
How to Ensure a Faithful Polynomial Evaluation
with the Compensated Horner Algorithm

Philippe Langlois, Nicolas Louvet
Université de Perpignan, DALI Research Team
{langlois, nicolas.louvet}@univ-perp.fr

Abstract

The compensated Horner algorithm improves the accu-
racy of polynomial evaluation in IEEE-754 floating point
arithmetic: the computed result is as accurate as if it was
computed with the classic Horner algorithm in twice the
working precision. Since the condition number still governs
the accuracy of this computation, it may return an arbitrary
number of inexact digits. We address here how to compute
a faithfully rounded result, that is one of the two floating
point neighbors of the exact evaluation. We propose an a
priori sufficient condition on the condition number to en-
sure that the compensated evaluation is faithfully rounded.
We also propose a validated and dynamic method to test at
the running time if the compensated result is actually faith-
fully rounded. Numerical experiments illustrate the behav-
ior of these two conditions and that the associated running
time over-cost is really interesting.

1 Introduction

1.1 Motivation

Horner’s rule is the classic algorithm when evaluating a
polynomial p(x). When performed in floating point arith-
metic this algorithm may suffer from (catastrophic) cancel-
lations and so yields a computed value with less exact dig-
its than what the computing precision provides. The rela-
tive accuracy of such computed value p̂(x) verifies the well
known following inequality,

|p(x)− p̂(x)|
|p(x)| ≤ cond(p, x)×O(u). (1)

In the right-hand side of this accuracy bound, u is the com-
puting precision and the condition number cond(p, x) is a
scalar larger than 1 that only depends on the entry x and on p
coefficients —its expression will be given further. This con-
dition number governs the accuracy of the computed result.

It describes the largest magnification factor of the rounding
errors both in the data (here, the entry x and the coefficients
of p) and in the algorithm (up to now, the Horner Algo-
rithm).
In this paper, we will only consider entries and polyno-

mial coefficients that are floating point values. Such cases
appear for example when evaluating elementary functions
[11] and in geometric computations [8]. Even in these
cases, the product cond(p, x) × O(u) may be arbitrarily
larger than 1, i.e., when evaluating the polynomial p at the
x entry is ill-conditioned, as for example in the neighbor-
hood of a multiple root.
When the computing precision u is not sufficient (com-

pared to cond(p, x)) to guarantee a desired accuracy in
p̂(x), several solutions implementing a computation with
more bits exist. Priest-like “double-double” algorithms
are well-known and well-used solutions to simulate twice
the IEEE-754 double precision [13, 9]. The compensated
Horner algorithm introduced in [3] is a fast alternative to the
Horner algorithm implemented with “double-double” arith-
metic. By fast we mean that this compensated algorithm
runs at least twice as fast as the “double-double” counterpart
with the same output accuracy. In both cases the accuracy
of computed p̂(x) is improved and now verifies

|p(x)− p̂(x)|
|p(x)| ≤ u + cond(p, x)×O(u2). (2)

Comparing to Relation (1), this relation means that the com-
puted value is now as accurate as the result of the Horner
algorithm performed in twice the working precision with a
final rounding back to this working precision —the same
behavior is mentioned in [12] for compensated summation
and dot product. As for Relation (1) the accuracy of the
compensated result still depends on the condition number
and may be arbitrarily bad for ill-conditioned polynomial
evaluations. Nevertheless, this bound tells us that the com-
pensated Horner algorithm may yield a full precision ac-
curacy for not too ill-conditioned polynomials, that is for
p and x such that the second term cond(p, x) × O(u2) is
small compared to the working precision u.

This remark motivates this paper where we consider how
to compute a faithfully rounded polynomial evaluation with
the compensated Horner algorithm. By faithful rounding
we mean that the computed result p̂(x) is one of the two
floating point neighbors of the exact result p(x). Faith-
ful rounding is known to be an interesting property since
for example it guarantees the correct sign determination of
arithmetic expressions, e.g., for geometric predicates.
We first provide an a priori sufficient criterion we sum-

marize as follows. The compensated Horner algorithm pro-
vides a faithful rounding of the exact polynomial evalua-
tion as long as its condition number is less than the upper
bound we identify in Theorem 7; this bound only depends
on the degree of the polynomial and on the working preci-
sion u. With Theorem 9, we also propose a dynamic test
to answer to the following question at the running time: “is
the computed compensated result a faithful rounding of the
exact evaluation?”. If this test is satisfied then the answer
is “yes”. Otherwise, the computed result may or may not
be faithfully rounded. Moreover, this test is validated since
it takes into account the finite precision of its computation
performed in IEEE-754 floating point arithmetic. Numer-
ical experiments show that the dynamic bound is sharper
than the a priori condition and that the corresponding over-
cost is reasonable.
The paper is organized as follows. In the sequel of this

section, we briefly recall the standard model of floating
point arithmetic and we introduce our notations for error
analysis. In Section 2, we first recall some well known facts
about the Horner algorithm and we review the error-free
transformations of the elementary floating point operations
+,− and×. Next we derive an error-free transformation for
the Horner algorithm that allows us to compute the compen-
sated evaluation. We prove a theoretical error bound for the
accuracy obtained thanks to the compensated Horner algo-
rithm in Section 3, and we describe the a priori criterion
we propose to ensure a faithful rounding. Section 4 is de-
voted to the description of the dynamic counterpart of this a
priori criterion. Finally in Section 5 we present numerical
experiments to exhibit both the numerical behavior and the
practical efficiency of our algorithms.

