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Abstract

We present efficient squaring formulae based on the
Toom-Cook multiplication algorithm. The latter always
requires at least one non-trivial constant division in the
interpolation step. We show such non-trivial divisions are
not needed in the case two operands are equal for three,
four and five-way squarings. Our analysis shows that
our 3-way squaring algorithms have much less overhead
than the best known 3-way Toom-Cook algorithm. Our
experimental results show that one of our new 3-way
squaring methods performs faster than mpz_mul()
in GNU multiple precision library (GMP) for squaring
integers of approximately 2400–6700 bits on Pentium IV
Prescott 3.2GHz. For squaring in Z[x], our 3-way squaring
algorithms are much superior to other known squaring
algorithms for small input size. In addition, we present
4-way and 5-way squaring formulae which do not require
any constant divisions by integers other than a power of 2.
Under some reasonable assumptions, our 5-way squaring
formula is faster than the recently proposed Montgomery’s
5-way Karatsuba-like formulae.
Keywords: Squaring, Karatsuba algorithm, Toom-
Cook multiplication algorithm, Montgomery’s
Karatsuba-like formulae, multiple-precision arith-
metic

1. Introduction

Multiplication is one of the most frequently used arith-
metic operations in public key cryptography and the perfor-
mance of a cryptosystem often depends mostly on the effi-
ciency of a multiplication operation. Squaring is a special
case of multiplication when two operands are identical and
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it is usually faster than multiplication, but not more than a
constant factor.

Over the past four decades, many algorithms have been
proposed to perform multiplication operation efficiently.
Since Karatsuba discovered the first sub-quadratic multipli-
cation algorithm [1], several innovations have been made
on multiplication algorithms [2, 3, 4, 5]. Unfortunately,
none of these sub-quadratic multiplication algorithms has
been considerably specialized for squaring. In this work,
we attempt to fill this gap in the literature. It is not possi-
ble to have a squaring algorithm that is asymptotically bet-
ter than the fastest multiplication algorithm in a ring whose
characteristic is greater than 2 [6]. However, there are pos-
sibilities of some optimization by exploiting the fact that
two operands are identical. We present three 3-way squar-
ing formulae that are based on the Toom-Cook multiplica-
tion algorithm. Detailed methods for obtaining such for-
mulae are presented. Experimental results show that our
algorithms are more efficient than other 3-way multiplica-
tion algorithms for certain range of operand sizes. We also
present efficient 4-way and 5-way squaring formulae that
are potentially useful in practice.

This paper is organized as follows. In Section 2, we
briefly review known multiplication algorithms. Then we
discuss details on the Toom-Cook multiplication algorithm
and discuss its issues in Section 3. In Section 4, we show in
detail the methods for obtaining potentially better squaring
algorithms than the Toom-Cook multiplication algorithm
and present our new 3-way squaring formulae. Analysis
and implementation results of our squaring algorithms are
given in Sections 5 and 6, respectively. We present asym-
metric formulae for 4-way and 5-way squaring in Section 7
and conclusions follow in Section 8.

2. Review of Multiplication Algorithms

In this section, we briefly review some well-known mul-
tiplication algorithms. Since cryptographic computations
must be exact and efficient, we focus only on the algorithms
that compute such results using only integer arithmetic. Let
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A(x) =
∑n−1

i=0 aix
i and B(x) =

∑n−1
i=0 bix

i be in Z[x].
The product of A(x) and B(x) is computed as follows:

C(x) =
2n−2∑
i=0

cix
i = A(x) ·B(x), (1)

where ci =
∑i

j=0 ajbi−j for 0 ≤ i ≤ 2n − 2 and aj = 0
and bj = 0 for j ≥ n and j < 0. Let L(·) denote the
set of all integral linear combinations of the coefficients
of a polynomial. We call a computation of form “a · b”,
where a ∈ L(A) and b ∈ L(B), a coefficient multiplication.
The performance of multiplication algorithms are often an-
alyzed in terms of the number of coefficient multiplications
required to compute (1). The rest of the computational cost
including the cost for computing the linear combinations
a ∈ L(A) and b ∈ L(B) necessary to compute (1) is re-
ferred to as overhead. The multiplication a · b can be slower
than computing ai · bj , due to the carries occurring when
computing the linear combinations a and b. We count the
cost difference of two computations (a ·b and ai ·bj) toward
the overhead.

In order to compute (1) using paper and pencil, n2 coef-
ficient multiplications are required. Such a method is called
the schoolbook multiplication method. When A(x) =
B(x), only n(n + 1)/2 coefficient multiplications are re-
quired, since off-diagonal products (i.e., aibj where i �= j)
always occur twice and need to be computed only once. We
call this squaring method the schoolbook squaring method.

The first multiplication algorithm that has sub-quadratic
complexity was developed by Karatsuba in 1963 [1]. The
Karatsuba algorithm (KA) performs the multiplication of
two 2-term polynomials using only three coefficient multi-
plications as follows:

C(x) = a1b1x
2+((a0+a1)(b0+b1)−a0b0−a1b1)x+a0b0.

(2)
The time complexity of O(nlog2 3) can be achieved by re-
cursively applying (2). The KA is asymptotically better
than the schoolbook method since log2 3 ≈ 1.58 < 2.
However, in real world applications, KA is faster than the
schoolbook method only when n is sufficiently large, due to
the fact that a larger amount of overhead is required in the
KA than in the schoolbook method.

