
Montgomery Reduction Algorithm for Modular Multiplication Using
Low-Weight Polynomial Form Integers∗

Jaewook Chung†and M. Anwar Hasan
jaewook.chung@gmail.com and ahasan@secure.uwaterloo.ca

Department of Electrical and Computer Engineering,
University of Waterloo, Ontario, Canada

Abstract

In this paper, we extend a recent piece of work on
low-weight polynomial form integers (LWPFIs). We
present a new coefficient reduction algorithm based on
the Montgomery reduction algorithm and provide its
detailed analysis results. We give a condition for elim-
inating the final subtractions at the end of our Mont-
gomery reduction algorithm adapted to perform the co-
efficient reduction. Our experimental results show that
a new coefficient reduction algorithm is indeed more
efficient than the one presented in [1].
Keywords: More generalized Mersenne numbers,
Low-weight polynomial form integers, adapted
modular number system, polynomial modular num-
ber system, Montgomery reduction algorithm

1. Introduction

In [1], Low-weight polynomial form integers (LW-
PFIs) are defined as integers that can be represented
in a degree-l monic polynomial form, f(t) = tl +
fl−1t

l−1 + · · · + f1t + f0, where |fi| ≤ 1. Modu-
lar multiplication using an LWPFI is performed in two
phases. First, integers represented in polynomial form
are multiplied in the polynomial ring Z[t]/f(t). Then
the coefficients of the resulting polynomial are reduced.
In [1], the coefficient reduction algorithms are based on
a division algorithm derived from the Barrett reduction
algorithm. In this paper, we present a new coefficient
reduction algorithm based on the Montgomery reduc-
tion algorithm. Moreover, we further generalize LW-
PFIs by removing the restriction on fi’s. We analyze

∗This work was supported in part by Natural Science and Engi-
neering Research Council of Canada (NSERC) discovery and strate-
gic project grants awarded to Dr. Hasan.

†Jaewook Chung’s research was funded by Bell 125th Anniver-
sary Scholarship.

the new coefficient reduction algorithm in this general
framework.

The remainder of this article is organized as follows.
After a brief discussion on related work in Section 2,
we present the definition of our extended LWPFIs in
Section 3. Then, in Section 4, we present our new coef-
ficient reduction method based on the Montgomery re-
duction algorithm. We give detailed analysis and con-
sider some interesting special cases. We show a con-
dition on parameters for which our new coefficient re-
duction algorithm can be performed without any final
subtractions. In Section 5, we discuss how the perfor-
mance of our coefficient reduction algorithm is com-
pared to that of the Montgomery reduction algorithm,
and show experiemental results. In Section 6, we con-
sider the applications of LWPFIs and conclusions fol-
low in 7.

2. Related Work

LWPFIs have been first introduced in [2] and the re-
fined results are shown in [1]. In both [2] and [1], inte-
gers are represented in polynomial Z[t]/f(t), where its
coefficients are approximately the size of t. Bajard, Im-
bert and Plantard have proposed the Adapted Modular
Number System (AMNS) [3] and the Polynomial Mod-
ular Number Systems (PMNS) [4]. Both AMNS and
PMNS are similar to number systems using LWPFIs
in that they use low-weight polynomial form moduli.
However, integers are represented quite differently in
such number systems. In AMNS, arithmetic operations
are efficient for careful choice of the parameters. It is
shown in [3] that the modular multiplication in AMNS
is more efficient than the usual modular multiplication
of integers using the Montgomery reduction algorithm.
The main drawback of PMNS is that it requires a large
look-up table for coefficient reduction.

1



3. Extended Definition of Low-Weight
Polynomial Form Integers

In [1], LWPFIs are defined as integers expressed in
low-weight, monic polynomial form: p = f(t) = tl +
fl−1t

l−1 + · · · + f1t+ f0, where l ≥ 2, fi ∈ {0,±1}
and t > 2(22l+1 − 1)(2l − 1).

Here we loosen the restriction on fi’s so that |fi| ≤
ξ for some small positive integer ξ < t. The condition
t > 2(22l+1 − 1)(2l − 1) ≈ 23l+2 is applied in [1] due
to the use of coefficient reduction based on the Barrett
division algorithm. However, such a condition is not
needed in our improved coefficient reduction presented
here. In this paper, we work in this general framework
and narrow down conditions on parameters that allow
efficient implementation of modular arithmetic modulo
an LWPFI.

Definition 1 (LWPFI Redefined) For a degree-l,
monic polynomial f(t) = tl+fl−1t

l−1+· · ·+f1t+f0,
where t is a positive integer and |fi| ≤ ξ for some
small positive integer ξ < t, p = f(t) is a low-weight
polynomial form integer.

In modular arithmetic based on LWPFI moduli, we
express elements of Zp as polynomials in Z[t]/f(t).
Such a representation always exists for any element in
Zp using coefficients at most (t+ ξ)/2 in magnitude.

Proposition 1 For any integer x ∈ Zp, there exists a
degree-(l − 1) polynomial x(t) =

∑l−1
i=0 xit

i such that
x ≡ x(t) (mod p) and |xi| ≤ ψ, if ψ ≥ (t+ ξ)/2.

