Theorem. There is no injective continuous map $S^1 \to \mathbb{R}^2$.

Configuration space: $\Omega = S^1 \times S^1 \setminus \{(x, x) \mid x \in S^1\}$

Test map: $\tau: \Omega \to \mathbb{R}^2, \ (x, y) \mapsto (f(x), f(y))$

Test space: $T = \{(a, b) \mid a = b \in \mathbb{R}\} \subset \mathbb{R}^2$

If there is a continuous injective map $S^1 \to \mathbb{R}$, then there is a \mathbb{Z}_2-map $\Omega \to \mathbb{R}^2 \setminus T \cong S^0$.

Every continuous map $\Omega \to S^0$ must be constant. Since \mathbb{Z}_2-action on S^0 is free, and Ω is connected, there is no \mathbb{Z}_2-map $\Omega \to S^0$.

Theorem. For any continuous map $f: \Delta^{2n-k-2} \to \mathbb{R}$, there are n-wisely disjoint faces of the simplex Δ^{2n-k-2} whose images have a common point.

- $\Delta^{2n-k-2} = \text{conv} \{ \mathbf{v}_0, \ldots, \mathbf{v}_{2n-k-3} \}$
- There is a linear ordering $f(\mathbf{v}_0) < f(\mathbf{v}_1) < \ldots < f(\mathbf{v}_{2n-2}) < f(\mathbf{v}_{2n-1})$
- Required n-wisely disjoint faces are: $[v_0, v_{2n-1}, v_{2n-2}, \ldots, v_{2n-k-1}, v_{2n-k}], [v_1, v_{2n-2}, \ldots, v_{2n-k-1}, v_{2n-k}]$

Ham Sandwich Theorem. Let μ_1, \ldots, μ_d be finite Borel measures on \mathbb{R}^d, such that the measure of every hyperplane is zero. There exists a hyperplane $H \subset \mathbb{R}^d$ such that $\mu_i(H^+) = \mu_i(H^-)$ for every $i \in \{1, \ldots, d\}$.

Configuration space: $\Omega = S^d$, oriented “affine hyperplanes in \mathbb{R}^d”

Test map: $\tau: S^d \to \mathbb{R}^d, \ H \mapsto (\mu_i(H^+) - \mu_i(H^-))_{i = 1, \ldots, d}$

Test space: $T = \{(0, \ldots, 0)\} \subset \mathbb{R}^d$

Acting group: \mathbb{Z}_2 acts antipodally on S^d and \mathbb{R}^d, and τ is a \mathbb{Z}_2-map.

If there is a \mathbb{Z}_2-map $S^d \to \mathbb{R}^d \setminus T \to S^d$, then there is an equi-parting hyperplane, where the action is antipodal on both spheres.
Small Kuratowski Theorem \(K_{3,3} \) is not a planar graph.

\[K^{*N}_{\Delta(z)} \overset{\text{def}}{=} \{ F_1 \cup \ldots \cup F_n \in K^{n+1} \mid F_1, \ldots, F_n \text{ are pairwise disjoint} \} \]

Example: \([2]^{*2}_{\Delta(z)} \)

Example: \([3]^{*2}_{\Delta(z)} \approx S^1 \)

Example: \(I^{*2}_{\Delta(z)} \approx S^1 \) where \(I \) is interval.

Lemma \((K \times I)^{*p}_{\Delta(z)} \overset{\text{def}}{=} K^{*p}_{\Delta(z)} \times I^{*p}_{\Delta(z)}\)

Small Kuratowski Theorem There is no injective map \([3]^{*2} \rightarrow IR^2\).

Configuration space: \(S = ([3]^{*2})^{*2}_{\Delta(z)} \equiv ([3]^{*2})^{*2}_{\Delta(\infty)} \equiv (S^1)^{*2} \approx S^3 \)

Test map: \(\tau: S \rightarrow IR^3 \)

\(\lambda x + (1-\lambda) y \in F \cup G \) where \(F \cap G = \emptyset \) \(\tau \rightarrow (\lambda, \lambda f(x)) \oplus (1-\lambda, (1-\lambda) f(y)) \)

Test space: \(T = \{ (a, b, c) + (a, b, c) \mid (a, b, c) \in IR^3 \} \)

Acting group: \(\mathbb{Z}_2 \) permutes copies and \(\tau \) is a \(\mathbb{Z}_2 \)-map

If there is an injective map \([3]^{*2} \rightarrow IR^2\), then there is a \(\mathbb{Z}_2 \)-map \(S^3 \rightarrow IR^3 \rightarrow IR^3 \rightarrow S^2 \).

