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Abstract

The non-positional nature of Residue Number Systems
(RNS) is very useful to achieve carry free arithmetic. How-
ever it makes the comparison of numbers more difficult than
in the traditional weighted number systems: there is no any
efficient general method for magnitude comparison in RNS.
Moreover, magnitude comparison for RNS that rely on pairs
of conjugate moduli, which are not relatively prime moduli
sets recently proposed because of the large dynamic ranges
and the simplicity of the arithmetic units, is a new unsolved
problem. In this paper an efficient method and a VLSI archi-
tecture is proposed for magnitude comparison in RNS based
on sets formed by two pairs of conjugate moduli. This pro-
posed method is much more efficient than the other known
ones and is the only one valid for moduli sets not formed by
relatively prime integers. The method has been applied to
design a very fast Sum-of-Absolute Differences (SAD) unit
for motion estimation in video sequences that performs the
function entirely within the RNS channels. Experimental
results show that this new SAD unit, implemented in the in-
ternal memory blocks of the xc2vp50-7 FPGA, is capable of
achieving the high throughput required to perform real-time
motion estimation in high resolution images.

1 Introduction

RNS have been applied to speedup linear processing,
namely to achieve high-speed and low-power VLSI imple-
mentations for the multiply-accumulate operation, typically
employed in linear signal and image processing [10]. How-
ever, the non-positional nature of the RNS prevents its us-
age to implement the division and, in general, non-linear
processing. Magnitude comparison, which is a fundamen-
tal operation to support this type of processing is difficult to
implement in RNS, being an important topic of research in

the last few years [6], [2] and [14].

The traditional techniques for magnitude comparison
in RNS use the Chinese Remainder Theorem (CRT) or
the Mixed Radix Conversion (MRC) to convert represen-
tation of the numbers from the residues to a positional
code [10]. However both these techniques are inefficient,
because CRT requires modulo M operations (where M is
the range of the number system) and MRC is a slow se-
quential method. A different technique for comparing the
magnitude of numbers in residue representation, originally
proposed by Akushskii, Burcev and Park, uses the concept
of “core function” and applies a descendent and lift scheme
to determine the “critical core” values. An improved ver-
sion of this technique has been proposed several years later,
avoiding the iterative procedure by introducing a redundant
modulus [6]. Another proposed approach for magnitude
number comparison in RNS is based on the “diagonal func-
tion”, defined as the sum of suitable quotients for estimat-
ing its magnitude order [2]. More recently, a new algorithm
based on the New Chinese Reminder Theorems [13] has
also been proposed to compare the magnitude of numbers
in RNS [14]. By applying the new CRT II, it reduces the
CRT modulo operation size to

√
M .

In this paper a new algorithm is proposed for compar-
ing the magnitude of numbers in RNS, based on the new
CRT III [13]. This new theorem extends the application
of RNS to the case where the moduli set is not formed
by pairwise relatively prime moduli. Thus it leads to the
proposal of a new class of more efficient RNS based on
multi-moduli sets that rely on pairs of conjugate mod-
uli [8]. The proposed algorithm takes advantage of both
the characteristics of the two pairs of conjugate moduli sets
({2n − 1, 2n + 1, 2n+1 − 1, 2n+1 + 1}) and also of elemen-
tary properties relating the parity of integer numbers when
added or subtracted.

The proposed algorithm is important for two main rea-
sons. On one hand it is the first algorithm to be proposed for



this important class of moduli sets,. On the other hand, it is
the first algorithm leading to VLSI architectures with prac-
tical interest for real applications that require comparing the
magnitude of numbers, exhibiting even better performance
than the ones for weighted number systems. This practical
interest is illustrated by implementing an efficient RNS unit
for computing the minimum Sum of Absolute Differences
(SAD), with application to video motion estimation, which
is, by far, the most time consuming and compute intensive
task in video coding.

The paper is organized as follows. The adopted class of
moduli sets is presented and its characteristics are discussed
in the next section. Section 3 proposes a new algorithm for
comparing the magnitude in RNS and a VLSI architecture
for implementing it. Section 4 applies the proposed VLSI
architecture for magnitude comparison to design a video
motion estimator. Finally, section 5 concludes this paper.

2 The adopted Class of Moduli Sets

A class of sets (S) composed by pairs of conjugate mod-
uli (2ni ± 1) has been recently proposed to achieve faster
and more efficient RNS processing [8]:

{m1, m∗
1 , · · · , mk , m∗

k} = {2n1−1, 2n1+1, · · · , 2nk−1, 2nk +1} .

