) finite set of coordinates, , \(P \subseteq A^S \) set of allowed patterns on \(S : X = \{ x \in A^{\mathbb{Z}^d} : \forall \vec{j} \in \mathbb{Z}^d : x|_{\vec{j}+S} \in P \} \)

\(\mathbb{Z}^d \) SFTs are much more complicated and diverse than \(\mathbb{Z} \) SFTs (undecidability results, large and very inhomogeneous class of shifts).

d-dimensional topological entropy of a \(\mathbb{Z}^d \) subshift \(X \):

\[
 h(X) = \limsup_{n \to \infty} \frac{1}{\text{card } F(n)} \log \text{card}\{ x|_{F(n)} : x \in X \}
\]

where \(F(n) = \{ \vec{j} \in \mathbb{Z}^d : ||\vec{j}||_\infty < n \} \)

A \(\mathbb{Z}^d \) shift \((Y, \sigma_Y) \) is a (topological) factor of \((X, \sigma_X) \)

\(\iff \exists \phi : X \to Y \) surjective continuous map such that \(\phi \circ \sigma_X = \sigma_Y \circ \phi \)
Some facts about \mathbb{Z} shifts – some questions about \mathbb{Z}^d shifts

\mathbb{Z}^d SFTs are a much more complicated and diverse class of systems than \mathbb{Z} SFTs. There are several undecidability results (existence and denseness of periodic points, emptiness problem, extension problem) for \mathbb{Z}^d SFTs not present for \mathbb{Z} SFTs. Properties of \mathbb{Z} SFTs generalize, if at all, only to certain subclasses of \mathbb{Z}^d SFTs when $d > 1$.

1. \mathbb{Z} SFTs X contain a tremendous diversity of pairwise disjoint \mathbb{Z} SFTs with entropies dense in $[0, h(X)]$ (Jewett-Krieger-Theorem, Krieger-Embedding-Theorem); moreover those subSFTs can always be realized disjoint from any given proper subsystem of X.

For $d \geq 2$ a \mathbb{Z}^d SFT contains SFTs with entropies dense in $[0, h(X)]$ (Desai).

Question: Can those \mathbb{Z}^d subSFTs be chosen pairwise disjoint?

2. \mathbb{Z} sofic shifts contain pairwise disjoint SFTs with entropies dense in $[0, h(S)]$ (Mixing \mathbb{Z} sofics contain mixing \mathbb{Z} SFTs of large entropy).

For $d \geq 2$ a \mathbb{Z}^d sofic shift contains sofic shifts with entropies dense in $[0, h(S)]$ (Desai).

Question: Is there always a family of \mathbb{Z}^d SFTs with dense entropies?

3. The abundance of subsystems in \mathbb{Z} SFTs allows a complete characterization of lower entropy factors (see below).
The factoring-onto-full-shifts problem

We consider the following problem posed by Johnson and Madden:

Question: If N is a positive integer and X is a \mathbb{Z}^d SFT with entropy $h(X) \geq \log N$, must there exist a continuous factor map from X onto the full \mathbb{Z}^d shift on N symbols?

It is interesting to identify the factors (=building blocks) of a given system, topological analogue (for \mathbb{Z}^d SFTs) of Sinai’s measurable Factor Theorem.

The case $d = 1$: The answer to the Question is YES and even a much stronger statement holds:

If S is a \mathbb{Z} sofic shift and Y is a mixing \mathbb{Z} SFT such that $h(S) > h(Y)$, then Y is a factor of S iff

$$\forall s \in S, n \in \mathbb{N} \text{ with } \sigma^n_S(s) = s \implies \exists y \in Y \text{ such that } \sigma^n_Y(y) = y.$$

A \mathbb{Z} SFT with $h(X) \geq \log N$ factors onto the full \mathbb{Z} shift on N symbols (Boyle, Marcus).

The case $d > 1$: For $d > 1$ and $h(X) > \log N$, partial answer.

Theorem [Johnson-Madden; Desai]: Let X be a corner gluing \mathbb{Z}^d SFT with $h(X) > \log N$, then X factors onto the full N shift.
Results: The equal entropy case

For the equal entropy case we have produced counterexamples:

Theorem [Boyle-Schraudner]: Given integers $N, d > 1$, there are \mathbb{Z}^d SFTs with entropy $\log N$ which DO NOT factor onto the full N shift.

Sketch of proof: Produce a measure-of-clopen-sets-obstruction.

For our obstruction pick a prime p that divides $N > 1$ and choose $K > N$ not divisible by p.

Start with a result of Hochman-Meyerovitch:

$r \in \mathbb{R}$ is **right recursively enumerable** if there exists a sequence $r(n) \geq r$ converging to r and a Turing machine which given $n \in \mathbb{N}$ produces output $r(n)$.