Sperber Theorem (1966) \(d, k \geq 1 \) and \(N = (d+1)(k-1) \)

For every affine map \(\Lambda N \rightarrow IR^d \), there exist \(k \) disjoint faces \(F_1, \ldots, F_k \) of \(\Lambda N \) such that \(\bigcap_{i=1}^{k} f(F_i) \neq \emptyset \)

Remark: \(N \) optimal; \(d = 2, k = 4, N = 3 \cdot 3 = 9 \)
Topological Sperner Conjecture For every continuous map $f : \Delta^N \to \mathbb{R}^d$, there exist k disjoint faces F_1, \ldots, F_k of Δ^N such that

$$\bigcap_{i=1}^k f(F_i) \neq \emptyset.$$

- $d = 1$ and any k: we already proved
- any d and k prime: Bárány, Shlosman, Szücs, 1981
- any d and k prime power: Özaydin, 1987

Configuration space: $S_1 = (\Delta^N)^{(N-1)} = (\Delta^N)^{(N-1)}\Delta_1 = (\Delta^N)^{(N-1)}\Delta_1 = \mathbb{R}^d \times \mathbb{R}^{N-1}$

Since \mathbb{R}^d is $(d+1)$-connected and $\text{Conn } X \times Y = \text{Conn } X + \text{Conn } Y + 2$, then

S_1 is $(N-1)$-connected.

Test map:

$$\tau : S_1 \to (\mathbb{R}^{d+1}) \times \mathbb{R}^k$$

$$A_1, x_1 + \ldots + A_k x_k \in F_1, \ldots, F_k \mapsto (\alpha_1, \alpha_2 + x_1, \ldots, \alpha_k + x_k)$$

F_1, \ldots, F_k pairwise disjoint; $\sum A_i = 1$

Test space:

$$T = \{(x_1, \ldots, x_k) \in (\mathbb{R}^{d+1}) \times \mathbb{R}^k | x_1 = \ldots = x_k \}$$

Acting group: Symmetric group S_k permuting copies of join and direct sum

τ is an S_k-map

If there is a continuous map $f : \Delta^N \to \mathbb{R}^d$ that fails Sperner conjecture, then there exists an S_k-map

$$S_1 = [k]^{(N-1)} \to \mathbb{R}^{(d+1)k} \to T \to S^{N-1}$$

Gold's Theorem Let G be a finite group with $|G| > 1$. Let X be an n-connected G-space, and Y be a free G-space of dimension at most n. Then there is no G-map $X \to Y$.

Equiariant Methods in Geometric Combinatorics

"Paul V. N. Blagojevic" page 3.
Proof of topological Eberlein theorem for \(k \) prime: If \(k \) is a prime, then cyclic permutation induces a subgroup \(\mathbb{Z}_k \subseteq S_k \) that acts freely on \(\Omega \) and on \(S^{n-1} \).

\[\mathbb{Z}_k \text{ acts freely on } \Omega \text{ and on } S^{n-1} \]

- If \(k \) is not a prime then there is no subgroup of \(S_k \) that acts freely on \(S^{n-1} \).
- \(k \) divides \(S^{n-1} \), then there is an elementary abelian subgroup \(\mathbb{Z}_k \) that acts fixed point free on \(S^{n-1} \).

Next objective: Prove that there is no \((\mathbb{Z}_p^n) \)-map \(\Omega \rightarrow S^{n-1} \).

Group cohomology: \(G \) a finite group

\[E_G = \text{ a free contractible } G\text{-complex} \]

\[= \bigoplus_{i \geq 0} \mathbb{Z} \cdot t_i g_i \quad \text{where } g_i \in G, t_i \in \mathbb{Z}, \text{ only finitely many } t_i \neq 0, \sum t_i = 1. \]

- \(G \)-action: \((\sum t_i g_i) \cdot g = \sum t_i (g g_i) \)
- Topology: \(t_i : E_G \rightarrow [0,1] \) and \(g_i : t_i^{-1} (e,1) \rightarrow G \) continuous maps
- Functoriality: \(f : H \rightarrow G \) group homomorphism induces a continuous map \(BH \rightarrow BG \)

\[BG \overset{def}{=} E_G/G \quad \text{classifying space of group } G \]

Cohomology groups of \(G \) with coefficients in \(\mathbb{Z}[G] \)-module

\[H^*(G,M) \overset{def}{=} H^*(BG,M) \quad \text{singular (or cellular) cohomology with local coefficients:} \]

The local coefficient system is derived from the given action of \(G = \pi_1(BG) \) on \(M \).

\[= \text{ cohomology group of the cochain complex } \text{Hom}_{\mathbb{Z}[G]}(S^*,E_G,M) \].
A ring with trivial G-action \(\Rightarrow \) $\text{H}^*(G, R)$ has a natural graded multiplicative structure

A field with trivial G-action \(\Rightarrow \text{H}^*(G, F_p)$ has an action of the Steenrod algebra \mathcal{A}_p

If R is a ring with trivial G-action, then res^G_H is a map of graded R-algebras.