Although S does not form a set of pairwise relatively prime
moduli, for any k > 1, it was proved that this limitation can
be removed by translating the set S into the set S′:

S′ =


m1

c1
,
m∗

1

c∗1
, · · · ,

m∗
k

c∗k

ff
,

where m1
c1

,
m∗

1
c∗1

, · · · ,
m∗

k

c∗k
are relative prime. This class of

RNS result in hardware efficient two-level implementations
for the weighted-to-RNS and the RNS-to-weighted convert-
ers [8, 9], by applying the CRT III [13].

Two pairs of conjugate moduli form a four elements set
with a large dynamic range defined by the Least Common
Multiple (LCM) of the moduli:

M = LCM(2n1 − 1, 2n1 + 1, 2n2 − 1, 2n2 + 1) .

The value of n2 is usually fixed to n2 = n1 + 1, in order
to achieve a 4-moduli RNS not only completely balanced
but also with interesting numerical properties. Hereupon,
n1 will be represented simply by n and the adopted moduli
set is represented as {2n − 1, 2n + 1, 2n+1 − 1, 2n+1 +
1}. The Greatest Common Divisor (GCD) of the product
of conjugate pairs can be easily computed by applying the
Euclidian algorithm:

GCD(22n−1, 22n+2−1) = 3 ⇒ M =
(22n − 1)(22n+2 − 1)

3
(1)

An important property of this moduli sets is that M is an
odd number for any integer n. This property, which will be

used on this paper, can be easily proved (〈x〉y denotes the
operation x mod y):

〈M〉2 =

* oddz }| {
(22n − 1)2

3
+

evenz }| {
22n × (22n − 1)

+
2

= 〈1 + 0〉2 = 1 . (2)

By using the following properties,
〈
2k

〉
2k−1

= 1 and〈
2k

〉
2k+1

= −1, for any integer k, the residues X1 and X2

of an integer X can be easily computed in the second level
(L2) of the binary-to-RNS converter:

X1 = 〈X〉22n−1 = 〈X [2n − 1 : 0]+
+ X [4n − 1 : 2n] + X [4n : 4n]〉22n−1 (3)

X2 = 〈X〉22(n+1)−1 = 〈X [2(n + 1) − 1 : 0]+
+ X [4n : 2(n + 1)]〉22(n+1)−1 , (4)

where X[k:l] represents the bits k to l of the integer X.
In the first level (L1) of the binary-to-RNS converter, the

four residues, x1, x∗
1, x2 and x∗

2, are computed by using the
following equations:

x1 = 〈X1[n − 1 : 0] + X1[2n − 1 : n]〉2n−1 (5)

x∗
1 = 〈X1[n − 1 : 0] − X1[2n − 1 : n]〉2n+1 (6)

x2 = 〈X2[n : 0] + X2[2n : n + 1]〉2n+1−1 (7)

x∗
2 = 〈X2[n : 0] − X2[2n : n + 1]〉2n+1+1 . (8)

A single modulo 22n − 1 (3:2) Carry-Save Adder (CSA)
and a modulo 22n−1 Carry-Propagate Adder (CPA) can be
used to compute (3), and similar units can be used for com-
puting (4). Four CPAs are required for L1, to the 4 moduli,
to compute in parallel the residues according to (5) to (8).

The RNS-to-binary conversion can be computed by ap-
plying CRT III [13]. For sets with two moduli {m1, m2} the
number X can be computed by using the following equa-
tion:

X = X1 + m1

〈
(
m1

d
)−1 X2 − X1

d

〉
m2/d

, (9)

where
〈
θ−1

〉
φ

denotes the multiplicative inverse of θ mod-
ulo φ and d represents the GCD(m1, m2). The value of m1

should be greater than m2 , in order to obtain the modulo
operation for the minimum divisor. It can be noticed that
for the case that d = 1, (9) yields the traditional 2-channel
Mixed Radix Conversion (MRC) equation.

