Fiber-mixing codes between \mathbb{Z}-subshifts and relations of codes between \mathbb{Z}^d-subshifts

Uijin Jung

Korea Adv. Institute of Science and Technology (KAIST), Daejeon, South Korea

CIRM, Marseille, February 15, 2010
This presentation is based on the following works.

- **U. Jung**
 Fiber-mixing codes between subshifts and their existence.

- **U. Jung**
 On the existence of open and bi-continuing codes.

- **U. Jung**
 Open maps between shift spaces.
Fiber-mixing codes

Relations between properties of codes
Let \mathcal{A} be a finite set called an *alphabet*.

- The **full \mathcal{A}-shift** $\mathcal{A}^\mathbb{Z}$ is the set of all bi-infinite sequences over \mathcal{A}.

- The **shift map** σ on $\mathcal{A}^\mathbb{Z}$ is defined by $\sigma(x)_i = x_{i+1}$. A **shift space**, or a **subshift** is a σ-invariant closed subset of a full shift.

- A **sliding block code** (simply, a **code**) is a σ-commuting continuous map between shift spaces.
Shift spaces and codes

Let \mathcal{A} be a finite set called an alphabet.

- The **full \mathcal{A}-shift** $\mathcal{A}^\mathbb{Z}$ is the set of all bi-infinite sequences over \mathcal{A}.

- The **shift map** σ on $\mathcal{A}^\mathbb{Z}$ is defined by $\sigma(x)_i = x_{i+1}$. A **shift space**, or a **subshift** is a σ-invariant closed subset of a full shift.

- A **sliding block code** (simply, a **code**) is a σ-commuting continuous map between shift spaces.

- A **topological Markov chain** determined by an $r \times r$, 0-1 matrix A is the set of all $x = (x_i) \in \{1, \ldots, r\}^\mathbb{Z}$ with $A_{x_i x_{i+1}} = 1$ for $i \in \mathbb{Z}$.

- A subshift is an **SFT** if it is conjugate to a topological Markov chain.

- A **sofic shift** is a factor of an SFT.
Continuing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **right continuing** if whenever $x \in X$, $y \in Y$ and $\phi(x)$ is left asymptotic to y, there exists $\bar{x} \in X$ such that \bar{x} is left asymptotic to x and $\phi(\bar{x}) = y$;

 $\xrightarrow{\phi} \quad x \quad \rightarrow \quad y$

- ϕ is **bi-continuing** if it is both left and right continuing.
Continuing codes

Let \(\phi : X \rightarrow Y \) be a code.

- \(\phi \) is **right continuing** if whenever \(x \in X, \ y \in Y \) and \(\phi(x) \) is left asymptotic to \(y \), there exists \(\bar{x} \in X \) such that \(\bar{x} \) is left asymptotic to \(x \) and \(\phi(\bar{x}) = y \);

- \(\phi \) is **bi-continuing** if it is both left and right continuing.
Continuing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **right continuing** if whenever $x \in X$, $y \in Y$ and $\phi(x)$ is left asymptotic to y, there exists $\bar{x} \in X$ such that \bar{x} is left asymptotic to x and $\phi(\bar{x}) = y$;

- ϕ is **bi-continuing** if it is both left and right continuing.
Continuing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **right continuing** if whenever $x \in X$, $y \in Y$ and $\phi(x)$ is left asymptotic to y, there exists $\bar{x} \in X$ such that \bar{x} is left asymptotic to x and $\phi(\bar{x}) = y$;

- ϕ is **bi-continuing** if it is both left and right continuing.

A continuing code between irreducible SFTs lifts every Markov measure on Y to a Markov measure on X. *(Boyle and Tuncel '84)*

On relations among of properties of codes (U.Jung)

Fiber-mixing codes
Let $\phi : X \to Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.
Let $\phi : X \rightarrow Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.

![Diagram]

- x is left asymptotic to x.

- \bar{x} is right asymptotic to \bar{x}.

- y is an output of ϕ.

On relations among of properties of codes (U.Jung) Fiber-mixing codes 6
Let $\phi : X \to Y$ be a code.

ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.
Fiber-mixing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.
Fiber-mixing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.

- ϕ is **fiber-mixing** if, for every $x, \bar{x} \in X$ and $\phi(x) = \phi(\bar{x})$, there is $z \in X$ with z left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = \phi(x)$.

\[
\begin{align*}
\phi(x) &\to y = \phi(z) \\
\phi(\bar{x}) &\to y = \phi(z)
\end{align*}
\]

\[
\begin{align*}
x &\to z \\
\bar{x} &\to z
\end{align*}
\]
Fiber-mixing codes

Let $\phi : X \rightarrow Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.

- ϕ is **fiber-mixing** if, for every $x, \bar{x} \in X$ and $\phi(x) = \phi(\bar{x})$, there is $z \in X$ with z left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = \phi(x)$.

On relations among of properties of codes (U.Jung) Fiber-mixing codes
Fiber-mixing codes

Let $\phi : X \rightarrow Y$ be a code.

- ϕ is strong fiber-mixing if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.

- ϕ is fiber-mixing if, for every $x, \bar{x} \in X$ and $\phi(x) = \phi(\bar{x})$, there is $z \in X$ with z left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = \phi(x)$.

Observations

- A strong fiber-mixing factor code is bi-continuing.
- Any injective code is fiber-mixing.

Proposition 1

1. A fiber-mixing bi-continuing code is strong fiber-mixing.
2. A factor code from an SFT is fiber-mixing if and only if strong fiber-mixing.
Fiber-mixing codes

Let $\phi : X \to Y$ be a code.

- ϕ is **strong fiber-mixing** if, for every $x, \bar{x} \in X$ and $y \in Y$ with $\phi(x)$ left asymptotic to y and $\phi(\bar{x})$ right asymptotic to y, there is $z \in X$ such that z is left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = y$.
- ϕ is **fiber-mixing** if, for every $x, \bar{x} \in X$ and $\phi(x) = \phi(\bar{x})$, there is $z \in X$ with z left asymptotic to x, right asymptotic to \bar{x} and $\phi(z) = \phi(x)$.

A continuing code between irreducible SFTs lifts every Markov measure on Y to a Markov measure on X. *(Boyle and Tuncel ’84)*

A fiber-mixing factor code between mixing SFTs pulls down every Markov measure on X to a Gibbs measure on Y. *(Shin and Yoo ’09, following Chazottes and Ugalde ’03)*
Let $\phi : X \rightarrow Y$ be a code.
Let $\phi : X \to Y$ be a \textit{factor} code.
Let $\phi : X \to Y$ be a factor code and X be an SFT.
Let $\phi : X \to Y$ be a \textit{finite-to-one factor} code and X be an \textit{irreducible SFT}.
The factor problem

Definitions

Let X and Y be shift spaces.

- The *period* of a periodic point $x \in X$ is denoted by $\text{per}(x)$.
- Define $\text{per}(X) = \gcd\{\text{per}(x) : x \in X \text{ is periodic}\}$.
- We say $P(X) \lesssim P(Y)$ if for any periodic point $x \in X$, there is a periodic point $y \in Y$ whose period divides the period of x.
- The *topological entropy* of (X, σ) is denoted by $h(X)$.

On relations among properties of codes (U.Jung) Fiber-mixing codes
The factor problem

Definitions
Let X and Y be shift spaces.

- The **period** of a periodic point $x \in X$ is denoted by $\text{per}(x)$.
- Define $\text{per}(X) = \gcd\{\text{per}(x) : x \in X \text{ is periodic}\}$.
- We say $P(X) \leq P(Y)$ if for any periodic point $x \in X$, there is a periodic point $y \in Y$ whose period divides the period of x.
- The **topological entropy** of (X, σ) is denoted by $h(X)$.

If $\phi : X \to Y$ is a factor code, then $h(X) \geq h(Y)$ and $P(X) \leq P(Y)$.

Problem
Find a necessary and sufficient condition for X to factor onto Y, through a code with certain properties.
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a factor code $\phi : X \rightarrow Y$.

Lower entropy factor theorem (SFT case)
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \searrow P(Y)$. Then there is a factor code $\phi : X \rightarrow Y$.