There is a well-known 3-way multiplication method
which is shown below [7].

(a2x
2 + a1x + a0)(b2x

2 + b1x + b0)

= D2x
4 + (D1 + D2 −D5)x3

+ (D0 + D1 + D2 −D4)x2

+ (D0 + D1 −D3)x + D0,

(3)

Algorithm 1 Toom-Cook Multiplication Algorithm

Require: Degree n− 1 polynomials A(x) and B(x).
Ensure: C(x) = A(x) ·B(x).

1: (Evaluation) ui = A(xi) and vi = B(xi) for i =
1, . . . , 2n− 1, where xi’s are all distinct.

2: (Point-Wise Multiplication) C(xi) = uivi for i =
1, . . . 2n− 1.

3: (Interpolation) given C(xi)’s, uniquely determine cj’s
for j = 0, . . . , 2n− 2, where C(x) =

∑2n−2
j=0 cjx

j .

where

D0 = a0b0, D3 = (a0 − a1)(b0 − b1),
D1 = a1b1, D4 = (a0 − a2)(b0 − b2),
D2 = a2b2, D5 = (a1 − a2)(b1 − b2).

This formula requires 6 coefficient multiplications. Recur-
sive use of (3) results in O(nlog3 6) time complexity. This
method is less efficient than KA in an asymptotic sense,
since log3 6 ≈ 1.63 > log2 3. We call (3) as 3-way KA-
like formula.

In 1963, Toom developed an elegant idea to perform
multiplication of two degree-(n−1) polynomials using only
(2n− 1) coefficient multiplications [2]. In 1966, Cook im-
proved Toom’s idea [3]. The multiplication method they
developed is now called the Toom-Cook algorithm. The
latter is based on a well-known result from linear algebra:
any degree-n polynomial can be uniquely determined by its
evaluation at (n + 1) distinct points. Algorithm 1 shows a
general idea how the Toom-Cook multiplication algorithm
works.

3. Further Details on the Toom-Cook Multipli-
cation Algorithm

In Section 2, we have reviewed various multiplication
algorithms including the Toom-Cook multiplication algo-
rithm. In this section, we look into details on the Toom-
Cook algorithm, especially on its interpolation step.

By noticing that the interpolation step in Algorithm 1
solves a system of (2n− 1) linear equations with (2n− 1)
unknown values (the coefficients of C(x)), we can construct
the following linear system:




1 x1 · · · x2n−2
1

1 x2 · · · x2n−2
2

...
...

. . .
...

1 x2n−1 · · · x2n−2
2n−1







c0

c1

...
c2n−2


 =




C(x1)
C(x2)

...
C(x2n−1)


 .

(4)
The (2n − 1) × (2n − 1) matrix on the left hand side
of (4) is called the Vandermonde matrix. We denote it
by V . A Vandermonde matrix has a known determinant,



D =
∏

1≤j<i≤2n−1(xi − xj). The system (4) is uniquely
solvable, since xi’s are all distinct in Algorithm 1. Com-
puting the inverse matrix can be pre-computed for a fixed
set of xi’s. Therefore, the coefficients ci’s can be easily ob-
tained by multiplying the inverse matrix to the right-hand
side of (4). In the interpolation step, at least one division by
an odd, nontrivial factor must occur if n > 2. We provide
the following theorems without proofs.

Theorem 1 Let V denote the (2n−1)×(2n−1)matrix on
the left-hand side of (4). There is no set of distinct integers
{x1, . . . , xs}’s such that D = detV is a power of 2; D =∏

1≤j<i≤s(xi − xj) = ±2k for some positive integer k, if
s > 3.

Theorem 2 In the Toom-Cook multiplication algorithm, at
least one constant division by an integer which is not a
power of 2 must occur for n > 2.

There are heuristic approaches for small n to reduce the
number of constant divisions and its sizes as much as pos-
sible. Such methods perform elementary row operations on
both sides of (4) until the system is solved, rather than mul-
tiplying the inverse matrix of V . For instance, Paul Zim-
mermann’s implementation in GNU multiple precision li-
brary (GMP) v4.2.1 uses only one constant division by 3 for
the 3-way Toom-Cook multiplication algorithm as shown
in Section 3.1. Currently, Bodrato and Zanoni’s method is
known to be the best 3-way Toom-Cook multiplication al-
gorithm [8].

3.1. Bodrato-Zanoni’s 3-Way Toom-Cook
Multiplication

This method has been developed by Bodrato and
Zanoni [8], and implemented in GMP library as subroutines
of mpz_mul(). Bodrato and Zanoni use {0, 1, 2,−1,∞}
for the set of evaluation points.

Let A(x) = a2x
2 + a1x + a0, B(x) = b2x

2 + b1x + b0

and C(x) = A(x)B(x) = c4x
4 + c3x

3 + c2x
2 + c1x + c0.