1.2 Notations

Throughout the paper, we assume a floating point arith-
metic adhering to the IEEE-754 floating point standard [5].
We constraint all the computations to be performed in one
working precision, with the “round to the nearest” rounding
mode. We also assume that no overflow nor underflow oc-
curs during the computations. Next notations are standard
(see [4, chap. 2] for example). F is the set of all normal-
ized floating point numbers and u denotes the unit roundoff,
that is half the spacing between 1 and the next representable

floating point value. For IEEE-754 double precision with
rounding to the nearest, we have u = 2−53 ≈ 1.11 · 10−16.
We define the floating point predecessor and successor of
a real number r as pred(r) = max{f ∈ F/f < r} and
succ(r) = min{f ∈ F/r < f} respectively. A floating
point number f is defined to be a faithful rounding of a real
number r if pred(f) < r < succ(f).
The symbols ⊕, �, ⊗ and � represent respectively the

floating point addition, subtraction, multiplication and divi-
sion. For more complicated arithmetic expressions, fl(·) de-
notes the result of a floating point computation where every
operation inside the parenthesis is performed in the working
precision. So we have for example, a⊕ b = fl(a + b).
When no underflow nor overflow occurs, the following

standard model describes the accuracy of every considered
floating point computation. For two floating point numbers
a and b and for ◦ in {+,−,×, /}, the floating point evalua-
tion fl(a ◦ b) of a ◦ b is such that

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2),
with |ε1|, |ε2| ≤ u. (3)

To keep track of the (1+ε) factors in next error analysis,
we use the classic (1 + θk) and γk notations [4, chap. 3].
For any positive integer k, θk denotes a quantity bounded
according to |θk| ≤ γk := ku/(1− ku).When using these
notations, we always implicitly assume ku < 1. In further
error analysis, we essentially use the following relations,

(1 + θk)(1 + θj) ≤ (1 + θk+j), ku ≤ γk, γk ≤ γk+1.

Next bounds are computable floating point values that will
be useful to derive dynamic validation in Section 4. We
denotes fl(γk) = (ku) � (1 � ku) by γ̂k. We know that
fl(ku) = ku ∈ F, and ku < 1 implies fl(1 − ku) = 1 −
ku ∈ F. So γ̂k only suffers from a rounding error in the
division and

γk ≤ (1 + u) γ̂k. (4)

The next bound comes from the direct application of Rela-
tion (3). For x ∈ F and n ∈ N,

(1 + u)n|x| ≤ fl
(|x|

1− (n + 1)u

)
. (5)

2 From Horner to compensated Horner algo-
rithm

The compensated Horner algorithm improves the classic
Horner iteration computing a correcting term to compensate
the rounding errors the classic Horner iteration generates in
floating point arithmetic. Main results about compensated
Horner algorithm are summarized in this section; see [3] for
a complete description.

2.1 Polynomial evaluation and Horner al-
gorithm

The classic condition number of the evaluation of p(x) =∑n
i=0 aix

i at a given entry x is [2]

cond(p, x) =
∑n

i=0 |ai||x|i
|∑n

i=0 aixi| :=
p̃(x)
|p(x)| . (6)

For any floating point value x we denote by Horner (p, x)
the result of the floating point evaluation of the polynomial
p at x using next classic Horner algorithm.

Algorithm 1 Horner algorithm
function r0 = Horner (p, x)
rn = an

for i = n− 1 : −1 : 0
ri = ri+1 ⊗ x⊕ ai

end

The accuracy of Algorithm 1 verifies introductory in-
equality (1) with O(u) = γ2n and previous condition num-
ber (6). Clearly, the condition number cond(p, x) can be
arbitrarily large. In particular, when cond(p, x) > 1/γ2n,
we cannot guarantee that the computed result Horner (p, x)
contains any correct digit.
We further prove that the error generated by the Horner

algorithm is exactly the sum of two polynomials with float-
ing point coefficients. The next lemma gives bounds of the
generated error when evaluating this sum of polynomials
applying the Horner algorithm.

Lemma 1. Let p and q be two polynomials with float-
ing point coefficients, such that p(x) =

∑n
i=0 aix

i and
q(x) =

∑n
i=0 bix

i. We consider the floating point evalu-
ation of (p+q)(x) computed with Horner (p⊕ q, x). Then,
in case no underflow occurs, the computed result satisfies
the following forward error bound,

|(p+q)(x)−Horner (p⊕ q, x) | ≤ γ2n+1(p̃ + q)(x). (7)

Moreover,

(|p + q|)(|x|) ≤ (1 + u)2n+1Horner (|p⊕ q|, |x|) . (8)

Proof. The proof of the error bound (7) is easily adapted
from the one of the Horner algorithm (see [4, p.95] for ex-
ample). To prove (8) we consider Algorithm 1, where

rn = |an ⊕ bn| and ri = ri+1 ⊗ x⊕ |ai ⊕ bi|,
for i = n− 1, . . . , 0. Then, using the standard model (3) it
is easily proved by induction that, for i = 0, . . . , n,

i∑
j=0

|an−i+j + bn−i+j ||xj | ≤ (1 + u)2i+1|rn−i|, (9)

which in turn proves (8) for i = n.

