Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity

Gwénaël Richomme, Kalle Saari, and Luca Zamboni

Seminar on Combinatorics on Words
6-9 April 2010, Marseille, France
Outline

1. Abelian Complexity: Definitions and Examples
2. Bounded Abelian Complexity
3. Avoiding Abelian Powers
4. Avoiding Abelian Powers at Some Position
5. Avoiding Abelian Powers at Infinitely Many Positions
6. Conclusion
Definitions

- If $x \in \{a_1, a_2, \ldots, a_n\}^*$, then its Parikh vector is
 \[\Psi(x) = (|x|_1, |x|_2, \ldots, |x|_n). \]

- Words x and y are Abelian equivalent if $\Psi(x) = \Psi(y)$.

- We identify Abelian equivalent words; thus 00111 and 01011 are the same.

- Abelian complexity (shortened to ab-complexity) of an infinite word x is the mapping $\rho_x^{ab} : \mathbb{N} \to \mathbb{N}$ such that $\rho_x^{ab}(n)$ gives the number of Abelian inequivalent factors of x of length n.
Examples

Example

If s is a Sturmian word, then

$$\rho_{ab}^s(n) = 2 \quad \text{for all } n \in \mathbb{N}.$$

Example

If TM is the Thue–Morse word, then

$$\rho_{ab}^{TM}(n) = \begin{cases}
2 & \text{if } n \text{ is odd}, \\
3 & \text{if } n \text{ is even}.
\end{cases}$$

In fact, the Thue–Morse subshift is characterized by its factor and Abelian complexity together.
Example

Let $k \geq 1$ and $x_k = 123 \cdots k^\omega$. Then $\rho_{x_k}^{ab}(n) = k$ for all $n \in \mathbb{N}$.

This is why we usually focus on recurrent words.

Theorem (Richomme, S., Zamboni)

There exist uniformly recurrent words w with $\rho_{w}^{ab}(n) = 3$.

Theorem (Currie and Rampersad)

For any $k \geq 4$, there are no recurrent words w with $\rho_{w}^{ab}(n) = k$.
Bounded Ab-Complexity and Balance

An infinite word \(x \) is \(C \)-balanced, where \(C > 0 \), if for all \(u, v \in \text{Fact}(x) \) and \(b \in \text{Alph}(x) \), we have

\[|u|_b - |v|_b | \leq C. \]

Lemma

The ab-complexity of \(x \) is bounded iff \(x \) is \(C \)-bounded for some \(C \).

Proof.

- If ab-complexity is bounded by \(M \), then \(x \) is \((M - 1)\)-balanced.
- If \(x \) is \(C \)-balanced, then the ab-complexity is bounded by \((C + 1)\#\text{Alph}(x)\).
Bounded Abelian Complexity

- Let $k \geq 1$, and let u_1, u_2, \ldots, u_k be Abelian equivalent words. The word $u_1 u_2 \cdots u_k$ is called an Abelian k-power.
- The upper density of a set $D \subset \mathbb{N}$ is the number

$$\limsup_{n \to \infty} \frac{\#(D \cap \{1, 2, \ldots, n\})}{n}.$$

Theorem (RSZ)

Let ω be an infinite word with bounded Abelian complexity. Let $I \subset \mathbb{N}$ have positive upper density, and let $k \geq 1$. Then some position of ω in I has an occurrence of an Abelian k-power.
Denote $r := \#\text{Alph}(\omega)$. Because of the bounded ab-complexity, ω is M-balanced for some M.

Lemma

There exist positive integers $\alpha_1, \alpha_2, \ldots, \alpha_r$ and N such that if

$$\sum_{i=1}^{r} c_i \alpha_i \equiv 0 \pmod{N}$$

for integers c_i with $|c_i| \leq M$ for $1 \leq i \leq r$, then $c_1 = \cdots = c_r = 0$.

We may assume that $\text{Alph}(\omega) = \{\alpha_1, \alpha_2, \ldots, \alpha_r\}$.

Outline of the proof I
Outline of the proof II

- Denote
 \[\omega[i,j] = \omega_i \ldots \omega_j \quad \text{and} \quad \sum \omega[i,j] = \omega_i + \cdots + \omega_j. \]

- Consider the function: \(\nu : \mathbb{N} \rightarrow \{0, 1, \ldots, N - 1\} \) defined by
 \[\nu(t) = \sum \omega[1,t] \quad \text{(mod } N). \]

- For some \(i \in \{0, 1, \ldots, N - 1\} \), the set \(D := \{ j - 1 \in I \mid \nu(j) = i \} \) has positive upper density.
Theorem (Szmerédi 1976)

If $D \subset \mathbb{N}$ has positive upper density, then it contains arbitrarily long arithmetic progressions.