Evaluation of A(x) and B(x) at xi ∈ {0, 1, 2,−1,∞} and
point-wise multiplication of A(xi)’s and B(xi)’s result in
the following system of equations:




S1

S2

S3

S4

S5




=




a0b0

(a2 + a1 + a0)(b2 + b1 + b0)
(4a2 + 2a1 + a0)(4b2 + 2b1 + b0)

(a2 − a1 + a0)(b2 − b1 + b0)
a2b2




(5)

=




0 0 0 0 1
1 1 1 1 1
16 8 4 2 1
1 −1 1 −1 1
1 0 0 0 0







c4

c3

c2

c1

c0




Algorithm 2 Bodrato-Zanoni’s 3-Way Interpolation

Require: (S1, S2, S3, S4, S5) as in (5).
Ensure: C(x) = A(x) ·B(x).

1: T1 ← (S3 − S4)/3. (= 5c4 + 3c3 + c2 + c1)
2: T2 ← (S2 − S4)/2. (= c3 + c1)
3: T3 ← S2 − S1. (= c4 + c3 + c2 + c1)
4: T1 ← (T1 − T3)/2. (= 2c4 + c3)
5: T3 ← T3 − T2 − S5. (= c2)
6: T1 ← (T1 − 2S5)/2. (= c3)
7: T2 ← T2 − T1. (= c1)
8: return C(x) = S5x

4 + T1x
3 + T3x

2 + T2x + S1.

Then the above linear system can be solved very efficiently
using row operations as shown in Algorithm 2.

4. New Squaring Formulae

To the best of our knowledge, no sub-quadratic multipli-
cation algorithms reviewed in Section 2 have been consid-
erably specialized for squaring. We attempt to fill in this
gap in the literature. Of course, there is no squaring al-
gorithm which is more than constant times faster than the
fastest multiplication algorithm [6] and it is not a goal of
this work to find such squaring algorithms.

In Section 3, we have seen that nontrivial constant divi-
sions in the Toom-Cook algorithm are unavoidable. There
are multiplication algorithms not requiring the constant di-
vision, but they use more than (2n−1) coefficient multipli-
cations [4]. Number theoretic transform-based multiplica-
tion algorithms do not require nontrivial constant divisions
if the number of partitioning is a power of 2, but this means
that N must be greater than 2n − 1. However, this paper
show that squarings can be performed without the nontriv-
ial constant division using exactly (2n− 1) multiplications,
at least for n = 3, 4 and 5.

All sub-quadratic multiplication algorithms we have
reviewed in Section 2 are symmetric algorithms in the
sense that all point-wise multiplications are squarings when
A(x) = B(x). On the other hand, our new squaring formu-
lae are asymmetric algorithms, since they involve at least
one point-wise multiplication of two different values.

4.1. Our Approach

To completely eliminate the constant divisions in the in-
terpolation step, we take a different approach for construct-
ing a linear system. Below we give detailed methods for
obtaining linear equations on ci’s that cannot be derived by
directly evaluating C(x) = A(x)2. Our approach allows us
to find linear equations of ci’s such that the corresponding
linear system does not involve a Vandermonde matrix.



1. Taking modulo (x2 + ux + v2), where u and v are
some integers: By taking modulo (x2 + ux + v2) on
both sides of C(x) = A(x)2, we obtain

c′1x + c′0 ≡ (a′
1x + a′

0)
2 (mod (x2 + ux + v2)),

where a′
1x + a′

0 = A(x) mod (x2 + ux + v2) and
c′1x + c′0 = C(x) mod (x2 + ux + v2). Then it fol-
lows that

c′1x+c′0 ≡ a′
1(2

′a′
0−ua′

1)x+(a′
0−va′

1)(a
′
0 +va′

1)

(mod (x2 + ux + v2)). (6)

It is interesting to see that computing both c′0 and c′1 re-
quires only two coefficient multiplications. Hence, we
obtain two useful linear equations for c′is as follows:

c′1 = a′
1(2

′a′
0 − ua′

1),
c′0 = (a′

0 − va′
1)(a

′
0 + va′

1). (7)

Therefore, by choosing some small integers u and v,
we can obtain useful linear equations on ci’s. Such
equations cannot be obtained by simply evaluating
C(x) = A(x)2.
We remark that a special case of this idea is known
for efficient implementation of finite field squaring in
Zp2 [x]/f(x) where f(x) = x2 + x + 1 [9].

2. Hermite interpolation: Interpolation using the evalua-
tions of derivatives is known as Hermite interpolation.
Interestingly, for squaring, each evaluation of the first
derivative of C(x) requires only one coefficient multi-
plication, since C′(x) = 2A(x) ·A′(x).
Evaluating the first derivative of C(x) gives linear re-
lations, some of which may not be obtained by evalu-
ating C(x) = A(x)2.

3. A(xi)2−A(xj)2 = (A(xi)+A(xj))·(A(xi)−A(xj))
for xi �= xj .
Using this method, we can combine two linear equa-
tions from two distinct evaluations of A(x) into one.

4. Duality: any function computing ci can be used to
compute c2n−1−i with no changes. In other words,
if ci = f(a0, . . . , an−2, an−1), then c2n−2−i =
f(an−1, . . . , a1, a0) [10].
Hence, we can safely substitute ci to c2n−2−i and aj

to an−1−j for all 0 ≤ i ≤ 2n−2 and 0 ≤ j ≤ n−1 in
any linear equations on ci’s. This is a well-known fact
and a similar argument holds for multiplications.