2.2 EFT for the elementary operations

Now we review well known results concerning error free
transformation (EFT) of the elementary floating point oper-
ations +, − and ×.
Let ◦ be an operator in {+,−,×}, a and b be two float-

ing point numbers, and x̂ = fl(a ◦ b). Then their exist a
floating point value y such that a ◦ b = x̂ + y. The dif-
ference y between the exact result and the computed re-
sult is the rounding error generated by the computation of
x̂. Let us emphasize that this relation between four float-
ing point values relies on real operators and exact equality,
i.e., not on approximate floating point counterparts. Ogita
et al. [12] name such a transformation an error free trans-
formation (EFT).
For the EFT of the addition we use the well known

TwoSum algorithm by Knuth [6, p.236] that requires 6
flop (floating point operations). TwoProd by Veltkamp and
Dekker [1] performs the EFT of the product and requires 17
flop. The next theorem exhibits the previously announced
properties of TwoSum and TwoProd.

Theorem 2 ([12]). Let a, b in F and x, y ∈ F such that
[x, y] = TwoSum(a, b). Then, ever in the presence of un-
derflow,

a+b = x+y, x = a⊕b, |y| ≤ u|x|, |y| ≤ u|a+b|.
Let a, b ∈ F and x, y ∈ F such that [x, y] = TwoProd(a, b).
Then, if no underflow occurs,

a×b = x+y, x = a⊗b, |y| ≤ u|x|, |y| ≤ u|a×b|.
We notice that algorithms TwoSum and TwoProd only

require well optimizable floating point operations. They
do not use branches, nor access to the mantissa that can
be time-consuming. We just mention that a significant im-
provement of TwoProd is defined when a Fused-Multiply-
and-Add operator is available [10].

2.3 An EFT for the Horner algorithm

As previously mentioned, next EFT for the polynomial
evaluation with the Horner algorithm exhibits the exact
rounding error generated by the Horner algorithm together
with an algorithm to compute it.

Theorem 3 ([3]). Let p(x) =
∑n

i=0 aix
i be a polyno-

mial of degree n with floating point coefficients, and let
x be a floating point value. Then Algorithm 2 computes
both Horner (p, x) and two polynomials pπ and pσ of
degree n − 1 with floating point coefficients, such that
[Horner (p, x) , pπ, pσ] = EFTHorner (p, x). If no under-
flow occurs,

p(x) = Horner (p, x) + (pπ + pσ)(x). (10)

Algorithm 2 EFT for the Horner algorithm
function [s0, pπ, pσ] = EFTHorner(p, x)
sn = an

for i = n− 1 : −1 : 0
[pi, πi] = TwoProd (si+1, x)
[si, σi] = TwoSum (pi, ai)
Let πi be the coefficient of degree i in pπ

Let σi be the coefficient of degree i in pσ

end

Moreover,
(˜pπ + pσ)(x) ≤ γ2n p̃(x). (11)

Relation (10) means that algorithm EFTHorner is an
EFT for polynomial evaluation with the Horner algorithm.

Proof of Theorem 3. Since TwoProd and TwoSum are
EFT from Theorem 2 it follows that si+1x = pi + πi and
pi +ai = si +σi. Thus we have si = si+1x+ai−πi−σi,
for i = 0, . . . , n− 1. Since sn = an, at the end of the loop
we have

s0 =
n∑

i=0

aix
i −

n−1∑
i=0

πix
i −

n−1∑
i=0

σix
i,

which proves (10).
Now we prove relation (11) According to the error anal-

ysis of the Horner algorithm (see [4, p.95]), we can write

Horner (p, x) = (1 + θ2n)anxn +
n−1∑
i=0

(1 + θ2i+1)aix
i,

where every θk satisfies |θk| ≤ γk. Then using (10) we have

(pπ + pσ)(x) = −θ2nanxn −
n−1∑
i=0

θ2i+1aix
i.

It yields

(˜pπ + pσ)(x) ≤ γ2n|an||x|n+
n−1∑
i=0

γ2i+1|ai||x|i ≤ γ2n p̃(x),

hence (˜pπ + pσ)(x) ≤ γ2n p̃(x).

2.4 Compensated Horner algorithm

From Theorem 3 the forward error in the floating point
evaluation of p(x) with the Horner algorithm is

c = p(x)− Horner (p, x) = (pπ + pσ)(x),

where the two polynomials pπ and pσ are exactly identified
by EFTHorner (Algorithm 2) —this latter also computes

Horner (p, x). Therefore, the key of the compensated algo-
rithm is to compute, in the working precision, first an ap-
proximate ĉ of the final error c and then a corrected result

r = Horner (p, x)⊕ ĉ.