Equivariant Cohomology

Given a finite group G, a G-space X, and a ring R with trivial G-action, we define the equivariant cohomology of X as follows:

\[H^*_G(X, R) \overset{def}{=} H^*(EG \times_G X) \]

Equivariant Cohomology

Borel construction fibration:

\[X \rightarrow EG \times X \quad \text{mod out} \quad \text{G-action} \rightarrow \quad EG \rightarrow \text{mod out} \quad \text{G-action} \rightarrow \quad EG/G = BG \]

- $H^*_G(pt, R) = H^*(BG; R) = H^*(G; R)$
- $H^*_G(X, R)$ is a module over $H^*_G(pt, R)$; the module structure is induced by projection $\pi : X \rightarrow pt; i.e.

\[\Pi^* : H^*_G(pt, R) \rightarrow H^*_G(X, R) \]

- If X is a free G-space $\Rightarrow X/G = EG \times_G X \Rightarrow H^*_G(X; R) \cong H^*(X/G; R)$

- **Serre spectral sequence of Borel construction fibration**

\[
\begin{align*}
E_2^{p,q} & = H^p(BG, H^q(X; R)) \\
& \cong H^p(G, H^q(X; R)) \\
\text{if } G \text{ is finite } & \Rightarrow H^*_G(X, R)
\end{align*}
\]

Converging to the appropriate filtered graded group $Gr(H^*_G(X, R))$ associated with $H^*_G(X, R)$. [100]
- If \(f: X \to Y \) is a \(G \)-map, then there is a morphism of fibrations

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow \mathbb{E}_G \times_G X & & \downarrow \mathbb{E}_G \times_G Y \\
\mathbb{B}G & \xrightarrow{id} & \mathbb{B}G
\end{array}
\]

which induces a morphism of equivariant cohomologies associated Serre spectral sequences.

- \(K \leq G, X \) a \(G \)-space, there is a morphism of fibrations

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow \mathbb{E}_G \times_G X & & \downarrow \mathbb{E}_G \times_G X \\
\mathbb{B}G = \mathbb{E}_G / G & \xrightarrow{Bf} & \mathbb{B}K = \mathbb{E}_G / K
\end{array}
\]

\[\text{Lyndon-Hochschild-Serre spectral sequence } H \circ G, G/H \text{ acts freely on } (EG)/H = BH\]

and associated Borel construction is

\[
(EG)/H \xrightarrow{\mathbb{B}H} \mathbb{E}(G/H) \times_{G/H} (EG)/H \cong (EG/H)/G/H = BG
\]

The Serre spectral sequence of this Borel construction fibration is Lyndon-Hochschild-Serre spectral sequence and \(E_2 \)-term is given by

\[
E_{2}^{pq} = H^{p}(G/H, H^{q}(H, M)) \Rightarrow H^{p+q}(G, M)
\]

Local coefficients determined by the action of \(G/H \) on \(H^{q}(H, M) \).

Theorem \(\text{Let } G = (S^1)^n \) or \(G = \mathbb{Z}_p^n \), and \(X \) be a compact \(G \)-space \(p \) is a prime

\[X^G \neq \emptyset \iff \prod_{p: H^n_p(pt, R)} \to H^n_G(X, R) \text{ is monomorphism} \]

set of fixed points where \(R = \begin{cases} \mathbb{Q} & \text{for } G = (S^1)^n \\ \mathbb{F}_p & \text{for } G = (\mathbb{Z}_p)^n \end{cases} \)
Proof of topological Freudenthal theorem for a prime power: We prove that there is no \mathbb{Z}_p^n-map

$$\Omega = [k]^{*(N + 1)} \rightarrow S^{N-1}$$

Assume that $f: [k]^{*(N + 1)} \rightarrow S^{N-1}$ is a \mathbb{Z}_p^n-map. Then there is an induced map in the equivariant cohomology and between Serre spectral sequences of Borel constructions:

$$f^*: H^*_{\mathbb{Z}_p^n}(S^{N-1}; F_p) \rightarrow H^*_{\mathbb{Z}_p^n}([k]^{*(N + 1)}; F_p)$$

$$E_{l, 0}^*(f): (E')_{l,*} \rightarrow E_{l,*}^*$$

Here

$$E_{l,*}^* = H^*(\mathbb{Z}_p^n; H^*([k]^{*(N + 1)}; F_p))$$
$$E_{l,*} = H^*(\mathbb{Z}_p^n; H^*(S^{N-1}; F_p))$$

and $E_{l,*}^*; H^*(\mathbb{Z}_p^n; F_p) \rightarrow H^*(\mathbb{Z}_p^n; F_p)$ is identity map!