4.2. New 3-way Squaring

Let �C = (c4, c3, c2, c1, c0). To construct a 3-way squar-
ing algorithm computing C(x) = A(x)2 that requires only

five coefficient multiplications, we need to find a set of five
vectors five-tuple (i0, i1, i2, i3, i4), where the ij’s are all
distinct, such that

• There exists a uij , which is a product of two ele-
ments (not necessarily distinct) from L(A), for each
dimension-5 vector �Lij such that �Lij ◦ �C = uij , where
◦ is a dot product.

• The set of vectors {�Li0 , . . . , �Li3 , �Li4} forms a basis in
Z

5.

Let M = (�Li4 , . . . , �Li1 , �Li0)T . If we can find a five-tuple
(i0, . . . , i3, i4) which makes detM a power of 2, we get a
squaring algorithm that require only 5 coefficient multipli-
cations and no nontrivial constant divisions.

We have identified 24 potentially useful �Li’s and ui’s
by directly evaluating C(x) = A(x)2 and by using our
new construction methods given above, and show them in
Table 1. Note that �L9–�L24 have been obtained using the
methods given above and they cannot be obtained by sim-
ply evaluating C(x) = A(x)2.

There are a total of
(
24
5

)
= 42504 possible com-

binations of (i0, i1, i2, i3, i4) and 34268 of them make
{�Li0 , . . . , �Li3 , �Li4} a linearly independent set. We divide
these 34268 combinations into the following three sets:

Set I: there are three or more ij’s such that ij ≥ 9.

Set II: there are only two ij’s such that ij ≥ 9.

Set III: there is only one ij such that ij ≥ 9.

Set IV: there is no ij such that ij ≥ 9.

Sets I, II, III and IV have 27254, 5946, 1012 and 56 com-
binations, respectively. In Set I, it is easily seen that com-
binations (1, 2, 9, 10, 15), (1, 2, 9, 10, 17), (1, 2, 9, 10, 18),
(1, 2, 9, 10, 19) and (1, 2, 9, 10, 20) lead to the simplest
interpolation step. Note that �L1, �L2, �L9, �L10 imme-
diately give the coefficients c0, c1, c3 and c4 of C(x).
The remaining coefficient c2 can be obtained by at most
two additions/subtractions. Among the five contenders,
(1, 2, 9, 10, 15) is the best choice, since computing u15 is
easier than computing u17, u18, u19 and u20.

In Set II, there are 124 combinations of (i0, . . . , i3, i4)
such that | detM | = 1. To narrow down our search,
we have considered only the combinations that lead to M
such that the entries of M−1 are relatively small. Com-
binations (1, 2, 3, 9, 10), (1, 2, 4, 9, 10), (1, 2, 4, 9, 22) and
(1, 2, 4, 10, 22) are the best, and they lead to the sim-
plest form of M−1. Combination (1, 2, 4, 9, 10) is more
advantageous than (1, 2, 3, 9, 10), since computing u4 is
more efficient than computing u3. Note that (a2 + a1 +
a0) could be at most 1 bit longer than (a2 − a1 + a0).



Table 1. List of Candidate Vectors
i �Li ui = �Li ◦ �C Comment
1 (0, 0, 0, 0, 1) a2

0 C(0)

2 (1, 0, 0, 0, 0) a2
2 C(∞)

3 (1, 1, 1, 1, 1) (a2 + a1 + a0)
2 C(1)

4 (1,−1, 1,−1, 1) (a2 − a1 + a0)
2 C(−1)

5 (16, 8, 4, 2, 1) (4a2 + 2a1 + a0)
2 C(2)

6 (16,−8, 4,−2, 1) (4a2 − 2a1 + a0)
2 C(−2)

7 (1, 2, 4, 8, 16) (a2 + 2a1 + 4a0)
2 24 · C(1/2)

8 (1,−2, 4,−8, 16) (a2 − 2a1 + 4a0)
2 24 · C(−1/2)

9 (0, 0, 0, 1, 0) 2a0a1 C′(0)
10 (0, 1, 0, 0, 0) 2a1a2 Dual of 9
11 (4, 3, 2, 1, 0) 2(a2 + a1 + a0)(2a2 + a1) C′(1)
12 (−4, 3,−2, 1, 0) 2(a2 − a1 + a0)(−2a2 + a1) C′(−1)

13 (0, 1, 2, 3, 4) 2(a2 + a1 + a0)(2a0 + a1) Dual of 11
14 (0, 1,−2, 3,−4) 2(a2 − a1 + a0)(a1 − 2a0) Dual of 12
15 (1, 0,−1, 0, 1) (a0 − a2 + a1)(a0 − a2 − a1) Constant term of C(x) mod (x2 + 1)

16 (0,−1, 0, 1, 0) 2a1(a0 − a2) x’s coefficient of C(x) mod (x2 + 1)

17 (−1, 0, 1, 1, 0) (a1 − a2 + 2a0)(a1 + a2) x’s coefficient of C(x) mod (x2 − x + 1)

18 (0,−1,−1, 0, 1) (a0 − a1 − 2a2)(a0 + a1) Constant term of C(x) mod (x2 − x + 1)

19 (1, 0,−1, 1, 0) (a2 + a1 − 2a0)(a2 − a1) x’s coefficient of C(x) mod (x2 + x + 1)