Proof: Let pmax = tl + ξtl−1 + · · · + ξt + ξ.
Then pmax is the maximum possible LWPFI of the
form f(t) = tl +

∑l−1
i=0 fit

i, where |fi| ≤ ξ. Let
x(t) =

∑l−1
i=0 xit

i. If max (x(t))−min (x(t)) ≥ pmax

holds, then x(t) can represent any element in Zf(t). It
is straightforward that

max (x(t)) =
l−1∑
i=0

ψti = −min (x(t)).

It follows that

max (x(t))−min (x(t)) ≥ pmax

⇐⇒ (2ψ − ξ) · t
l − 1
t− 1

≥ tl.

It is easy to see that 2ψ − ξ = t − 1 does not satisfy
the above inequality, but 2ψ − ξ ≥ t does. Therefore
ψ ≥ (t+ ξ)/2.

We let ψmin = (t + ξ)/2. However, in practice, the
magnitudes of the coefficients do not have to be limited

to ψmin. To find a polynomial that corresponds to a
given integer, Algorithm 1 can be used. The resulting
polynomial has coefficients that are at most (t/2+ξ) in
magnitude. Since t/2 + ξ > ψmin, Algorithm 1 results
in a slightly redundant representation.

Algorithm 1 Conversion to Polynomial Form

Require: an integer 0 ≤ x < p, where p = f(t) =
tl + fl−1t

l−1 + · · ·+ f1t+ f0.
Ensure: a polynomial x(t) =

∑l−1
i=0 xit

i, such that
x ≡ x(t) (mod p), where |xi| ≤ t/2 + ξ.

1: c−1 ← x.
2: for i from 0 to l − 1 do
3: Find ci and xi such that ci−1 = cit+ xi, where

−t/2 ≤ xi < t/2.
4: end for
5: for i from 0 to l − 1 do
6: xi ← xi − fi · cl−1. (Note: |cl−1| ≤ 1 )
7: end for
8: return x(t) =

∑l−1
i=0 xit

i.

4. Modular Multiplication Using LWPFI
moduli

In this section, we present an efficient modular mul-
tiplication scheme using LWPFI moduli. The modular
multiplication using LWPFI moduli is performed in the
following steps.

1. POLY-MULT: ẑ(t) = x(t) · y(t).
2. POLY-REDC: z′(t) = ẑ(t) mod f(t).

3. COEFF-REDC: coefficient reduction of z′(t).

The above modular multiplication scheme is called the
LWPFI modular multiplication. POLY-MULT step can
be performed by at most l2 multiplications of coef-
ficients using the schoolbook method. Sub-quadratic
multiplication algorithms may be applied to achieve
better performance [5, 6, 7, 8]. POLY-REDC step re-
quires at most (l − 1)τ constant multiplications by in-
tegers at most ξ in magnitude, where τ is the num-
ber of non-zero fi’s. The range of fi we use here
is larger than that in [1]. Note that, due to this ex-
tended range for fi’s, our POLY-REDC step is poten-
tially slower than that in [1]. However, we will not go
over the details on POLY-REDC and focus only on the
establishment of a new coefficient reduction algorithm
based on the Montgomery reduction algorithm. For
fixed f(t), one may consider combining POLY-MULT
and POLY-REDC steps for better performance as we
propose in [1].

2



Suppose that the coefficients of x(t) and y(t) are
at most ψ in magnitude. It easily follows that the re-
sult of POLY-REDC has coefficients that are at most
ψ2((ξ + 1)l − 1)/ξ in magnitude as shown in Proposi-
tion 2. Throughout this paper, we will use λ to denote
((ξ + 1)l − 1)/ξ.

Proposition 2 |z′i| ≤ λψ2.

Proof:
Let x(t) and y(t) be the polynomials whose co-

efficients are at most ψ in magnitude. Let ẑ(t) =
(ẑ2l−2, . . . , ẑ1, ẑ0) = x(t) · y(t). It follows that |ẑi| ≤
(i+1)ψ2 for i = 0, . . . , l−1 and |ẑi| ≤ (2l−1− i)ψ2

for i = l, . . . , 2l − 2. The magnitudes of coeffi-
cients in z′(t) = ẑ(t) mod f(t) are maximum when
f(t) = tl+ξ

∑l−1
i=0 t

i and the maximum coefficient is at
z′l−1. In this case, it can be shown that max{(z′l−1)} =
Γl−1ψ

2, where Γi = 1 + (ξ + 1)Γi−1 for i > 0 and
Γ0 = 1. Note that Γi = ((ξ + 1)i+1 − 1)/ξ. Therefore
|z′i| ≤ ((ξ + 1)l − 1)/ξ · ψ2.

In Section 4.6, we discuss how the value ψ is related
to other parameters, t, ξ and l. In [1], ψ = t+2l+2−2 is
fixed and a division algorithm derived from the Barrett
reduction algorithm is used to perform COEFF-REDC
step. In this work, we apply the Montgomery reduc-
tion algorithm to perform COEFF-REDC step and de-
termine appropriate value ψ.