These two computations lead to next compensated Horner
algorithm CompHorner (Algorithm 3).

Algorithm 3 Compensated Horner algorithm
function r = CompHorner (p, x)
[r̂, pπ, pσ] = EFTHorner (p, x)
ĉ = Horner (pπ ⊕ pσ, x)
r = r̂ ⊕ ĉ

We say that ĉ is a correcting term forHorner (p, x). The
corrected result r̄ is expected to be more accurate than the
first result Horner (p, x) as proved in next section.

3 A priori condition for faithful rounding

We start proving the accuracy of the compensated
Horner algorithm as the first step towards an a priori
sufficient condition for a faithful rounding.

3.1 Accuracy of CompHorner

Next result proves that the result of a polynomial eval-
uation computed with the compensated Horner algorithm
(Algorithm 3) is as accurate as if computed by the clas-
sic Horner algorithm using twice the working precision and
then rounded to the working precision.

Theorem 4 ([3]). Consider a polynomial p of degree n with
floating point coefficients, and x a floating point value. If no
underflow occurs,

|CompHorner (p, x)− p(x)| ≤ u|p(x)|+ γ2
2n p̃(x). (12)

Proof. The absolute forward error generated by Algo-
rithm 3 is

| r − p(x)| = |(r̂ ⊕ ĉ)− p(x)|
= |(1 + ε)(r̂ + ĉ)− p(x)| ,

with |ε| ≤ u. Let c = (pπ + pσ)(x). From Theorem 3 we
have r̂ = Horner (p, x) = p(x)− c, thus

| r − p(x)| = |(1 + ε) (p(x)− c + ĉ)− p(x)|
≤ u|p(x)|+ (1 + u)| ĉ− c|.

Since ĉ = Horner (pπ ⊕ pσ, x) with pπ and pσ two poly-
nomials of degree n − 1, Lemma 1 yields | ĉ − c| ≤
γ2n−1(˜pπ + pσ)(x). Then using (11) we have | ĉ − c| ≤
γ2n−1γ2n p̃(x). Since (1+u)γ2n−1 ≤ γ2n, we finally write
the expected error bound (12).

Remark 1. For later use, we notice that | ĉ − c| ≤
γ2n−1γ2n p̃(x) implies

| ĉ− c| ≤ γ2
2n p̃(x). (13)

It is interesting to interpret the previous theorem in terms
of the condition number of the polynomial evaluation of p at
x. Combining the error bound (12) with the condition num-
ber (6) of polynomial evaluation gives the precise writing of
our introductory inequality (2),

|CompHorner (p, x)− p(x)|
|p(x)| ≤ u + γ2

2n cond(p, x).

(14)
In other words, the bound for the relative error of the com-
puted result is essentially γ2

2n times the condition number
of the polynomial evaluation, plus the inevitable summand
u for rounding the result to the working precision. In par-
ticular, if cond(p, x) < u/γ2

2n, then the relative accuracy
of the result is bounded by a constant of the order u. This
means that the compensated Horner algorithm computes an
evaluation accurate to the last few bits as long as the con-
dition number is smaller than u/γ2

2n ≈ 1/4n2u. Besides
that, relation (14) tells us that the computed result is as ac-
curate as if computed by the classic Horner algorithm with
twice the working precision, and then rounded to the work-
ing precision.

3.2 A priori condition for faithful rounding

Now we propose a sufficient condition on cond(p, x) to
ensure that the corrected result r computed with the com-
pensated Horner algorithm is a faithful rounding of the ex-
act result p(x).We use the following lemma from [14].

Lemma 5 ([14]). Let r, δ be two real numbers and r =
fl(r). We assume here that r is a normalized floating point
number. If |δ| < u

2 | r| then r is a faithful rounding of r + δ.

From Lemma 5, we derive a useful criterion to ensure
that the compensated result provided by CompHorner is
faithfully rounded to the working precision.

Lemma 6. Let p be a polynomial of degree n with float-
ing point coefficients, and x be a floating point value.
We consider the approximate r of p(x) computed with
CompHorner (p, x), and we assume that no underflow oc-
curs during the computation. Let c denotes c = (pπ +
pσ)(x). If | ĉ − c| < u

2 | r|, then r is a faithful rounding
of p(x).

Proof. We assume that | ĉ− c| < u
2 | r|. From the notations

of Algorithm 3, we recall that fl(r̂ + ĉ) = r. Then from
Lemma 5 it follows that r is a faithful rounding of r̂ + ĉ +
c − ĉ = r̂ + c. Since [r̂, pπ, pσ] = EFTHorner (p, x),
Theorem 3 yields p(x) = r̂ + c. Therefore r is a faithful
rounding of p(x).

The criterion proposed in Lemma 6 concerns the accu-
racy of the correcting term ĉ. Nevertheless Relation (13)
pointed after the proof of Theorem 4 says that the abso-
lute error | ĉ − c| is bounded by γ2

2n p̃(x). This provides
us a more useful criterion, since it relies on the condition
number cond(p, x), to ensure that CompHorner computes
a faithfully rounded result.