20 (0, 1,−1, 0, 1) (a0 + a1 − 2a2)(a0 − a1) Constant term of C(x) mod (x2 + x + 1)

21 (−1, 0, 0, 0, 1) (a0 + a2)(a0 − a2) A(0)2 − A(∞)2

22 (0, 1, 0, 1, 0) 2a1(a2 + a0) (A(1)2 − A(−1)2)/2

23 (0, 4, 0, 1, 0) 2a1(4a2 + a0) (A(2)2 − A(−2)2)/4

24 (0, 1, 0, 4, 0) 2a1(4a0 + a2) 4(A(1/2)2 − A(−1/2)2)

Moreover, (1, 2, 4, 9, 10) is better than (1, 2, 4, 9, 22) and
(1, 2, 4, 10, 22) since computing u9 and u10 is faster than
computing u9 and u22 or computing u10 and u22. We have
also considered combinations that results in | detM | =
2, 4, 8 and 16, but could not find a better combination than
(1, 2, 4, 9, 10).

In Set III, there is no combination that makes | detM | =
1, but there are 26 combinations that makes | detM | =
2. Among these 26 combinations, (1, 2, 3, 4, 9) and
(1, 2, 3, 4, 10) lead to the most efficient squaring algo-
rithm. We have also considered combinations that result
in | detM | = 4, 8 and 16, but could not find a better com-
bination than (1, 2, 3, 4, 9) and (1, 2, 3, 4, 10).

The Set IV only involves combinations of vectors that are
derived from directly evaluating C(x) = A(x)2 at rational
points. The squaring formulae derived from these vectors
must involve nontrivial constant divisions and are not con-
sidered further in this paper.

We have derived three new squaring methods from Set I,
II and III.

1. Squaring Method 1 (SQR1)

c0 = S0 = a2
0,

c1 = S1 = 2a1a0,

S2 = (a0 − a2 + a1)(a0 − a2 − a1),
c3 = S3 = 2a1a2, (8)

c4 = S4 = a2
2,

c2 = S0 + S4 − S2.

The computation of Si’s requires 3 coefficient multi-
plications and 2 coefficient squarings.

2. Squaring Method 2 (SQR2)

c0 = S0 = a2
0,

c1 = S1 = 2a1a0,

S2 = (a2 − a1 + a0)2,
c3 = S3 = 2a1a2,

c4 = S4 = a2
2,

c2 = S2 + S1 + S3 − S0 − S4.

The computation of Si’s requires 2 coefficient multi-
plications and 3 coefficient squarings.



3. Squaring Method 3 (SQR3)

c0 = S0 = a2
0,

S1 = (a2 + a1 + a0)2,
S2 = (a2 − a1 + a0)2,
c3 = S3 = 2a1a2,

c4 = S4 = a2
2,

T1 = (S1 + S2)/2,

c1 = S1 − T1 − S3,

c2 = T1 − S4 − S0.

The computation of Si’s requires 1 coefficient multi-
plication and 4 coefficient squarings.

5. Analysis

In this section, we analyze the squaring algorithms
SQR1, SQR2 and SQR3 presented in Section 4. The anal-
ysis may differ depending on how the various squaring al-
gorithms are used in specific applications (e.g., long inte-
ger squaring, squaring in extension field GF (pm), polyno-
mial squaring in Z[x],. . . ). In this section, we assume that
our squaring formulae are applied to the arithmetic in Z[x].
However, the results shown in this section are relevant to
other applications. For applications in GF (pm), after the
polynomial squaring has been completed, one needs to per-
form reduction by an irreducible polynomial for GF (pm)
and then reduce each coefficient modulo p. These reduction
operations are not dependent on the algorithm used for the
polynomial squaring. For long integer squaring, an integer
is interpreted as a polynomial and a polynomial squaring
is performed. Then, one needs to overlap the coefficients
and perform carry propagations. The overlapping and carry
propagation is also not related to the algorithm used for the
polynomial squaring.

We compare our algorithms with other known 3-way
squaring algorithms: schoolbook squaring algorithm, 3-
way KA-like formula and Bodrato-Zanoni’s 3-way Toom-
Cook algorithms.

We denote the radix of the representation by b. Addi-
tion or subtraction of two u-digit integers requires A(u)
time. Multiplication and squaring of two u-digit integers
require M(u) and S(u) times, respectively. Bit shift of
u-digit integers require B(u) time. During evaluation and
interpolation step, there are cases when the operands to ad-
dition/subtraction and shift are a few bits larger than u or 2u
digits, where the coefficients of A(x) are at most u digits
long. For simplicity, we ignore this overhead caused by car-
ries and borrows. However, we do not ignore the overhead
involved in multiplying two integers that are slightly longer
than u digits. For example, assume integers s and t are only

Table 3. Conditions for Which SQRi’s Are
Faster Than Other 3-way Algorithms

i SQRi vs. 3-way Toom-Cook
1 3M(u) < 3S(u) + 7B(u) + 16A(u) +D3(2u)
2 2M(u) < 2S(u) + 7B(u) + 14A(u) +D3(2u)
3 M(u) < S(u) + 6B(u) + 10A(u) +D3(2u)
i SQRi vs. Schoolbook sqr.
1 7A(u) < S(u) + B(u)
2 9A(u) <M(u) + B(u)
3 S(u) + 13A(u) < 2M(u)
i SQRi vs. 3-way KA-like
1 3M(u) + 2B(u) < 4S(u) + 11A(u)
2 2M(u) + 2B(u) < 3S(u) + 9A(u)
3 M(u) + 3B(u) < 2S(u) + 5A(u)