Note that the output of our COEFF-REDC based on
the Montgomery reduction algorithm (MONT-COEFF-
REDC) is different from the output from Algorithm 5
in [1]. In [1], Algorithm 5 computes z(t) such that
z(t) ≡ x(t) · y(t) (mod p). However, the MONT-
COEFF-REDC presented here outputs z(t) ≡ x(t) ·
y(t) · b−q (mod p), where b is the radix used to repre-
sent coefficients of polynomials in Z[t]/f(t) and q is a
positive integer. Consider two integers x̄(t) ≡ x(t) · bq
(mod p) and ȳ(t) ≡ y(t) · bq (mod p). These are
the transformation of x(t) and y(t) to the so-called the
Montgomery domain. The direct product of x̄(t) and
ȳ(t) in Z[t]/f(t) results in x̄(t)ȳ(t) ≡ x(t)y(t) · b2q

(mod p). Applying our new coefficient reduction algo-
rithm results in z̄(t) ≡ x(t)y(t) · bq (mod p), whose
coefficients are at most ψ. Note that the result is the
transformation of x(t)y(t) to the Montgomery domain.
We discuss the relationship between the value q and
other parameters of LWPFI in Section 4.6.

4.1. Montgomery Reduction Algorithm

The Montgomery algorithm performs modular re-
duction without using any division instruction of the
underlying processor [9]. Let m be a modulus, and T
be a positive integer which is to be reduced. We choose

an integer R such that R > m, gcd(m,R) = 1 and
0 ≤ T < mR.

Algorithm 2 Montgomery Algorithm for Integers Re-
duction (MAIR)
Require: integers T and m = (mk−1 · · ·m1m0)b,

such that R = bq, 0 ≤ T < mR and gcd(b,m) =
1.

Ensure: T · b−q mod m.
1: T0 ← T .
2: for i from 0 to q − 1 do
3: ui ← −m−1 · Ti mod b.
4: Ti+1 ← (Ti + ui ·m)/b.
5: end for
6: if Tq ≥ m then
7: Tq ← Tq −m.
8: end if
9: return Tq.

Algorithm 2 computes T · b−q mod m, given an in-
teger 0 ≤ T < mR, where R = bq. In each iteration
of Algorithm 2, a multiple of the modulus M is added
to Ti such that the least significant digit becomes zero.
Then, the division of Ti+1 by b can be performed sim-
ply by shifting all digits of T by one place to the right.
If q is chosen to be the digit length of T , then it can be
easily shown that Tq ∈ [0, 2m). Therefore, one final
subtraction by m may be required to output an integer
within [0,m). Some researchers have proposed ways
to eliminate this final subtraction [10, 11, 12]. Walter
proposed using q such that 2m < bq−1 [13]. Hachez
and Quisquater improved this condition to m < bq−1

for b = 2 [14]. Walter improved this condition again
to 4m < bq [15]. Line 3 of MAIR requires one single-
precision multiplication and line 4 requires k single-
precision multiplications, where k is the digit length of
m. Therefore, MAIR requires a total of q(k+1) single-
precision multiplications.

4.2. COEFF-REDC based on Mont-
gomery Reduction Algorithm

Here, we construct a new coefficient reduction algo-
rithm which is similar to Algorithm 2. Given an input
polynomial z′(t) of degree (l − 1), our new algorithm
computes a polynomial whose evaluation at t is con-
gruent to z′(t) · b−q mod p.

Before, we begin the description of a new coefficient
reduction algorithm, we clarify notations that we use in
this paper. Let �u and �v be the column vectors in Z

l such
that the following condition is satisfied:

[tl−1, . . . , t, 1] ·�u ≡ [tl−1, . . . , t, 1] ·�v (mod p). (1)

3



Then we say �u is congruent to �v modulo p and write as
�u ∼=p �v. We slightly abuse this notation and write as
�u ∼=b v for some integer v satisfying [tl−1, . . . , t, 1] ·
�u ≡ v (mod b). We also say �u is congruent to v mod-
ulo b, if �u ∼=b v. We use ‘≡’, to express element-
wise congruence relation, i.e., �u ≡ �v (mod b). In
“�u mod b”, modulo operation applies to each element
of �u.

Let x(t) = (xl−1, . . . , x1, x0)t be the result of
POLY-REDC step and b be the radix used for rep-
resenting xi’s. When performing multiplication in
GF (p)[t]/f(t), we can apply Algorithm 2 individually
to each coefficient to reduce them modulo p. However,
individual reduction of coefficients does not output cor-
rect results when working in Z[t]/f(t). To reduce co-
efficients in Z[t]/f(t), we must apply the Montgomery
reduction algorithm to all coefficients simultaneously.

The coefficient reduction is closely related to the
closest vector problem from lattice theory. A lat-
tice L is a discrete subgroup of R

l. Let �V =
{�v1, . . . , �vd−1, �vd} be a set of linearly independent vec-
tors in R

l. The lattice L = L(�V ) is a set of all integral
combination of �vi’s. The set �V is called the basis of the
lattice L(�V ). If d = l, L is called a full-rank lattice. If
�vi ∈ Z

l for all i, then L is called an integral lattice. For
our purpose, we assume that L is a full-rank, integral
lattice.

Suppose �vi
∼=p 0 (mod p) for all i = 1, . . . , l.

Then all the lattice points in L represent 0 modulo p.
Let �x be a vector whose elements are the coefficients
of x(t). Suppose �y ∈ L(�V ) is the closest lattice point
(with respect to L∞ norm) to �x, then �z = �x−�y belongs
to the fundamental domain of L. The coordinate val-
ues of �z forms a polynomial z(t) such that z(t) ≡ x(t)
(mod p) and it has only reasonably small coefficients.
However, closest vector problem is believed to be NP-
hard. There are polynomial time algorithms that give
approximate solutions [16], but they require arithmetic
using floating point or rational numbers and are too
cumbersome to use for our purposes.