Direction 1: Weaken the finite-type constraints.
Lower entropy factor theorem (SFT case)

Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction II: Impose additional properties to the factor code.

Theorem (Boyle and Tuncel)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a right continuing factor code $\phi : X \to Y$.

On relations among properties of codes (U.Jung) Fiber-mixing codes
Lower entropy factor theorem (SFT case)

Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \searrow P(Y)$. Then there is a **factor code** $\phi : X \to Y$.

Direction II: Impose additional properties to the factor code.

Theorem (J.)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \searrow P(Y)$. Then there is a **bi-continuing** factor code $\phi : X \to Y$.
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a factor code $\phi : X \rightarrow Y$.

Direction II: Impose additional properties to the factor code.

Theorem (J.)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a bi-continuing factor code $\phi : X \rightarrow Y$.

Theorem 2

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$ and $\text{per}(X) = \text{per}(Y)$. Then there is a strong fiber-mixing code $\phi : X \rightarrow Y$.
Existence of fiber-mixing codes

Proposition 3

Let $\phi : X \rightarrow Y$ be a fiber-mixing factor code between irreducible SFTs.

1. $\text{per}(X) = \text{per}(Y)$.
2. If ϕ is finite-to-one, then ϕ is a conjugacy.

Theorem 4

Let X and Y be irreducible SFTs. Then there is a strong fiber-mixing code from X to Y if and only if

(i) X is conjugate to Y, or

(ii) $h(X) > h(Y)$, $P(X) \searrow P(Y)$ and $\text{per}(X) = \text{per}(Y)$.
Existence of fiber-mixing codes

Proposition 3
Let $\phi : X \to Y$ be a fiber-mixing factor code between irreducible SFTs.

1. $\text{per}(X) = \text{per}(Y)$.
2. If ϕ is finite-to-one, then ϕ is a conjugacy.

Theorem 4
Let X and Y be irreducible SFTs. Then there is a strong fiber-mixing code from X to Y if and only if

(i) X is conjugate to Y, or
(ii) $h(X) > h(Y)$, $\mathcal{P}(X) \searrow \mathcal{P}(Y)$ and $\text{per}(X) = \text{per}(Y)$.

The proof involves ideas and results from Denker-Grillenberger-Sigmund construction of mixing SFTs, Blowing-up Lemma, Extension Theorem, Krieger Embedding, and High-Low stretch construction of Boyle and Tuncel.
Almost specified shifts

Definition
A shift space X is **almost specified** if there exists $N \in \mathbb{N}$ such that for all $u, v \in B(X)$, there exists $w \in B(X)$ with $uwv \in B(X)$ and $|w| \leq N$.
Almost specified shifts

Definition
A shift space X is *almost specified* if there exists $N \in \mathbb{N}$ such that for all $u, v \in \mathcal{B}(X)$, there exists $w \in \mathcal{B}(X)$ with $uwv \in \mathcal{B}(X)$ and $|w| \leq N$.
Almost specified shifts

Definition
A shift space X is **almost specified** if there exists $N \in \mathbb{N}$ such that for all $u, v \in \mathcal{B}(X)$, there exists $w \in \mathcal{B}(X)$ with $uwv \in \mathcal{B}(X)$ and $|w| \leq N$.

Proposition (Thomsen)

Let X be almost specified. Then there exist a unique $p \in \mathbb{N}$ and closed sets $D_i \subset X$, $i = 0, 1, \ldots, p - 1$, such that

i) $X = \bigcup_{i=0}^{p-1} D_i$,

ii) $\sigma(D_i) = D_{i+1}$,

iii) $\sigma^p|_{D_i}$ is mixing for all $i = 0, 1, \ldots, p - 1$, and

vi) $D_i \cap D_j$ has empty interior when $i \neq j$.

The collection of D_i’s is called the **cyclic cover** of X. p is called the **essential period** of X and denoted by $eper(x)$.
Lower Entropy Factor Theorem (Boyle)

Let X, Y be **irreducible SFTs** with $h(X) > h(Y)$ and $P(X) \searrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction I: Weaken the finite-type constraints.
Lower entropy factor theorem II

Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \narrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction I: Weaken the finite-type constraints.