1-bit longer than u digits. Then we can write s = shbu + sl

and t = thbu + tl, where |sh|, |th| ≤ 1 and 0 ≤ sl, tl < bu.
For simplicity, we ignore the cost for multiplying carries,
i.e., sh and th.1 Then the time required to compute s · t is
at mostM(u) + 2A(u). If |sh| and |th| are greater than 1,
then constant multiplications sh ·tl and th ·sl are performed
using shifts and additions. For example, if |sh| ≤ 3 and
|th| ≤ 1, then sh · tl can be computed at mostA(u)+B(u).
Therefore the total time requred to compute s · t is at most
M(u)+2A(u)+B(u). The time required to compute s2 is
S(u) + B(u) +A(u) in the worst case. When computing a
product 2aiaj , we always compute aiaj first and then per-
form the bit shift later. It is reasonable to assume that A(·)
andB(·) are linear functions;A(fu+gv) = fA(u)+gA(v)
and B(fu + gv) = fB(u) + gB(v). The exact division by
3 of an u-digit integer used in the 3-way Toom-Cook algo-
rithm shown in Section 3.1 is denoted by D3(u).

We assume that A(x) = a2x
2 + a1x + a0 is the input,

where ai’s are u digits long. Table 2 shows our analysis
results. Table 3 shows the conditions for which our squaring
algorithms are superior to the other algorithms.

Table 3 shows that there is apparently no single algo-
rithm that is absolutely superior to the others. Without con-
sidering the actual values S(u), M(u), B(u), A(u) and
D3(2u), which are very platform specific, it is not possible
to decide which algorithm is faster than the rest. However,
one thing that is clear from Table 3 is that the 3-way Toom-
Cook algorithm becomes the best for squaring polynomials

1Note, however, that the 3-way Toom-Cook multiplication algorithm in
GMP v4.2.1 stores carries and borrows in the most significant digit place
instead of handling them separately with extra variables. This method has
a trade-off. Using extra digit reduces the number of additions and sub-
tractions, but coefficient multiplications and squarings become slower. We
have tested both methods and found that it is better to use extra variables
for carries and borrows on architectures on which we have performed our
experiments.



Table 2. Analysis Results of Various Squaring Algorithms
Algorithm S&M Overhead

3-way Toom-Cook 5S(u) 12B(u) + 25A(u) +D3(2u)
Schoolbook sqr. 3S(u) + 3M(u) 6B(u) + 2A(u)
3-way KA-like 6S(u) 3B(u) + 20A(u)

SQR1 2S(u) + 3M(u) 5B(u) + 9A(u)
SQR2 3S(u) + 2M(u) 5B(u) + 11A(u)
SQR3 4S(u) + 1M(u) 6B(u) + 15A(u)

as u increases. The timings B(u), A(u) and D3(2u) grow
linearly with u, but timings of multiplication (M(u)) and
squaring (S(u)) grow quadratically or sub-quadratically de-
pending on the methods used for point-wise multiplications.
It is obvious that, for large u, the effect of reduced overhead
in our algorithms will be overwhelmed by the timing differ-
ence in multiplication and squaring.

However, SQRi’s have very little amount of overhead
compared to the 3-way Toom-Cook multiplication algo-
rithm. Hence, it is possible that, for some small u, the
timing difference of multiplication and squaring is small
enough to satisfy some of the conditions in Table 3. In fact,
our implementation results given in Section 6 confirm that
there is a range of u where some conditions of Table 3 are
satisfied.

6. Implementation Results

To verify the practical usefulness of our algorithms, we
have implemented in software the functions for large in-
teger squaring, and the functions for degree-2 polynomial
squaring in Z[x] using SQR1, SQR2 and SQR3 presented
in Section 4. Our experiments have been performed on
Linux (kernel version 2.6.15.26) running on Intel Pentium
IV Prescott 3.2GHz. We have used GCC 4.0.3 to compile
all programs. We have compiled GMP library v4.2.1 in two
passes. Between the first and the second passes of compila-
tions, we have performed GMP’s tuneup program (with an
option ‘-p 100000000’ for better precision than default) so
that GMP uses the optimal threshold values between multi-
plication algorithms. We compiled all our source codes us-
ing the same compiler options used for compiling the GMP
library. We have ensured that our program does not link
with the shared library of GMP, since shared libraries have
a performance penalty due to the runtime address resolu-
tion. The testing program has been run at the highest pos-
sible priority to minimize the risk of interference by other
running processes.

6.1. Application to Large Integer Squaring

We have compared our implementation of SQRi’s with
GMP’s squaring function. For fair comparison, all of our
algorithms have been written so that they have the same
functionality as mpn_toom3_sqr_n() function in GMP.
Note that mpn_toom3_sqr_n() is a low level imple-
mentation of the squaring algorithm.