Rather than solving the closest vector problem, we
search for �z′ such that �x ∼=p

�z′·bq (mod p) and the ele-
ments of �z′ are reasonably small. Below we show how
to find such a vector �z′ using a method similar to the
Montgomery reduction algorithm. This approach re-
quires only simple integer arithmetic and enjoys good
features of the Montgomery reduction algorithm for in-
tegers.

Algorithm 3 shows our Montgomery reduction al-
gorithm adapted to perform COEFF-REDC step. Note
that we have used �x(i)

q to denote the element of �xq at
the i-th row in Algorithm 3. Moreover, F is an l × l
integral matrix such that the following holds for any

column vectors �x and �u ∈ Z
l:

�x+ F · �u ∼=p �x. (2)

Algorithm 3 MONT-COEFF-REDC
Require: x(t) = (xl−1, . . . , x1, x0)t, a matrix F

and F ′ = −F−1 mod b, where detF �= 0 and
gcd(detF, b) = 1.

Ensure: z(t) ≡ x(t) · b−q (mod p).
1: �x0 ← [xl−1, xl−2, . . . , x0]T .
2: for i from 0 to q − 1 do
3: �ui ← F ′ · �xi mod b.
4: �xi+1 ← (�xi + F · �ui)/b.
5: end for
6: Perform final subtractions if necessary.
7: return z(t) =

∑l−1
i=0 zit

i, where zi = �x
(i)
q .

A non-trivial matrix F that satisfies (2) can be con-
structed by collecting l column vectors that are congru-
ent to 0 modulo p. Such a matrix F must be invertible
modulo b, since we need F ′ = −F−1 mod b in line 3
of Algorithm 3. The invertibility of F modulo b can be
verified by checking if detF �= 0 and the determinant
has no common factor with b, i.e., gcd(detF, b) = 1.

Theorem 1 Algorithm 3 returns z(t) ≡ x(t) · b−q

(mod p).

Proof: It is easily seen that each iteration of Algo-
rithm 3 computes the following:

�xi+1 ← �xi + F · (−F−1 · �xi mod b)
b

. (3)

Since F is a collection of column vectors that are con-
gruent to 0 modulo p, adding any integral linear combi-
nation of the column vectors in F to �xi does not change
its value in Zp. Hence, �xi+1

∼=p (�xi + F · (−F−1 ·
�xi mod b)) · b−1. The division by b in (3) is exact and
requires no division, since

�x+ F · �u = �x+ F · (−F−1 · �x mod b)

≡ [0, . . . , 0, 0]T (mod b).
(4)

Therefore, �xi+1
∼=p �xi · b−1. In Algorithm 3, the pro-

cess (3) is performed iteratively q times starting with
�x0 = �x resulting in �xq ≡ �x · b−q (mod p). This is
quite similar to the original Montgomery reduction al-
gorithm. The only difference is that Algorithm 3 uses
vectors and matrix, while the original Montgomery re-
duction algorithm deals with integers.

At this point, a number of questions arise: what are
the conditions for q such that �xq are sufficiently re-
duced, so that the result can be used as input to the

4



subsequent LWPFI modular multiplications? How do
we construct the matrix F ? Is Algorithm 3 efficient?
Can we eliminate the final subtractions? We answer
these questions in the following.

4.3. Construction of F and Analysis of
Algorithm 3

For p = f(t) = tl + fl−1t
l−1 + · · · f1t+ f0, where

|fi| ≤ ξ, consider the following l × l matrix F :

F =




1 0 · · · 0 0 −t− fl−1

−t 1 · · · 0 0 −fl−2

...
...

...
. . .

...
...

0 0 · · · −t 1 −f1
0 0 · · · 0 −t −f0



. (5)

We have constructed the matrix F such that the col-
umn vectors of F are congruent to 0 modulo p, i.e.,
F ∼=p [0, . . . , 0, 0]. It remains to verify whether F has
its inverse modulo b. The invertibility of F modulo b
can be easily checked as shown in Proposition 3.

Proposition 3 The l × l matrix F as shown in (5) is
invertible modulo b if and only if gcd(p = f(t), b) = 1
and f(t) �= 0.

Proof: We perform some elementary row operations
on both sides of Il ·F = F , where Il is an l× l identity
matrix, to obtain




1 0 · · · 0 0 0
t 1 · · · 0 0 0
t2 t · · · 0 0 0
...

...
...

. . .
...

...
tl−2 tl−3 · · · t 1 0
tl−1 tl−2 · · · t2 t 1



· F

=




1 0 · · · 0 0 −Cl−1

0 1 · · · 0 0 −Cl−2

0 0 · · · 0 0 −Cl−3

...
...

. . .
...

...
...

0 0 · · · 0 1 −C1

0 0 · · · 0 0 −C0



, (6)

where Ci = (tl +
∑l−1

j=i fjt
j)/ti. Using the fact that

the determinant of a triangular matrix is the product of
all diagonal entries, we easily obtain that det (F ) =
−C0 = −f(t) and F is invertible modulo b if and only
if gcd(f(t), b) = 1 and f(t) �= 0. We remark that this
invertibility condition of F modulo b is always satisfied
when p = f(t) is an odd number, for an even radix b.