Theorem (Thomsen)

Let X be almost specified and Y an irreducible SFT with $h(X) > h(Y)$. Then Y is a factor of X if and only if $P(X) \narrow P(Y)$ and

* if $\{D_0, \cdots, D_{p-1}\}$ is the cyclic cover of X, then $\text{per}(Y) \mid p$ and

$$\left(\bigcup_{j=0}^{\frac{p-1}{q}} D_{i+jq} \right) \cap \left(\bigcup_{j=0}^{\frac{p-1}{q}} D_{k+jq} \right) = \emptyset \text{ for } i \neq k.$$
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \searrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction I: Weaken the finite-type constraints.

Theorem (Thomsen)

Let X be almost specified and Y an irreducible SFT with $h(X) > h(Y)$. Then Y is a factor of X if and only if $P(X) \searrow P(Y)$ and $\text{cover}(X, Y)$.
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction I: Weaken the finite-type constraints.

Theorem (J.)

Let X be almost specified and Y an irreducible SFT with $h(X) > h(Y)$. Then Y is a bi-continuing factor of X iff $P(X) \downarrow P(Y)$ and $\text{cover}(X,Y)$.
Lower Entropy Factor Theorem (Boyle)

Let X, Y be irreducible SFTs with $h(X) > h(Y)$ and $P(X) \downarrow P(Y)$. Then there is a factor code $\phi : X \to Y$.

Direction I: Weaken the finite-type constraints.

Theorem (J.)

Let X be almost specified and Y an irreducible SFT with $h(X) > h(Y)$. Then Y is a bi-continuing factor of X iff $P(X) \downarrow P(Y)$ and $\text{cover}(X,Y)$.

Theorem 5

Let X be almost specified and Y an irreducible SFT with $h(X) > h(Y)$. Then Y is a factor of X by a (strong) fiber-mixing code if and only if $P(X) \downarrow P(Y)$, $\text{cover}(X,Y)$ and $\text{eper}(X) = \text{eper}(Y)$.
Fiber-mixing codes

- Relations between properties of codes
Let $\phi : X \to Y$ be a code between \mathbb{Z}^d-shift spaces, $d \in \mathbb{N}$.

Definitions

- ϕ is **finite-to-one** if $\phi^{-1}(y)$ is a finite set for all $y \in Y$.
- ϕ is **constant-to-one** if $|\phi^{-1}(y)| \in \mathbb{N}$ is independent of y.
- ϕ is **open** if images of open sets are open.

Definitions

Let ϕ be a code between \mathbb{Z}-shift spaces.

- ϕ is **right closing** if it does not collapse left asymptotic points.

$$x_{(-\infty,N]} = y_{(-\infty,N]}$$

- ϕ is **bi-closing** if it is both left and right closing.
Let X and Y be \mathbb{Z}-shift spaces.

Theorem (Nasu)

Let X and Y be irreducible SFTs and $\phi : X \to Y$ a finite-to-one factor code. Then the following are equivalent.

i) ϕ is open.

ii) ϕ is constant-to-one.

iii) ϕ is bi-closing.
Let X and Y be \mathbb{Z}-shift spaces.

Theorem (Nasu)

Let X and Y be irreducible SFTs and $\phi : X \to Y$ a finite-to-one factor code. Then the following are equivalent.

i) ϕ is open.

ii) ϕ is constant-to-one.

iii) ϕ is bi-closing.

Theorem (J.)

Let ϕ be a code from a shift space X to an irreducible shift space Y. Then any two of the following conditions imply the third:

i) ϕ is open.

ii) ϕ is constant-to-one.

iii) ϕ is bi-closing.
Let X and Y be \mathbb{Z}-shift spaces.

Theorem (Nasu)

Let X and Y be irreducible SFTs and $\phi : X \to Y$ a finite-to-one factor code. Then the following are equivalent.

i) ϕ is open.

ii) ϕ is constant-to-one.

iii) ϕ is bi-closing.

Theorem (J.)

