The prefix normal form of a binary word

Ferdinando Cicalese ∗ Gabriele Fici † Zsuzsanna Lipták ‡

Let \(w = w_1w_2\cdots w_n \) be a word over the alphabet \(\Sigma = \{a, b\} \). For every factor \(u \) of \(w \) we define the Parikh vector of \(u \) as the vector \(p_u = (|u|_a, |u|_b) \in \mathbb{N}^2 \) counting the number of occurrences of the letters of \(\Sigma \) in \(u \).

For any \(1 \leq i \leq n \) one can define
\[
f_i(w) = \max\{|u|_a : u \text{ a factor of } w \text{ of length } i\},
\]
that is the maximum number of \(a \)'s occurring in a factor of \(w \) of length \(i \).

\textbf{Definition 1.} A finite word \(w = w_1w_2\cdots w_n \) over the alphabet \(\Sigma = \{a, b\} \) is in Prefix Normal Form if for every \(1 \leq i \leq n \) one has \(|w_1w_2\cdots w_i|_a = f_i(w) \).

That is, a word \(w \) is in PNF if every factor of \(w \) contains no more \(a \)'s than the prefix of \(w \) of the same length.

\textbf{Example 1.} The word \(aabbaab \) is in PNF, while the word \(w = aabbaaba \) is not.

We state the following problem.

\textbf{Problem 1.} Let \(w \) be a word over \(\Sigma \) of length \(n > 0 \). Test whether \(w \) is in PNF.

We present a geometrical construction allowing to solve Problem 1 in time \(O(n^2) \). First draw \(w \) over a 2-dimensional grid in which each \(a \) is represented by an increasing segment and each \(b \) is represented by a decreasing segment. Then draw in the same grid, starting from the same initial point, all the suffixes of \(w \). The word \(w \) is then in PNF if and only if all the suffixes of \(w \) stay below \(w \).

![Figure 1: A binary word represented on a grid.](image-url)