We analyze the performance of Algorithm 3 in
terms of the number of single-precision multiplications
and single-precision additions/subtractions. The over-
head caused by additions and subtractions shall not
be ignored. Additions and subtractions are ignored in
many literature, however, the difference between ad-
dition/subtraction and multiplication is not significant
in many modern microprocessors. The latency of add
and sub instructions is only one clock cycle on Intel
Pentium 4 Family 4 processors. However, when long
integer addition operation is performed, they are used
only when adding or subtracting the least significant
digits. The rest of the digits are added or subtracted
with slow adc (add with carry) and sbb (subtract with
borrow) instructions, whose latency is 10 clock cycles.
These instructions are only 9% faster than mul instruc-
tion, whose latency is 11 clock cycles [17].

For convenience, we use Intel x86 instructions mul,
add and adc to denote the following operations:

• mul: single-precision multiplication,

• add: addition/subtraction without carry/borrow,

• adc: addition/subtraction with carry/borrow.

When multiplying n-digit integer with a single-digit in-
teger, it is clear that n mul instructions are required.
The numbers of required add and adc instructions are
1 and (n − 1), respectively. When adding i-digit and
j-digit integers, the required number of add and adc
instructions are one and min (i, j), respectively, assum-
ing that carry does not propagate more than one digit
place above the most significant digit of the shorter
operand. The probability of having carry above the
most significant digit place of the shorter integer is 1/2.
The probability that the carry will propagate one more
digit place is only 1/b. Similar argument holds for sub-
tracting two long integers.

Straightforward computation of �ui = −F−1 ·
�xi mod b requires l2 mul and (l2 − l) add instruc-
tions. However, exploiting the special structure of F ,
we can compute �ui using only (2l−1) mul and 2(l−1)
add instructions, provided that we are allowed to have
l-digit pre-computed values that depend on the coeffi-
cients of f(t) and the value t.

Theorem 2 The computation �ui = −F−1 · �xi mod b
can be performed using only (2l−1) mul and 2(l−1)
add instructions, using l-digit pre-computed values
that depend only on the coefficients of f(t) and the
value t.

Proof: Further row operations from (6) easily re-
veals the exact form of F ′ = −F−1 as follows:

5



F ′ =
−1
C0
×




C0 − Cl−1t
l−1 −Cl−1t

l−2 · · · −Cl−1

tC0 − Cl−2t
l−1 C0 − Cl−2t

l−2 · · · −Cl−2

...
...

. . .
...

tl−2C0 − C1t
l−1 tl−3C0 − C1t

l−2 · · · −C1

−tl−1 −tl−2 · · · −1



,

(7)

where Ci = (tl +
∑l−1

j=i fjt
j)/ti. Now, we can express

F ′ as follows,
F ′ = F ′

1 − F ′
2,

where,

F ′
1 =




Cl−1
C0

�v
Cl−2
C0

�v
Cl−3
C0

�v
...

C1
C0
�v

1
C0
�v



, �v = [tl−1, . . . , t1, t, 1],

F ′
2 =




1 0 · · · 0 0
t 1 · · · 0 0
...

...
. . .

...
...

tl−2 tl−3 · · · 1 0
0 0 · · · 0 0



.

The matrix-vector product F ′
2 · �xi mod b can be com-

puted using Horner’s rule, and it requires only (l − 2)
single-precision multiplications and (l − 2) single-
precision additions. The vector product �v · �xi can be
computed by multiplying (t mod b) to the (l−1)-th en-
try of F ′

2 ·�xi mod b, and then adding (f0 mod b) to the
result. Assuming that 1/C0 mod b and Ci/C0 mod b
for i = 1, . . . , l − 1 are precomputed, computing
F ′

1 · �xi mod b requires only l single-precision mul-
tiplications. It only remains to compute F ′ · �xi =
F ′

1 · �xi − F ′
2 · �xi using l single-precision subtractions.

Algorithm 4 explicitly shows how �ui is computed
using (2l−1) mul and 2(l−1) add instructions. Since
l ≥ 2, Algorithm 4 always performs better than the
straightforward matrix-vector product, which requires
l2 mul and (l2 − l) add instructions.

We analyze the line 4 of Algorithm 3. Since each
row of F contains only one t and fi, the matrix-vector
product F ·�ui requires l multiplications of t and fi’s by
a 1-digit integer, and some additions/subtractions. Let
n and k (≤ n) be the digit length of t and fi, respec-
tively and let τ be the number of non-zero fi’s in f(t).
Then the number of mul required in line 4 is (ln+τk).

Algorithm 4 Computing F ′ · �x mod b
Require: f(t) = tl + fl−1t

l−1 + · · · f1t + f0,
�x = [xl−1, . . . , x1, x0] and pre-computed values
Ci/C0 mod b for i = 1, . . . , l − 1 and 1/C0 mod
b, where Ci = (tl +

∑l−1
j=i fjt

j)/ti.
Ensure: F ′ · �xT = [ul−1, . . . , u1, u0]T .

1: vl ← 0.
2: for i from 0 to l − 1 do
3: vl−1−i ← vl−i · t+ xl−1−i mod b (l −

1 mul, l − 1 add)
4: end for
5: for i from 1 to l − 1 do
6: ui ← v0 · Ci/C0 mod b. (l − 1 mul)
7: end for
8: u0 ← v0/C0 mod b. (1 mul)
9: for i from 1 to l − 1 do

10: ui ← ui − vi mod b. (l − 1 add)
11: end for
12: return [ul−1, . . . , u1, u0]T .