Let ϕ be a code from a shift space X to an irreducible sofic shift Y. Then any two of the following conditions imply the third:

i) ϕ is open.

ii) ϕ is constant-to-one.

iii) ϕ is right closing (or left closing).

If these conditions hold, then X is a nonwandering sofic shift.
Fiber-separating codes

Let $\phi : X \to Y$ be a code between \mathbb{Z}^d-shift spaces, $d \in \mathbb{N}$.

Definition

ϕ is *fiber-separating* if there is an $\epsilon > 0$ such that whenever $y \in Y$ and $x, \bar{x} \in \phi^{-1}(y)$ with $x \neq \bar{x}$, we have $d(x, \bar{x}) \geq \epsilon$.

Observation

If $d = 1$, then a code is *fiber-separating* if and only if it is *bi-closing*.
Fiber-separating codes

Let $\phi : X \to Y$ be a code between \mathbb{Z}^d-shift spaces, $d \in \mathbb{N}$.

Definition

ϕ is fiber-separating if there is an $\epsilon > 0$ such that whenever $y \in Y$ and $x, \bar{x} \in \phi^{-1}(y)$ with $x \neq \bar{x}$, we have $d(x, \bar{x}) \geq \epsilon$.

Proposition 6

Let Y be a transitive shift space, i.e., Y contains a dense orbit.

1. If ϕ is finite-to-one open, then there is $d \in \mathbb{N}$ with $|\phi^{-1}(y)| = d$ for each transitive point y of Y, and $|\phi^{-1}(y)| \leq d$ for all $y \in Y$.

2. If ϕ is fiber-separating onto, then there is a $d \in \mathbb{N}$ with $|\phi^{-1}(y)| = d$ for each transitive point y of Y, and $|\phi^{-1}(y)| \geq d$ for all $y \in Y$.
Cross sections

Definitions
Let $\phi : X \rightarrow Y$ be a code.

- A continuous map $f : Y \rightarrow X$ is called a cross section of ϕ if $\phi(f(y)) = y$ for all y in Y.
- ϕ has disjoint covering cross sections if there exist finitely many cross sections $f_i : Y \rightarrow X$ such that $f_i(Y) \cap f_j(Y) = \emptyset$ for all $i \neq j$ and $\bigcup_i f_i(Y) = X$.

Theorems
- **(Hedlund)** An open code has a cross section.
- **(Nasu)** Let X and Y be irreducible \mathbb{Z}-SFTs and ϕ a finite-to-one factor code. Then ϕ is open if and only if it has a cross section.
Cross sections

Definitions
Let \(\phi : X \to Y \) be a code.

- A continuous map \(f : Y \to X \) is called a **cross section** of \(\phi \) if \(\phi(f(y)) = y \) for all \(y \) in \(Y \).

- \(\phi \) has **disjoint covering cross sections** if there exist finitely many cross sections \(f_i : Y \to X \) such that \(f_i(Y) \cap f_j(Y) = \emptyset \) for all \(i \neq j \) and \(\bigcup_i f_i(Y) = X \).

Proposition 7

Among the following properties of \(\phi \),

i) \(\phi \) has disjoint covering cross sections;

ii) For any \(x \in X \), there exists a cross section \(f \) with \(x \in f(X) \);

iii) \(\phi \) is open;

iv) \(\phi \) has a cross section,

The implications i) \(\Rightarrow \) ii) \(\Rightarrow \) iii) \(\Rightarrow \) iv) hold.
Let X and Y be \mathbb{Z}^d-shift spaces, $d \in \mathbb{N}$.

Proposition 8

For any constant-to-one fiber-separating code between shift spaces, disjoint covering cross sections can be found.
Let X and Y be \mathbb{Z}^d-shift spaces, $d \in \mathbb{N}$.

Proposition 8

For any constant-to-one fiber-separating code between shift spaces, disjoint covering cross sections can be found.

Theorem 9

Let ϕ be a code from a shift space X to a transitive shift space Y. Then any two of the following conditions imply the third:

1. \(\phi \) is open.
2. \(\phi \) is constant-to-one.
3. \(\phi \) is fiber-separating.*
Thank You!