The **upper frequency** of $\mathcal{A}' \subset \mathcal{A}$ in a point $x \in X$ is defined to be

$$\limsup_{n \to \infty} \frac{1}{\text{card } F(n)} \text{card}\{\vec{j} \in F(n) : x_{\vec{j}} \in \mathcal{A}'\}$$

If the lim sup is a limit, then it gives the **frequency** of \mathcal{A}' in x.
Theorem [Hochman-Meyerovitch]: Suppose $r \in [0, 1]$ is right recursively enumerable. Then there is a zero entropy \mathbb{Z}^d SFT Z and a subset $\mathcal{A}' \subset \mathcal{A}$ of the alphabet of Z such that:

- for any point $z \in Z$, the upper frequency of \mathcal{A}' is at most r
- there exists a point of Z in which \mathcal{A}' has frequency r.

Take $r = (\log N)/(\log K)$ for our example (right recursively enumerable by log power series).

Now replace the symbols of \mathcal{A}' in every point $z \in Z$ independently with one of K copies. Define

$$\tilde{\mathcal{A}} = (\mathcal{A} \setminus \mathcal{A}') \cup \{(a, i) : a \in \mathcal{A}' \land i \in \{1, \ldots, K\}\}$$

Define the subshift W consisting of all configurations $w \in \tilde{\mathcal{A}}^{\mathbb{Z}^d}$ such that the one-block code $\pi : \tilde{\mathcal{A}} \to \mathcal{A}$ given by $a \mapsto a$ if $a \notin \mathcal{A}'$ and $(a, i) \mapsto a$ if $a \in \mathcal{A}'$ sends W onto Z.
Given μ on W we denote by $\{\mu_z\}$ the ν-a.e. unique family of Borel probabilities on the fibers $\pi^{-1}z$ such that $\mu(E) = \int \mu_z(E \cap \pi^{-1}z) \, d\nu(z)$, for all Borel sets E.

Given $\nu = \pi\mu$ on Z, let $\tilde{\nu}$ be the unique lift of ν such that $\tilde{\nu}_z = \beta_z$ for ν-a.e. z.

Lemma: Suppose Z is a \mathbb{Z}^d subshift; W, π and $\tilde{\nu}$ as above; $\mu \in \mathcal{M}(W)$; and $\pi\mu = \nu$. Then

$$h_\mu(W) \leq h_\nu(Z) + \nu(\bigcup_{a \in A'[a]0}) \log K$$

with equality holding if and only if $\mu = \tilde{\nu}$.

By the Lemma and the variational principle, we have $h(W) = \log N$ and $\mu = \tilde{\nu}$.

Michael Schraudner

mschraudner@dim.uchile.cl
Using the disjointness of zero entropy and Bernoulli we get for ν-almost all points $z \in Z$ that the factor map $\phi|_{\pi^{-1}z}$ maps $\tilde{\nu}_z$ to m_B.

Pick such a $z \in Z$.

\[p \mid N \quad \implies \quad \exists C \subset B \text{ clopen: } m_B(C) = \frac{1}{p} \]
\[\phi \text{ continuous} \quad \implies \quad D = (\phi|_{\pi^{-1}z})^{-1}(C) \subset \pi^{-1}z \text{ clopen} \]

But then $\tilde{\nu}_z(D) = m_B(C) = \frac{1}{p}$.

As $p \not| K$ there is no clopen set $D \subset \pi^{-1}z$ of $\tilde{\nu}_z$-measure $\frac{1}{p}$.

There is no factor map ϕ from W onto B.

In general \mathbb{Z}^d SFTs do not always provide equal entropy full shift factors.

Lemma [Disjointness-Lemma]: For $i = 1, 2, 3$ let $(X_i, \mathcal{B}_i, \mu_i, \alpha_i)$ denote a μ_i-preserving \mathbb{Z}^d action α_i on a Lebesgue space (X_i, \mathcal{B}_i). Suppose α_1 is zero entropy, α_2 is Bernoulli (μ_2 is the product measure of a measure on A) and there are measure preserving factor maps p_i from $(X_3, \mathcal{B}_3, \mu_3, \alpha_3)$ to $(X_i, \mathcal{B}_i, \mu_i, \alpha_i)$, $i = 1, 2$. Then $p_1 \times p_2$ defines a measure preserving factor map from $(X_3, \mathcal{B}_3, \mu_3, \alpha_3)$ to the product system $(X_1 \times X_2, \mathcal{B}_1 \times \mathcal{B}_2, \mu_1 \times \mu_2, \alpha_1 \times \alpha_2)$.
Results: The lower entropy case