If fi’s are small powers of 2 or integers with very small
Hamming weight, multiplications by fi’s can be effi-
ciently computed, replacing τk multiplications with τ
bit shifts.

We now count the numbers of add and adc instruc-
tions in line 4. There are l multiplications of t with
single-digit integers from �ui, and the total numbers of
add and adc instructions required in this computation
are l and l(n − 1), respectively. There are τ multipli-
cations of fi with one digit integer from �ui, and the
total numbers of add and adc instructions are τ and
τ(k−1), respectively. The matrix vector product F · �ui

involves (l− 1) additions/subtractions of (n+ 1)-digit
integer and a single digit integer. This can be computed
with (l−1) add and adc instructions. There are τ ad-
ditions/subtractions of an (n + 1)-digit integer with a
(k + 1)-digit integer. Since k ≤ n by definition, this
computation requires τ add and τ(k+1) adc instruc-
tions. So far, the numbers of add and adc instruc-
tions in F · �ui have been counted. It only remains to
add F · �ui to �xi. This computation requires l add and
l(n+1) adc instructions. In total, the numbers of add
and adc instructions required in line 4 are 3l+ 2τ − 1
and l(2n+ 1) + 2τk − 1, respectively.

The total number of mul, add and adc instructions
required in Algorithm 3, not considering the final sub-
traction step, is summarized as follows:

#mul = q(l(n+ 2) + τk − 1),
#add = q(5l + 2τ − 3),
#adc = q(l(2n+ 1) + 2τk − 1).

6



4.4. Conversions to and from the Mont-
gomery Domain

To perform modular multiplication using Algo-
rithm 3 as a coefficient reduction algorithm, we must
transform operands to the Montgomery domain. For
x(t) ∈ Z[t]/f(t), we compute x(t) ≡ x(t) · bq
(mod p). This computation can be easily achieved by
multiplying two polynomials x(t) and y(t) ≡ b2q mod
p, and then reduce coefficients using Algorithm 3. The
result will be x(t) ≡ x(t) · bq mod p, as desired. It
is convenient to have y(t) ≡ b2q mod p pre-computed
for each p. Conversion from the Montgomery domain
can be performed by directly applying Algorithm 3 on
x(t). The result is x(t) · b−q ≡ x(t) · bq · b−q ≡ x(t)
(mod p), as desired.

4.5. Interesting Implementation Options

We consider some special cases for which Algo-
rithm 3 can speed up.

• Special Case I: t ≡ 0 (mod b).
In such a case, it can be shown that

F ′ = −F−1

=




−1 0 0 · · · 0 fl−1/f0
0 −1 0 · · · 0 fl−2/f0
0 0 −1 · · · 0 fl−3/f0
...

...
...

. . .
...

...
0 0 0 · · · −1 f1/f0
0 0 0 · · · 0 1/f0




mod b.

Note that F is invertible if and only if f0 �= 0 and
gcd(f0, b) = 1. Then, �ui = F ′ · �xi mod b can
be computed with only τ mul and (l − 1) add
instructions, provided that fi/f0 mod b for i =
1, . . . , l − 1 and 1/f0 mod b are pre-computed.
Hence, compared to the general case, we save
(2l − τ − 1) mul and (l − 1) add instructions
in line 3 of Algorithm 3.

When computing F · �ui, we can save l mul in-
structions and one adc instruction, since the least
significant digit of t is zero. The total number of
saved instructions is given as follows:

#mulsave = q(3l − τ − 1),
#addsave = q(l − 1),
#adcsave = q.

• Special Case II: fi’s are powers of 2.
In such a case, multiplication by fi’s can be sim-
ply performed by bit shifts. In line 3, there is no

speed up. The number of instructions we can save
in line 4 is given below.

#mulsave = qτk,

#addsave = qτ,

#adcsave = qτ(k − 1).

Note that Algorithm 3 requires ql bit shift instruc-
tions in exchange for the above saved instructions.

4.6. Modular Multiplication Stability

Under some conditions with a q ≥ n, it is possible
to avoid the final subtractions using an approach similar
to [15]. Due to space limitation, we only give the result
here.

Theorem 3 (Stability) Algorithm 3 does not require a
final subtraction when q is chosen such that the follow-
ing condition is satisfied:

λ <
bq

4 · 2n′ , (8)

where n′ is the bit length of (t + ξ). In such a case,
the magnitude of input and output coefficients will be
bounded by Ψ = �bq/(4λ)
.

4.7. A Numerical Example

We show how a modular multiplication can be per-
formed using Algortihm 3 on a 16-bit processor using
an LWPFI modulus p = f(t) = t3 − 2t+ 2. Note that
f(t)is an irreducible polynomial.

First, we randomly choose 16-bit integer t until p
becomes a prime integer.

t = 0x9261,

p = 0x2FDBAD3AFE61.

The modulus p is a 46-bit integer. Then we precom-
pute values 1/C0 mod b and Ci/C0 mod b for 0 <
i < l, where b = 216 as follows:

C2/C0 mod b = 0x9261,

C1/C0 mod b = 0xC8BF,

1/C0 = 0xFE61.

Since ξ = 2, λ = (33 − 1)/2 = 13. The number
of iterations q in Algorithm 3 must be at least �logb(4 ·
13 · 2n′

)
, where n′ is the bit length of t + ξ. In our
example, n′ = 16. Therefore,

q = �logb(4 · 13 · 2n′
)
 = 2.