Theorem 7. Let p be a polynomial of degree n with floating
point coefficients, and x a floating point value. If

cond(p, x) <
1− u
2 + u

uγ2n
−2, (15)

then CompHorner (p, x) computes a faithful rounding of
the exact p(x).

Proof. We assume that (15) is satisfied and we use the
same notations as in Lemma 6. First we notice that r
and p(x) are of the same sign. Indeed, from (12) it fol-
lows that | r/p(x)− 1| ≤ u + γ2

2n cond(p, x), and there-
fore r/p(x) ≥ 1 − u − γ2

2n cond(p, x). But (15) implies
that 1− u− γ2

2n cond(p, x) > 1− 3u/(2 + u) > 0, hence
r/p(x) > 0. Since r and p(x) have the same sign, it is easy
to see that

(1− u)|p(x)| − γ2
2n p̃(x) ≤ | r|. (16)

Indeed, if p(x) > 0 then (12) implies p(x) − u|p(x)| −
γ2
2n p̃(x) ≤ r = | r|. If p(x) < 0, from (12) it follows that

r ≤ p(x) + u|p(x)|+ γ2
2n p̃(x), hence −p(x)− u|p(x)| −

γ2
2n p̃(x) ≤ − r = | r|.
Next, a small computation proves that

cond(p, x) <
1− u
2 + u

uγ2n
−2

if and only if

γ2
2n p̃(x) <

u
2

[
(1− u)|p(x)| − γ2

2n p̃(x)
]
.

Finally, from (13) and (16) it follows

| ĉ−c| ≤ γ2
2n p̃(x) <

u
2

[
(1− u)|p(x)| − γ2

2n p̃(x)
] ≤ u

2
| r|.

From Lemma 6 we deduce that r is faithfully rounded.

Numerical values for the upper bound (15) to ensure
faithful rounding with the compensated Horner algorithm
are presented in Table 1 for degrees varying from 10 to
500. We assume that the working precision is the IEEE-
754 double precision. For example, when evaluating a
polynomial of degree 100, we know from Table 1 that
CompHorner (p, x) is a faithful rounding of p(x) as long
as cond(p, x) < 1.13 · 1011.

Table 1. A priori bounds on the condition num-
ber w.r.t. polynomial degree n.

n 10 100 200
1−u
2−uuγ2n

−2 1.13 · 1013 1.13 · 1011 2.82 · 1010

4 Dynamic and validated error bounds for
faithful rounding and accuracy

The results presented in Section 3 are perfectly suited
for theoretical purpose, for instance when we can a priori
bound the condition number of the evaluation. However,
neither the error bound in Theorem 4, nor the criterion pro-
posed in Theorem 7 can be easily checked using only float-
ing point arithmetic. Here we provide dynamic counterparts
of Theorem 4 and Proposition 7, that can be evaluated us-
ing floating point arithmetic in the “round to the nearest”
rounding mode.

Lemma 8. Consider a polynomial p of degree n with float-
ing point coefficients, and x a floating point value. We use
the notations of Algorithm 3, and we denote (pπ + pσ)(x)
by c. Then

|c− ĉ| ≤ fl
(

γ̂2n−1Horner (|pπ ⊕ pσ|, |x|)
1− 2(n + 1)u

)
:= α̂. (17)

Proof. Let us denote Horner (|pπ ⊕ pσ|, |x|) by b̂. Since
c = (pπ + pσ)(x) and ĉ = Horner (pπ ⊕ pσ, x) where
pπ and pσ are two polynomials of degree n − 1, Lemma 1
yields

|c− ĉ| ≤ γ2n−1(˜pπ + pσ)(x) ≤ (1 + u)2n−1γ2n−1 b̂.

From (4) and (3) it follows that

|c− ĉ| ≤ (1 + u)2n γ̂2n−1 b̂ ≤ (1 + u)2n+1 fl(γ̂2n−1 b̂).

Finally we use (5) to obtain the error bound (17).

Remark 2. Lemma 8 allows us to compute a validated error
bound for the computed correcting term ĉ. We apply this
result twice to derive next Theorem 9. First with Lemma 6 it
yields the expected dynamic condition for faithful rounding.
Then from the EFT for the Horner algorithm (Theorem 3)
we know that p(x) = r̂ + c. Since r = r̂ ⊕ ĉ, we deduce
| r−p(x)| = |(r̂⊕ ĉ)− (r̂ + ĉ)+(ĉ− c)|. Hence we have

| r − p(x)| ≤ |(r̂ ⊕ ĉ)− (r̂ + ĉ)|+ |(ĉ− c)|. (18)

The first term |(r̂ ⊕ ĉ)− (r̂ + ĉ)| in the previous inequal-
ity is basically the absolute rounding error that occurs when
computing r = r̂⊕ ĉ. Using only the bound (3) of the stan-
dard model of floating point arithmetic, it could be bounded

by u| r|. But here we benefit again from error free transfor-
mations using algorithm TwoSum to compute exactly the
actual rounding error, which leads to a sharper error bound.
Next Relation (19) improves the dynamic bound presented
in [3].