Thus for every $k \geq 1$ there exist $t_0 \geq 1$ and $s \geq 1$ such that $t_0, t_0 + s, t_0 + 2s, \ldots, t_0 + ks \in D$ and

$$\nu(t_0) = \nu(t_0 + s) = \nu(t_0 + 2s) = \cdots = \nu(t_0 + ks). \quad (1)$$

For each $1 \leq j \leq k$, set $\omega[j] = \omega[t_0 + (j-1)s + 1, t_0 + js]$. Then

$$\sum \omega[j] \equiv 0 \pmod{N}. \quad (2)$$
Set $\Psi(\omega[j]) = (a_1^{[j]}, a_2^{[j]}, \ldots, a_r^{[j]})$. Then since

$$\sum_{i=1}^{r} a_i^{[j]} \alpha_i = \sum \omega^{[j]} \equiv 0 \pmod{N},$$

we have

$$\sum_{i=1}^{r} (a_i^{[j]} - a_i^{[1]}) \alpha_i \equiv 0 \pmod{N}.$$

As $|\omega^{[j]}| = |\omega^{[1]}|$ for each $1 \leq j \leq k$, we have $|a_i^{[j]} - a_i^{[1]}| \leq M$.

Thus $a_i^{[j]} - a_i^{[1]} = 0$ and hence $\Psi(\omega^{[j]}) = \Psi(\omega^{[1]})$ for every $1 \leq j \leq k$.

Thus the factor $\omega^{[1]}\omega^{[2]} \ldots \omega^{[k]}$ is an Abelian k-power of ω starting at position $t_0 + 1 \in I$.
Examples

Theorem (RSZ)

Every position of a Sturmian word has an occurrence of an Abelian k-power for all k.

Theorem (RSZ)

Every position of the Thue–Morse word has an occurrence of an Abelian k-power for all k.
Question

- What about nonempty sets of positions with zero density?
- This is trivial: take 0111....
- But a good example must be at least recurrent.
- The proper question is therefore:
- Does there exist a minimal binary word with bounded ab-complexity with
 1. a position where Abelian squares do not occur, or
 2. infinitely many positions where Abelian squares do not occur.
 (Any such set of positions must have upper density 0.)
Theorem (RSZ)

The subshift generated by any infinite binary overlap-free word contains a word that does not have an Abelian cube as a prefix.

Outline of the proof.

- If an Abelian cube occurs in TM at position $2^{n+2} - 1$, then its period is at least 2^{n+1}.

- Thus the subshift of TM contains a word with no Abelian cubes as a prefix.

- The general case follows because any infinite binary overlap-free word contains all factors of TM. (Due to Allouche, Currie, and Shallit 1998.)
Avoiding Ab-squares with a binary fixed point

Theorem (RSZ)

The fixed point w of the morphism $\tau: \{0, 1\}^ \rightarrow \{0, 1\}^*$ defined by $0 \mapsto 011110$ and $1 \mapsto 01110$ is minimal, has bounded ab-complexity, and avoids Abelian squares in the prefix.*

Proof.

- w is minimal because the morphism is primitive.
- The morphism is of Pisot type. Thus w is C-balanced for some C (by Adamczewski 2003), and thus has bounded ab-complexity.
- It is easy to check that w has no Abelian squares as a prefix.
Theorem (RSZ)

There exists a uniformly recurrent infinite word with bounded ab-complexity and infinitely many positions in which Abelian squares do not occur.

- Let h be the uniform morphism defined by
 \[h(0) = 01011111 \quad \text{and} \quad h(1) = 11101111 \]

- Let $f : \{0,1\}^* \rightarrow \{0,1\}^*$ be the morphism defined by
 \[f(0) = 00011 \quad \text{and} \quad f(1) = 01100. \]

- We prove the claim for the word $f(h^\omega(0))$.
The morphism $h: 0 \mapsto 01011111, 1 \mapsto 11101111$ is primitive.
Therefore $h^\omega(0)$ is uniformly recurrent.
Consequently, so is $f(h^\omega(0))$.

$f(h^\omega(0))$ is uniformly recurrent
$f(h^\omega(0))$ has bounded ab-complexity

Theorem (RSZ)

A morphism $f : A \to B$ maps all words to words with bounded ab-complexity if and only if there exists $\vec{v} \in \mathbb{N}^B$ such that, for all letters $a \in A$, there exists an integer K_a such that $\Psi(f(a)) = K_a \vec{v}$.

- The morphism $f : 0 \mapsto 00011, 1 \mapsto 01100$ satisfies

 $$\Psi(f(0)) = \Psi(f(1)) = (3, 2).$$

- Therefore $f(h^\omega(0))$ has bounded ab-complexity.
Two lemmas on h and f

Lemma

The word $h^\omega(0)$ does not have a prefix of the form $h^n(01)0xy0$ with $|x| = |y|$.

Lemma

Let w be an infinite binary word. Suppose that $f(w)$ begins in a word of the form $0001uv$, where u and v are nonempty Abelian equivalent words. Then w has a prefix of the form $0xy0$ for some words x and y with $|x| = |y|$.
Let w_n be given by $h^\omega(0) = h^n(01)w_n$

Then w_n does not begin with $0x0y0$ with $|x| = |y|$.

Thus $f(w_n)$ does not begin with $0001uv$ with u and v Abelian equivalent.

Since $f(h^\omega(0)) = f(h^n(01))f(w_n)$ for all $n \geq 1$, the word has infinitely many positions without Abelian squares.
Conclusion

- The set of positions in $f(h^\omega(0))$ in which no Abelian squares occurs have upper density 0.
- Such set cannot have positive upper density.
- Hence our result is optimal.

Problem

Does there exist any infinite binary words avoiding Abelian squares at a set of positions with positive upper density.