7



Suppose the two input A(t) and B(t) are given as
follows:

A(t) = 0x7CE0t2 + 0xDF53t+ 0x481A,

= 0x28D4555F616D,

B(t) = 0x1233t2 + 0x6F85t+ 0xDB60,

= 0x5F37E808738.

Then,

C(t) = A(t) ·B(t) mod f(t) = c2t
2 + c1t+ c0

= 0xE32CE98Dt2 + 0x15993E234t

− 0x4EC36012,

= 0x4A46FCB26FA338EF

≡ 0x2C8237C4F3E (mod p)

We construct a vector �x0 using the coefficients of
C(t) as follows:

�x0 = (c2, c1, c0)T .

Now we compute �u = F ′ · �x0 mod b in line 3 of
Algorithm 3.

�u = F ′ · �x0 mod b = (0xFB62, 0x8F50, 0x594F)T .

The computation �x0 +F ·�u in line 4 of Algorithm 3
is performed as follows:

�x0 + F · �u =




0xB01D0000
0xC9D80000
−0xA0B60000


 .

Since all elements of �x0 are divisible by b, we can
perform �x1 ← (�x0 + F · �u)/b without using a division
algorithm.

�x1 = (0xB01D, 0xC9D8,−0xA0B6)T .

This completes the first iteration of Algorithm 3.
In the second iteration,

�u = F ′ · �x1 mod b = (0xB3E2, 0x9E0C, 0x525F)T .

Then �x2 is computed as,

�x2 = (−0x2F18,−0x66D9,−0x5A60)T .

Therefore,

C(t) · b−2 ≡ A(t) ·B(t) · b−2 ≡ −0x2F18t2
− 0x66D9t− 0x5A60,

≡ −0xF65E66D55B1 (mod p)
≡ 0x2C8237C4F3E · b−2 (mod p).

5. Comparisons and Experimental Results

In this section, we compare our new coefficient re-
duction algorithm with Algorithm 2 and show our ex-
perimental results. For fairness of comparison, we let
the modulus m used in Algorithm 2 be an nl-digit inte-
ger. Note that a degree-l polynomial f(t) with n-digit
t generates an nl-digit LWPFI.

5.1. Comparisons

We use the same technique that we use in Sec-
tion 4.3 to analyze Algorithm 2. In line 3, only one
mul is required. In line 4, the computation of ui · m
requires nl mul, 1 add and (nl− 1) adc instructions.
Adding ui · m, which is at most (nl + 1) digits long,
to Ti requires 1 add and (nl + 1) adc instructions.
Therefore, Algorithm 2 requires the following number
of instructions, not considering the final subtraction:

#mul = q(nl + 1),
#add = 2q,
#adc = 2qnl.

Note that q in Algorithm 2 is not the same as the one
used in Algorithm 3. Final subtractions in Algorithm 2
can be avoided in the case b ≥ 4 by simply letting
q = nl+1. In Algorithm 3, we suppose q = n+1 elim-
inates the necessity of final subtractions. Note that such
a value for q can be chosen if ξ is reasonably small.

In Table 1, we observe that Algorithm 2 requires
O(n2l2) operations, whereas Algorithm 3 requires
O(ln2) operations. Hence, Algorithm 3 does have bet-
ter asymptotic behavior than Algorithm 2. However,
this does not mean that Algorithm 3 is always faster
than Algorithm 2. If actual values for parameters n, l,
τ and k are substituted in Table 1, the required number
of operations for Algorithm 3 may be larger. However,
the larger n and l, the better Algorithm 3 will perform
and eventually outperform Algorithm 2.

5.2. Experimental Results

We have implemented the modular multiplication
algorithm using LWPFI moduli and the new coeffi-
cient reduction algorithm presented in this paper us-
ing C programming language. We used GNU Mul-
tiple Precision library (GMP) to perform long inte-
ger arithmetic. We used gcc 4.1.2 to compile all
programs including GMP. When compiling GMP, we
used --disable-shared option to prevent the
overhead due to the runtime address resolution and
--build=none option to disable assembly routines

8



Table 1. Comparison of Algorithm 2 and Algorithm 3
Instruction Algorithm 2 Algorithm 3

mul (nl + 1)2 ln2 + (τk + 3l − 1)n+ 2l + τk − 1
add 2(nl + 1) (n+ 1)(5l + 2τ − 3)
adc 2n2l2 + 2nl 2ln2 + (2τk + 3l − 1)n+ 2τk + l − 1

in GMP. We ran GMP’s tuneup program to maximize
the performance of multiplication routines. Our LW-
PFI modular multiplication algorithms have been im-
plemented using mpz_* and mpn_* functions pro-
vided in GMP. Experiements were performed in Linux
running on Intel Pentium 4 3.20 GHz (Family 7, Model
4).

Figures 1(a) and 1(b) each shows the timing results
of modular multiplication using the coefficient reduc-
tion algorithm in [1] and Algorithm 3. In each figure,
we have also plotted the timing results of long inte-
ger modular multiplication using Algorithm 2 to sim-
ply show that modular multiplication using LWPFI is
indeed asymptotically faster. It is clearly seen from the
figures that our new coefficient reduction algorithm is
more efficient than that in [1].