Theorem 9. Consider a polynomial p of degree n with
floating point coefficients, and x a floating point value. Let
r be the computed value, r = CompHorner (p, x) (Al-
gorithm 3) and let α̂ be the error bound defined by Rela-
tion (17).

• If α̂ < u
2 | r|, then r is a faithful rounding of p(x) .

• Let e be the floating point value such that r + e =
r̂ + ĉ, i.e., [r, e] = TwoSum (r̂, ĉ), where r̂ and ĉ
are defined by Algorithm 3. The absolute error of the
computed result r = CompHorner (p, x) is bounded
as follows,

| r − p(x)| ≤ fl
(

α̂ + |e|
1− 2u

)
:= β̂. (19)

Proof. The first proposition follows directly from
Lemma 6.
By hypothesis r = r̂ + ĉ − e, and from Theorem 3 we

have p(x) = r̂ + c, thus

| r − p(x)| = | ĉ− c− e| ≤ | ĉ− c|+ |e| ≤ α̂ + |e|.
From (3) and (5) it follows that

| r − p(x)| ≤ (1 + u) fl(α̂ + |e|) ≤ fl
(

α̂ + |e|
1− 2u

)
;

which proves the second proposition.

From Theorem 9 we deduce the expected algorithm. It
computes the compensated result r together with the vali-
dated error bound β̂. Moreover, the boolean value isfaithful
is set to true if and only if the result is proved to be faith-
fully rounded — if isfaithful is set to false, then r may or
may not be a faithful rounding of p(x).
When the check for faithful rounding fails (the boolean

isfaithful is false), r may or may not be a faithful rounding
of p(x), but the error in the r is still bounded by β̂. Never-
theless, the computation of the error bound β̂ can be safely
omitted in the previous algorithm CompHornerIsFaithful

since isfaithful does not depend on β̂.

5 Experimental results

We consider polynomials with floating point coefficients
and floating point entries x. We use Matlab codes for Com-
pHorner (Algorithm 3) and CompHornerIsFaithful (Al-
gorithm 4) within the accuracy tests we propose hereafter.

Algorithm 4 Compensated Horner algorithm with check of
the faithful rounding

function [r, β̂, isfaithful] = CompHornerIsFaithful (p, x)
[r̂, pπ, pσ] = EFTHorner (p, x)
ĉ = Horner (pπ ⊕ pσ, x)

b̂ = Horner (|pπ ⊕ pσ|, |x|)
α̂ = (γ̂2n−1 ⊗ b̂)� (1� 2(n + 1)⊗ u)
[r, e] = TwoSum (r̂, ĉ)

β̂ = (α̂⊕ |e|)� (1− 2⊗ u)
isfaithful = (α̂ < u

2 | r|)

CompHorner requires 21n + O(1) flop and that Com-
pHornerIsFaithful requires 26n + O(1) flop. For testing
the time performances, the previous algorithms are coded
in C language and several test platforms are described in
next Table 2.

5.1 Accuracy tests

We focus on both the a priori and dynamic bounds with
two sets of tests. We recall that two cases may occur when
the dynamic test for faithful rounding in Algorithm 4 is per-
formed.

1. If the dynamic test is satisfied, this proves that the com-
pensated result is a faithful rounding of the exact p(x).
Corresponding plots are reported with a square (�) in
Figure 1 and Figure 2.

2. If the dynamic test fails then the compensated result
may or may not be faithfully rounded. We distinguish
two sub-cases where we compare the compensated re-
sults to reference ones obtained from high-precision
computation.

(a) If the compensated result is actually faithfully
rounded, the evaluation value is a filled circle (•).

(b) Otherwise the compensated result is not a faithful
rounding of the exact p(x) and we plot a cross (×).

We consider huge condition numbers in the following tests.
This have a sense here since the entries and the coefficients
of every tested polynomial are floating point numbers.

5.1.1 Faithful rounding with compensated Horner

In the first experiment, we evaluate the expanded form of
polynomials pn(x) = (1− x)n, for degree n = 6 and 8, in
the neighborhood of the multiple root x = 1. These eval-
uations are extremely ill-conditioned since cond(pn, x) =

 1e+25

 1e+20

 1e+15

 1e+10
 0.97 0.98 0.99 1 1.01 1.02 1.03

co
nd

(p
6,

 x
)

argument x

 5e-13

 4e-13

 3e-13

 2e-13

 1e-13

 0
 0.97 0.98 0.99 1 1.01 1.02 1.03

p 6
(x

)

Evaluation of p6(x) = (1-x)6 in expanded form

 1e+25

 1e+20

 1e+15

 1e+10
 0.97 0.98 0.99 1 1.01 1.02 1.03

co
nd

(p
8,

 x
)

argument x

 5e-13

 4e-13

 3e-13

 2e-13

 1e-13

 0
 0.97 0.98 0.99 1 1.01 1.02 1.03

p 8
(x

)

Evaluation of p8(x) = (1-x)8 in expanded form

Figure 1. Accuracy tests for (1 − x)n near
x = 1 with CompHornerIsFaithful. See Subsec-
tion 5.1 for the definition of displayed plots.