Our squaring algorithms have been written using the
same coding style that Harley used for implementing
mpn_toom3_sqr_n() in GMP 4.1.4. The implementa-
tions of the two algorithms in GMP v4.1.4 and v4.2.1 use
different coding styles. Harley stores the carries in separate
variables in GMP 4.1.4, but Zimmermann stores them in the
most significant digit place in GMP 4.2.1. Zimmermann’s
method increases the digit length of input to coefficient mul-
tiplications, additions and subtractions. However, such a
method reduces the number of function calls to additions
and subtractions. We implmented Bodrato-Zanoni’s 3-way
Toom-Cook algorithm using Harley’s coding style and com-
pared it with the one available at http://bodrato.it/
software/mul_n.11-gen-2007.c. We have deter-
mined that our implementation is faster on the processor
(Pentium IV 3.2GHz) we used for our timing experiments.
Therefore, we used our own implementation of Bodrato-
Zanoni’s algorithm in all our experiments.

Figure 1 shows the timing ratio of mpz_mul() and
the 3-way Toom-Cook multiplication algorithm to SQR3.
On Pentium IV 3.2GHz, mpz_mul() uses the schoolbook
squaring algorithm for small operands, KA for input longer
than 1984 bits, the 3-way Toom-Cook algorithm for input
longer than 3744 bits. In our experiments, we have found
that SQR1 and SQR2 are slower than mpz_mul() for all
sizes of input. Our experiments show that SQR3 outper-
forms mul_mul() for operands that are approximately
2400–6700 bits long.

6.2. Application to Polynomial Squaring in
Z[x]

We have applied our squaring algorithm for performing
polynomial multiplication in Z[x]. We have implemented
functions for squaring degree-2 polynomials in Z[x]. The
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Figure 1. Timing Ratio of SQR3 vs. Other Algorithms on Pentium IV 3.2GHz

implementation uses the functions from the GMP library.
The timing results on Pentium IV 3.2GHz are shown in Ta-
ble 4. The first column in Table 4 shows the sizes of co-
efficients in bits. In the table, the best timing for each bit
length is indicated in bold. SQR1 is the most efficient squar-
ing algorithm for squaring polynomials having small coef-
ficients of up to 576 bits. For polynomials with coefficients
up to 1216 bits, SQR3 is the most efficient. However, the
3-way Toom-Cook algorithm becomes the fastest algorithm
for squaring degree-2 polynomials whose coefficients are at
least 1216 bits long.

7. 4-way and 5-way Squaring Formulae

Let A(x) = a3x
3+a2x

2+a1x+a0. To compute C(x) =∑6
i=0 cix

i = A(x)2, we first compute Si’s as shown below:

S1 = a2
0 = A(0)2,

S2 = 2a0a1 = 2A(0)A′(0),
S3 = (a0 + a1 − a2 − a3)(a0 − a1 − a2 + a3)

= Re(A(i)2), (9)

S4 = (a0 + a1 + a2 + a3)2 = A(1)2,
S5 = 2(a0 − a2)(a1 − a3) = Im(A(i)2),
S6 = 2a3a2 = 2A(∞)A′(∞),
S7 = a2

3 = A(∞)2.

The linear combinations of ai’s in (9) can be computed
using the following:

U1 = a0 − a2, U2 = a1 − a3,

U3 = U1 + U2, U4 = U1 − U2,

U5 = a0 + a1 + a2 + a3.

Algorithm 3 New 4-Way Toom-Cook Interpolation for
Squaring

Require: (S1, S2, S3, S4, S5, S6, S7) as in (9).
Ensure: C(x) = A(x) ·B(x).

1: T1 ← S3 + S4. (= c5 + 2c4 + c3 + c1 + 2c0)
2: T2 ← (T1 + S5)/2. (= c5 + c4 + c1 + c0)
3: T3 ← S2 + S6. (= c5 + c1)
4: T4 ← T2 − T3. (= c4 + c0)
5: T5 ← T3 − S5. (= c3)
6: T6 ← T4 − S3. (= c6 + c2)
7: T7 ← T4 − S1. (= c4)
8: T8 ← T6 − S7. (= c2)
9: return C(x) = S7x

6 +S6x
5 +T7x

4 +T5x
3 +T8x

2 +
S2x + S1.

This method uses 3 coefficient squarings and 4 coeffi-
cient multiplications. Note that KA requires 9 coefficient
squarings for squaring a polynomial using 4-way split. The
interpolation method is given in Algorithm (3) and it re-
quires 8 additions/subtractions and 1 bit shift.

Using the same analysis methods in Section 5, we ob-
tain that our 4-way squaring algorithm requires 3S(u) +
4M(u) + 28A(u) + 13B(u).

7.1. New 5-way Squaring Method

Let A(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0. To com-

pute C(x) =
∑8

i=0 cix
i = A(x)2, we first compute Si’s as



Table 4. Timing Results of Polynomial Squaring on Pentium IV 3.2GHz (unit= µs.)
Word length SQR1 SQR2 SQR3 3-way Toom-Cook 3-way KA-like Schoolbook sqr.