6. Applications of LWPFI Modular Multi-
plications

Many cryptosystems rely on the ability to perform
modular arithmetic modulo large integers. Among the
modular arithmetic, modular multiplication is the most
frequently used operation. In most cases, the modu-
lus has to be a prime number. One can randomly try
t until f(t) is a prime to use it in cryptosystems re-
quiring modular multiplications. One may find t such
that f(t) has a large enough prime factor suitable for
certain cryptosystems. We denote such a factor p′. In
this case, we can embed any modular arithmetic mod-
ulo p′ in slightly larger ring Zf(t), where we can use
efficient modular multiplications using LWPFI moduli.
Note, however, this method is faster only if the modu-
lar multiplication using LWPFI is faster than the mod-
ular multiplication modulo p′ using usual integer arith-
metic. After all computations have been performed, the
result must be converted to the usual representation of
integers and be taken modulo p′.

The idea of embedding arithmetic into a larger ring,
where computations are easy, is not at all new. A simi-
lar technique is used for efficient multiplication in finite
fields [18] [19].

7. Conclusions

In this paper, we have extended LWPFIs presented
in [1], and have proposed a new coefficient reduction
reduction based on Algorithm 2. Our new coefficient
reduction algorithm have been analyzed using the ex-
tended definition of LWPFIs. Performance have been
thoroughly analyzed. A condition on parameters for
eliminationg the final subtractions in the new coeffi-
cient reduction algorithm has been given. We have pre-
sented experimental results to show that our new coef-
ficient reduction algorithm based on Montgomery re-
duction is indeed more efficient than the one presented
in [1].

References

[1] J. Chung and M. A. Hasan, “Low-weight poly-
nomial form integers for efficient modular mul-
tiplication,” IEEE Transactions on Computers,
vol. 56, no. 1, pp. 44–57, 2007.

[2] J. Chung and A. Hasan, “More generalized
Mersenne numbers,” in Selected Areas in Cryp-
tography - SAC 2003, LNCS 3006, pp. 335–347,
Springer-Verlag, 2003.

[3] J.-C. Bajard, L. Imbert, and T. Plantard, “Modular
number systems: Beyond the Mersenne family,”
in Selected Areas in Cryptography 2004, LNCS
3357, pp. 159–169, Springer-Verlag, 2004.

[4] J.-C. Bajard, L. Imbert, and T. Plantard, “Arith-
metic operations in the polynomial modular num-
ber system,” in Proceedings of the 17th IEEE
Symposium on Computer Arithmetic, ARITH’05,
pp. 206–213, 2005.

[5] A. Karatsuba and Y. Ofman, “Multiplication of
multidigit numbers on automata,” Soviet Physics
Doklady (English translation), vol. 7, no. 7,
pp. 595–596, 1963.

[6] A. L. Toom, “The complexity of a scheme of
functional elements realizing the multiplication of
integers,” Soviet Math, vol. 3, pp. 714–716, 1963.

9



(a) p = t2 + 1 (b) p = t3 − t + 1

Figure 1. Timing of LWPFI modular multiplication

[7] S. A. Cook, On the Minimum Computation Time
of Functions. PhD thesis, Harvard University,
May 1966.

[8] P. L. Montgomery, “Five, six, and seven-term
Karatsuba-like formulae,” IEEE Transaction on
Computers, vol. 54, no. 3, pp. 362–369, 2005.

[9] P. L. Montgomery, “Modular multiplication with-
out trial division,” Mathematics of Computation,
vol. 44, no. 170, pp. 519–521, 1985.

[10] P. Kocher, “Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems,”
in Advances in Cryptology - CRYPTO ’96, LNCS
1109, pp. 104–113, Springer-Verlag, 1996.

[11] W. Schindler, “A timing attack against RSA
with the Chinese remainder theorem,” in Cryp-
tographic Hardware and Embedded Systems -
CHES 2000, LNCS 1965, pp. 109–124, Springer-
Verlag, 2000.

[12] C. D. Walter and S. Thompson, “Distinguishing
exponent digits by observing modular subtrac-
tions,” in Progress in Cryptology - CT-RSA 2001,
LNCS 2020, pp. 192–207, Springer-Verlag, 2001.

[13] C. D. Walter, “Montgomery exponentiation needs
no final subtractions,” Electronics Letters, vol. 35,
no. 21, pp. 1831–1832, 1999.

[14] G. Hachez and J.-J. Quisquater, “Montgomery ex-
ponentiation with no final subtractions: Improved
results,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2000, LNCS 1965, pp. 293–
301, Springer-Verlag, 2000.

[15] C. D. Walter, “Precise bounds for Montgomery
modular multiplication and some potentially in-
secure RSA moduli,” in Topics in Cryptology -

CT-RSA 2002, LNCS 2271, pp. 30–39, Springer-
Verlag, 2002.

[16] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger,
“Closest point search in lattices,” IEEE Transac-
tions on Information Theory, vol. 48, pp. 2201–
2214, August 2002.

[17] T. Granlund, “Instruction latencies and through-
put for AMD and Intel x86 processors,”
2005. Available at http://swox.com/doc/
x86-timing.pdf.

[18] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao, “Fi-
nite field multiplier using redundant representa-
tion,” IEEE Transactions on Computers, vol. 51,
no. 11, pp. 1306– 1316, 2002.

[19] G. Drolet, “A new representation of elements of
finite fields GF (2m) yielding small complexity
arithmetic circuits,” IEEE Transactions on Com-
puters, vol. 47, no. 9, 1998.

10