Definition: A \(\mathbb{Z}^d \) subshift \(X \) is **block gluing at a distance** \(D \) if for every two (disjoint) solid blocks \(B_1 = [\vec{v}^{(1)}, \vec{w}^{(1)}], \ B_2 = [\vec{v}^{(2)}, \vec{w}^{(2)}] \subset \mathbb{Z}^d \) with distance

\[
d(B_1, B_2) := \min_{\vec{b}^{(1)} \in B_1, \vec{b}^{(2)} \in B_2} \| \vec{b}^{(1)} - \vec{b}^{(2)} \|_\infty > D
\]

any pair of patterns on \(B_1 \) and \(B_2 \) which occur in \(X \) can be put together to form a valid point of \(X \), i.e.

\[
\forall x, y \in X \ \exists z \in X : \ z|_{B_1} = x|_{B_1} \wedge z|_{B_2} = y|_{B_2}.
\]

A \(\mathbb{Z}^d \) subshift \(X \) is called **block gluing** if it is block gluing at distance \(D \) for some \(D \in \mathbb{N} \).

Definition: A general \(\mathbb{Z}^d \) shift \(X \) has a **safe symbol** if its alphabet contains an element that can be placed at any set of coordinates in any point of \(X \) such that the modified point is still valid in \(X \).

Theorem [BPS]: Suppose \(d \geq 1 \) and let \(X \) be a block gluing \(\mathbb{Z}^d \) shift. Then the following hold.

1. If \(N \in \mathbb{N} \) and \(h(X) > \log N \), then \(X \) factors topologically onto the \(\mathbb{Z}^d \) full shift on \(N \) symbols.
2. \(X \) factors topologically onto a family of strongly irreducible \(\mathbb{Z}^d \) SFTs with entropies dense in \([0, h(X)] \).
3. \(X \) factors topologically onto any lower entropy \(\mathbb{Z}^d \) SFT having a safe symbol.
Theorem [BPS]: Given $M > 0$ and $d \geq 2$, there exists a \mathbb{Z}^d sofic shift S with the following properties.

1. $h(S) > M$.

2. S (and thus every topological factor of S) contains a fixed point which is its unique minimal subsystem.

3. Every topological factor of S (including S) contains a unique \mathbb{Z}^d SFT, which is a fixed point. In particular, S has no non-trivial SFT factor.

4. If Y is any non-trivial subshift factor of S, then Y cannot be block gluing. Hence Y also cannot be strongly irreducible, cannot have the uniform filling property (UFP), and cannot be corner gluing. In particular, Y cannot be a full shift.

5. In the case $d \geq 3$, S can be chosen such that for every non-trivial topological factor Y of S, there is no invariant Borel probability $\mu \in \mathcal{M}(Y)$ on Y such that (Y, μ) as a measurable system has completely positive entropy.

6. S has an equal entropy (sofic) subshift factor of topologically completely positive entropy.

7. There is a \mathbb{Z}^d SFT X and a factor map $\pi : X \to S$ such that $h(X) = h(S)$ and the preimage in X of the unique fixed point in S is a \mathbb{Z}^d SFT $K \subsetneq X$ such that $h(K) = 0$.

8. In the case $d = 2$, S can in addition be chosen to be mixing and of topologically completely positive entropy.

9. For $d \geq 3$, S can be chosen to be mixing and satisfying all the properties (1)-(7) except (6).
Theorem [BPS]: Given $M > 0$ and $d \geq 2$, there exists a \mathbb{Z}^d SFT X with the following properties.

1. $h(X) > M$.

2. X contains a zero entropy SFT K which contains every minimal subsystem of X. In particular, every non-empty subsystem of X has to intersect K.

3. If Y is any block gluing subshift factor of X, then Y is trivial. In particular, the only full shift factor of X is the trivial shift.

4. If Y is a subshift factor of X, and Y_{MIN} is the orbit closure of its minimal subsystems, then $h(Y_{\text{MIN}}) = 0$.

5. In the case $d \geq 3$, X can be chosen such that for every non-trivial topological factor Y of X, there is no invariant Borel probability $\mu \in \mathcal{M}(Y)$ on Y such that (Y, μ) as a measurable system has completely positive entropy.

6. X has an equal entropy sofic factor with topologically completely positive entropy. In the case $d = 2$, X itself can be chosen mixing with topologically completely positive entropy.
Implications of block gluing

Proposition [BPS]: If X is a non-trivial block gluing \mathbb{Z}^d subshift ($d > 1$) then

1. $h(X) > 0$.
2. Every topological factor of X is block gluing.
3. X has topologically completely positive entropy, i.e. every non-trivial topological factor has strictly positive entropy.
4. X is topologically mixing.

Block gluing is **strictly stronger** than topological mixing (\exists non-trivial top. mixing SFTs with entropy zero), but **strictly weaker** than corner gluing ($X \subset \{0, 1\}^{Z^2}$ with forbidden pattern $P = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$).