|(1+|x|)/(1−x)|n. For a given degree, this condition num-
ber is arbitrarily large as the entry x tends closer to the root
1. These condition numbers are plotted in the lower frames
of Figure 1 while x varies around the root. The well known
relation between the lost of accuracy and the nearness and
the multiplicity of the root, i.e., the increasing of the con-
dition number, is clearly illustrated. Evaluation is no more
faithfully rounded for entries too close to the root (evalua-
tions for entries out of the range of the x-axis on Figure 1 are
faithfully rounded). Alas the dynamic bound fails to iden-
tify every faithful result and so is pessimistic, even more
and more pessimistic as the condition number increases.
For the next experiment, we first designed a generator of

arbitrarily ill-conditioned polynomial evaluations. It relies
on definition (6) of the condition number. Given a degree
n, a floating point entry x and a targeted value C for the
condition number, it generates a polynomial p with floating

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Accuracy of polynomial evaluation with the compensated Horner scheme [n=50]

u

1/u 1/u2

u + γ2n
2 cond

(1-u)/(2+u)uγ2n
-2

Figure 2. Accuracy of CompHornerIsFaithful
w.r.t. to the condition number. Leftmost verti-
cal line is the a priori sufficient condition (15)
and broken line is the a priori bound (14).

point coefficients such that cond(p, x) has the same order
of magnitude as C. The principle of the generator is the fol-
lowing:
n/2� floating point coefficients of p are randomly
generated such that p̃(x) =

∑ |ai||x|i ≈ C, and then the
remaining coefficients are generated ensuring |p(x)| ≈ 1
thanks to high accuracy computation. Therefore we obtain
polynomials p such that cond(p, x) = p̃(x)/|p(x)| ≈ C,
for arbitrary values of C.
In this test we generate polynomials of degree 50 whose

condition numbers vary from about 102 to 1035. The results
of the tests performed with CompHornerIsFaithful (Algo-
rithm 4) are reported on Figure 2. On this figure the hor-
izontal axis does not represent anymore the x entry range
but the condition number Relation (6).
We observe that the compensated algorithm exhibits the

expected behavior. The relative error in the compensated re-
sult is smaller than the working precision u—the horizontal
line— as long as the condition number is smaller than 1/u
—the second vertical line. Then, for condition numbers be-
tween 1/u and 1/u2, this relative error degrades to no accu-
racy at all. As usual, the a priori error bound (14) appears
to be pessimistic by many orders of magnitude —compare
the observed behavior with the comments we provide just
after Relation (14)
The a priori sufficient condition (15) for faithful round-

ing with respect to the condition number is also represented
on Figure 2 —the leftmost vertical line. As expected, ev-
ery polynomial evaluation with a condition number smaller
than this a priori bound (15) is faithfully evaluated with
Algorithm 4. We also see that the dynamic test for faith-
ful rounding (Proposition 9) succeeds for condition num-
bers larger than the a priori bound (15) —let us recall
that all the compensated evaluations proved to be faith-
fully rounded thanks to the dynamic test are reported with
a square. Finally we notice that the compensated Horner

 1e-34

 1e-33

 1e-32

 1e-31

 1e-30

 1e-29

 1e-28

 1e-27

 1e-26

 1e-25

 0.994 0.996 0.998 1 1.002 1.004 1.006

ab
so

lu
te

 fo
rw

ar
d

er
ro

r

argument x

Accuracy of the absolute error bounds for CompHorner

A priori error bound
Dynamic error bound

Actual forward error

Figure 3. Significance of the error bounds.

algorithm produces accurate evaluations for condition num-
bers up to about 1/u —evaluations reported with a square
or a filled circle.

5.1.2 Significance of the dynamic error bound

We illustrate the significance of the dynamic error
bound (19), compared to the a priori absolute error
bound (12) and to the actual forward error. We evaluate
the expanded form of p(x) = (1 − x)5 for 400 points
near x = 1. For each value of the entry x, we compute
CompHorner (p, x) (Algorithm 3), the associated dynamic
error bound (19) and the actual forward error. The results
are reported on Figure 3.
As already noticed, the closer the argument is to the root

1 (i.e., the more the condition number increases), the more
pessimistic becomes the a priori error bound. Our dynamic
error bound is more significant than the a priori error bound
as it takes into account the rounding errors that occur during
the computation.

5.2 Time performances

All experiments are performed using IEEE-754 double
precision. Since the double-doubles [9] are usually con-
sidered as the most efficient portable library to double the
IEEE-754 double precision, we consider it as a reference
in the following comparisons. For our purpose, it suffices
to know that a double-double number a is the pair (ah, al)
of IEEE-754 floating point numbers with a = ah + al and
|al| ≤ u|ah|. This property implies a renormalisation step
after every arithmetic operation with double-double values.
We denote byDDHorner our implementation of the Horner
algorithm with the double-double format, derived from the
implementation proposed in [9].
We implement the three algorithms CompHorner,

CompHornerIsFaithful and DDHorner in a C code to
measure their overhead compared to the Horner algorithm.

Table 2. Measured time performances.