\[Z_p^n \text{ acts trivially on } H^*(S^{N-1}; F_p) \]

\[(E')_{l,*} = H^*(\mathbb{Z}_p^n; F_p) \otimes H^*(S^{N-1}; F_p) \]

\mathbb{Z}_p^n acts fixed point free on S^{N-1}

$$\text{Th. } \Rightarrow \tilde{H}^*: H^*_p(pt; F_p) \rightarrow H^*_p(S^{N-1}; F_p) \text{ is not a monomorphism}$$

$$\Rightarrow \text{Some } s_*(E')_* \rightarrow (E')_* \text{ is not zero}$$

$$\Rightarrow d_N: (E')_N \rightarrow (E')_N \text{ is not zero}$$

$$\Rightarrow d_N: (E')_N^{(N-1)} \rightarrow (E')_N^{(N-1)}$$

$$\Rightarrow \text{For } 1 \in (E')_N^{(N-1)}, d_N(1) = \infty \neq 0$$

Thus, $E_{N, 0}^*(f)(x) = \infty \neq 0$ and $E_{N, 0}^{(N)}(f)(0) = x \neq 0$. Contradiction!
Colored Tverberg problems

Báróny, Füredi, Lovász: On number of halving planes, 1990
Báróny, Karman: A colored version of Tverberg's theorem, 1992

Colored Tverberg problem: Determine the least number \(N(k,d)\) such that, for every collection
\[X = C_0 \cup \ldots \cup C_d \subset \mathbb{R}^d\]
with \(|X| > N(k,d)\) and \(|C_i| > k\), there exist \(r\) disjoint
subcollections \(F_1, \ldots, F_r\) of \(X\) satisfying:
\[|F_i \cap C_j| = 1\] for every \(i \in \{1, \ldots, k\}\), \(j \in \{0, \ldots, d\}\) and \(\bigcap_{i=1}^{k} \text{conv } F_i \neq \emptyset\).

- \(N(k,1) = 2k\)
- \(N(k,2) = 3k\)
- \(N(k,3) = 2(k+1)\) \(\quad\) \(\text{Lovász}\)

Báróny--Karman conjecture \(N(k,d) = k(d+k)\)

Vrečica, Zivaljević: The colored Tverberg's problem of injective functions, 1992
Colored Tverberg problem*: Determine the least number \(t(d,k)\) such that, for every
collection \(X = C_0 \cup \ldots \cup C_d \subset \mathbb{R}^d\) with \(|C_i| > t(d,k)\), there are \(r\) disjoint subcollections
\(F_1, \ldots, F_r\) of \(X\) satisfying
\[|F_i \cap C_j| = 1\] for every \(i \in \{1, \ldots, k\}\), \(j \in \{0, \ldots, d\}\) and \(\bigcap_{i=1}^{k} \text{conv } F_i \neq \emptyset\).

- for \(k\) prime \(t(d,k) \leq 2k-1\) \(\quad\) Vrečica, Zivaljević 1992
- for any \(k\) \(t(d,k) \leq 4k-3\)
- for \(k\) prime power \(t(d,k) \leq 2k-1\) \(\quad\) Zivaljević 1998

Blagojević, Matschke, Ziegler: Optimal bounds for a colorful Tverberg--Vrečica type problem

Optimal colorful Tverberg's theorem: Let \(k > 1\) and \(N = (dk)(k-1)\). Let \(\Delta^n\)
be a \(N\)-dimensional simplex with a partition of the vertices into parts ("colored classes")
\(C = C_0 \cup \ldots \cup C_d\) with \(|C_i| > k-1\) for all \(i\). Then for every continuous map \(f: \Delta^n \to \mathbb{R}^d\) there
are \(k\) disjoint facets \(F_1, \ldots, F_k\) of \(\Delta^n\) such that
\[|F_i \cap C_j| = 1\] for every \(i \in \{1, \ldots, k\}\), \(j \in \{0, \ldots, m\}\) and \(\bigcap_{i=1}^{k} f(F_i) \neq \emptyset\).

Remarks: \(|C_i| < k-1 \Rightarrow\) there are at least \(d+1\) non-empty colored classes
- Theorem is tight; counter example \(|C_0| = k, |C_1| = \ldots = |C_m|\)
Corollary [Bárány - Larman Conjecture] If \(k+1 \) is a prime, then
\[
e(d, k) = \#(d, k) = k
\]

Corollary [Optimal Bound] For all \(d \geq 1 \) and \(r \geq 2 \)
\[
r \leq \#(d, r) \leq \#(d, r) \leq 2r-2
\]

Corollary [Optimal Bounds in Computational Geometry] New bounds for:
- The number of hyperplanes that bisect the set \(S \) and are spanned by the elements of the set \(S \)
- The constant \(c_d \) in the second selection lemma
- The number of halving facets of an \(n \) element set \(X \) \(\leq 8R^d \)