8 1.12 1.42 1.33 1.67 1.80 1.26
18 3.43 3.96 3.59 3.94 4.79 4.15
19 3.89 4.25 3.85 4.26 5.25 4.42
32 8.37 9.65 8.17 8.25 11.12 10.72
38 11.28 12.67 10.73 10.48 14.17 14.38
39 12.84 14.11 11.51 10.88 15.21 16.29
47 17.15 18.94 15.42 14.47 19.85 22.02

shown below:

S1 = a2
0 = A(0),

S2 = a2
4 = A(∞),

S3 = (a0 + a1 + a2 + a3 + a4)2 = A(1)2,
S4 = (a0 − a1 + a2 − a3 + a4)2 = A(−1)2,
S5 = 2(a0 − a2 + a4)(a1 − a3) = Im(A(i)2),
S6 = (a0 + a1 − a2 − a3 + a4) (10)

× (a0 − a1 − a2 + a3 + a4) = Re(A(i)2),
S7 = (a1 + a2 − a4)(a1 − a2 − a4 + 2(a0 − a3))

= (A(x)2 mod (x2 − x + 1))′,
S8 = 2a0a1 = 2A(0)A′(0),
S9 = 2a3a4 = 2A(∞)A′(∞).

The above system needs 4 squarings and 5 multiplica-
tions. The linear combinations of ai’s can be computed as
follows using 14 additions or subtractions and 1 shift:

U1 = a0 + a4,

U2 = a1 + a3,

U3 = a1 − a4,

U4 = a1 − a3,

U5 = U1 + a2 = a0 + a2 + a4,

U6 = U1 − a2 = a0 − a2 + a4,

U7 = U5 + U2 = a0 + a1 + a2 + a3 + a4.

U8 = U5 − U2 = a0 − a1 + a2 − a3 + a4,

U9 = U6 + U4 = a0 + a1 − a2 − a3 + a4,

U10 = U6 − U4 = a0 − a1 − a2 + a3 + a4,

U11 = U3 + a2 = a1 + a2 − a4,

U12 = U3 − a2 = a1 − a2 − a4,

U13 = U12 + 2(a0 − a3) = a1 − a2 − a4 + 2(a0 − a3).

Interpolation can be performed as shown in Algorithm 4,
which requires 16 additions/subtractions and 3 shifts. Algo-
rithm 4 has been proposed in [8] by Bodrato and Zanoni. It
is an improved algorithm than the one presented in [11],
which requires 18 additions and subtractions, 6 shifts and
no division by constant.

Algorithm 4 Bodrato-Zanoni’s 5-Way Toom-Cook Interpo-
lation for Squaring

Require: (S1, S2, S3, S4, S5, S6, S7, S8, S9) as in (10).
Ensure: C(x) = A(x) ·B(x).

1: T1 ← (S3 + S4)/2 (= c8 + c6 + c4 + c2 + c0)
2: T2 ← S7 − S2 − S8 − S9 (= −c5 − c4 + c2)
3: T3 ← (S6 + T1)/2 (= c8 + c4 + c0)
4: T4 ← S3 − T1 (= c7 + c5 + c3 + c1)
5: T5 ← (T4 − S5)/2 (= c7 + c3)
6: T6 ← T4 − S8 (= c7 + c5 + c3)
7: T7 ← T1 − T3 (= c6 + c2)
8: T8 ← T6 − T5 (= c5)
9: T9 ← T3 − S0 − S1 (= c4)

10: T10 ← T5 − S9 (= c3)
11: T11 ← T2 + T8 + T9 (= c2)
12: T12 ← T7 − T11 (= c6)
13: return C(x) = S2x

8+S9x7+T12x
6+T8x

5+T9x
4+

T10x
3 + T11x

2 + S8x + S1.

Note that Montgomery’s 5-way formulae [12] requires
13 squarings. Using the same analysis technique and as-
suming that each coefficient ai is a u-digit integer, we ob-
tain that our 5-way squaring algorithm requires at most
4S(u) + 5M(u) + 56A(u) + 20B(u). Montgomery’s 5-
way algorithm requires at most 13S(u)+65A(u)+10B(u)
when two operands are identical. Therefore, if 5M(u) +
10B(u) < 9S(u) + 9A(u), then our algorithm is supe-
rior. Ignoring the overhead terms (A and B), our algo-
rithm is superior if squaring/multiplication ratio is more
than 5/9 ≈ 0.56. This condition appears to be easily satis-
fied in practice. The GMP’s squaring/multiplication timing
ratio is between 0.6–0.8 for operand sizes larger than 500
bits on Pentium IV Prescott 3.2GHz.

8. Conclusions

In this paper, we have presented new 3, 4 and 5-way
polynomial squaring formulae. Our new formulae are based
on the Toom-Cook multiplication algorithm and they re-
quire the same number of coefficient multiplications used in
the Toom-Cook multiplication algorithm. However, our ap-



proach eliminates the need for nontrivial constant divisions
that are always required in the n-way Toom-Cook multipli-
cation algorithms for n ≥ 3. Our experimental results con-
firm that one of our 3-way formulae is slightly faster than
GMP’s squaring routine for squaring integers of size ap-
proximately 2300–6700 bits on Pentium IV 3.2GHz. More-
over, according to our implementation results, our meth-
ods are the best among all known 3-way squaring formu-
lae for squaring degree-2 polynomials whose coefficients
are shorter than approximately 1200 bits on Pentium IV
3.2GHz. However, symmetric squaring algorithms are ad-
vantageous for squaring very large size operands, since our
asymmetric squaring algorithms use at least one point-wise
multiplication that cannot be computed by squaring.
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