CompHorner
Horner

CHIsFaithful
Horner

DDHorner
Horner

P4 gcc 3.3.5 3.77 5.52 10.00
icc 9.1 3.06 5.31 8.88

AMD64 gcc 4.0.1 3.89 4.43 10.48
IA’64 icc 3.4.6 3.64 4.59 5.50

icc 9.1 1.87 2.30 8.78
∼ 2− 4 ∼ 4− 6 ∼ 5− 10

We program these tests straightforwardly with no other op-
timization than the ones performed by the compiler. All
timings are done with the cache warmed to minimize the
memory traffic over-cost.
We test the running times of these algorithms for dif-

ferent architectures with different compilers as described
in Table 2. Our measures are performed with polynomi-
als whose degree vary from 5 to 200 by step of 5. For each
algorithm, we measure the ratio of its computing time over
the computing time of the classic Horner algorithm; we dis-
play the average time ratio over all test cases in Table 2.
The results presented in Table 2 show that the slowdown

factor introduced by CompHorner compared to the classic
Horner roughly varies between 2 and 4. The same slow-
down factor varies between 4 and 6 for CompHornerIs-
Faithful and between 5 and 10 for DDHorner. We can see
that CompHornerIsFaithful runs at most 2 times slower
than CompHorner: the over-cost due to the dynamic test
for faithful rounding is therefore quite reasonable. Anyway
CompHorner andCompHornerIsFaithful run both signif-
icantly faster than DDHorner.
We provide time ratios for IA’64 architecture (Itanium

2). Tested algorithms take benefit from IA’64 instructions,
e.g., fma, but are not described here —see [7] for details.

6 Conclusion

Compensated Horner algorithm yields more accurate
polynomial evaluation than the classic Horner iteration. Its
accuracy is similar to a Horner iteration performed in a
doubled working precision. Hence compensated Horner
may perform a faithful polynomial evaluation with IEEE-
754 floating point arithmetic in the “round to the nearest”
rounding mode. An a priori sufficient condition with re-
spect to the condition number that ensures such faithfulness
has been defined thanks to the error free transformations.
These error free transformations also allow us to derive

a dynamic sufficient condition that is more significant to
check for faithful rounding with CompHorner.
It is interesting to remark here that the significance of this

dynamic bound can be improved easily. Whereas bounding

the error in the computation of the (polynomial) correcting
term in Relation (17), a good approximate of the actual er-
ror could be computed (applying againCompHorner to the
correcting term). Of course such extra computation will in-
troduce more running time while such overhead is not al-
ways useful. So it suffices to run this extra (but costly)
checking only if the previous dynamic one fails —a simi-
lar strategy as in dynamic filters for geometric algorithms.
Compared to the classic Horner algorithm, experimental

results exhibit reasonable over-costs for accurate polyno-
mial evaluation (between 2 and 4) and even for this com-
putation with a dynamic checking for faithfulness (between
4 and 6). Let us finally remark than such computation that
provides as accuracy as if the working precision is doubled
and a faithfulness checking costs no more running time than
the “double-double” counterpart without any check.
Future work will be to consider subnormal results and

also an adaptive algorithm that ensure faithful rounding for
polynomials with an arbitrary condition number.

References

[1] T. J. Dekker. A floating-point technique for extending the
available precision. Numer. Math., 18:224–242, 1971.

[2] J. W. Demmel. Applied Numerical Linear Algebra. SIAM,
1997.

[3] S. Graillat, P. Langlois, and N. Louvet. Compensated Horner
scheme. Technical report, Univ. of Perpignan, France, 2005.

[4] N. J. Higham. Accuracy and Stability of Numerical Algo-
rithms. SIAM, second edition, 2002.

[5] IEEE Standard for binary floating-point arithmetic,
ANSI/IEEE Standard 754-1985. 1985.

[6] D. E. Knuth. The Art of Computer Programming: Seminu-
merical Algorithms. Addison-Wesley, third edition, 1998.

[7] P. Langlois and N. Louvet. Operator dependant compensated
algorithms. In Proceedings of the 12th GAMM - IMACS -
SCAN, Duisburg, Germany, 2007.

[8] C. Li, S. Pion, and C.-K. Yap. Recent progress in exact ge-
ometric computation. Journal of Logic and Algebraic Pro-
gramming, 64(1):85–111, 2005.

[9] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin,
B. J. Thompson, T. Tung, and D. J. Yoo. Design, implemen-
tation and testing of extended and mixed precision BLAS.
ACM Trans. Math. Software, 28(2):152–205, 2002.

[10] P. Markstein. IA-64 and elementary functions: speed and
precision. Prentice-Hall, 2000.

[11] J.-M. Muller. Elementary functions: algorithms and imple-
mentation. Birkhäuser, second edition, 2006.

[12] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot
product. SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[13] D. M. Priest. Algorithms for arbitrary precision floating
point arithmetic. In Proceedings of IEEE ARITH-10, pages
132–144, 1991.

[14] S. M. Rump, T. Ogita, and S. Oishi. Accurate summation.
Technical report, T.U. Hamburg, Germany, 2005.