In the first level of the converter for the adopted moduli
set (d=1) there are two converters operating in parallel:

X1 = x∗
1 + (2n + 1)

〈
(2n + 1)−1(x1 − x∗

1)
〉
2n−1

= x∗
1 + (2n + 1)

〈
2n−1(x1 − x∗

1)
〉
2n−1

(10)

X2 = x∗
2 + (2n+1 + 1)

〈
(2n+1 + 1)−1(x2 − x∗

2)
〉
2n+1−1

= x∗
2 + (2n+1 + 1) 〈2n(x2 − x∗

2)〉2n+1−1 . (11)
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In the second level of this converter, d = 3 and the X value
is computed as:

X = X2 + (22(n+1) − 1)

*
(
22(n+1) − 1

3
)−1 X1 − X2

3

+
22n−1

3

. (12)

3 Proposed method for comparing magni-
tude in RNS

Two unsigned integer numbers A and B can be com-
pared by subtracting their values (C = A−B) and by com-
paring the results against zero. Depending on the relative
values of the operands, C assumes a magnitude that results
from one of the following two expressions:

C =
{

A − B, for A ≥ B (13a)

M + A − B, for A < B . (13b)

The proposed algorithm for number comparison in RNS
is based on the parity, which indicates whether an integer
number is odd or even.

Axiom 1. The subtraction of two numbers with the same
parity leads to an even number and the subtraction of two
numbers with different parities leads to an odd number.

Based on the mathematical axiom 1, (13a), and (13b),
the following prepositions can be stated for a moduli set for
which M is an odd number, like the adopted one:

Preposition 1. A ≥ B iff: i) A and B have the same par-
ity and C is an even number or ii) A and B have different
parities but C is an odd number.

Proof. A ≥ B corresponds to the condition (13a). Thus,
axiom 1 states that C must be an even number when A and
B have the same parity and odd in the other cases. Let us
suppose, by assumption, that A can be smaller than B when
C is an even number and A and B have the same parity.
Then, from (13b), C = A − B + M would become an odd
number (M is odd), which contradicts the initial assump-
tion. On the other hand, supposing that A can be smaller
than B when C is an odd number and A and B have dif-
ferent parities it is observed from (13a) that C becomes an
even number. This contradicts the assumption that C can
be odd in this case and proves that A ≥ B if and only if
preposition 1 is verified.

Preposition 2. A < B iff: i) A and B have the same parity
and C is an odd number or ii) A and B have different parities
but C is an even number.

Proof. Preposition 2 can be easily proved by contradiction
has it was made for Preposition 1.

In [5] it has been already presented the idea of perform-
ing parity checking for comparing the magnitude in RNS.
However, since there is no simple method to identify the
parity of a number represented in RNS, it proposes the us-
age of parity tables with minimum size of M × 1-bit.

The algorithm now proposed to compare the magnitude
in RNS is also based on Prepositions 1 and 2, but makes
use of properties of the pairs of conjugate moduli sets to
efficiently identify the parity of a number directly from the
residues. By considering n any integer number, we derive a
theorem to identify the parity of a RNS number X (〈X〉2).

Lemma 1.
〈

22n+1+1
3

〉
22n−1

3

=
〈

22(n+1)−1
3

〉
22n−1

3

= 1 .

Proof.
〈

22n+1+1
3

〉
22n−1

3

=
〈

2×(22n−1)
3 + 1

〉
22n−1

3

= 1〈
22(n+1)−1

3

〉
22n−1

3

=
〈

4×(22n−1)
3 + 1

〉
22n−1

3

= 1

Lemma 2.
〈
(22(n+1)−1

3 )−1
〉

22n−1
3

= 22n+1+1
3 .

Proof. By applying the two expressions in lemma 1:D
22n+1+1

3
× 22(n+1)−1

3

E
22n−1

3

=
D

22(n+1)−1
3

E
22n−1

3

= 1

Theorem 1. Given an integer X in the range

[0, (22n−1)×(22(n+1)−1)
3 [ and the moduli set

{2n − 1, 2n + 1, 2n+1 − 1, 2n+1 + 1}, the parity of
the number X can be computed by using the following
simple equation:

〈X〉2 =
〈
〈X2〉2 ⊕

〈〈X1 − X2〉22n−1

〉
2

〉
2

, (14)

where ⊕ denotes the XOR operation and X1 and X2 are ob-
tained by computing (10) and (11), herein presented again
for completeness:

X1 = x∗
1 + (2n + 1) × 〈

2n−1(x1 − x∗
1)

〉
2n−1

(15)

X2 = x∗
2 + (2n+1 + 1) × 〈2n(x2 − x∗

2)〉2n+1−1(16)

where x1, x∗
1, x2 and x∗

2 represent the residues of the chan-
nels 2n − 1, 2n + 1, 2n+1 − 1 and 2n+1 + 1, respectively.

Proof. Applying lemmas 2 and 1 in (12):

X = X2 + (22(n+1) − 1)

fi
22n+1 + 1

3
× X1 − X2

3

fl
22n−1

3

(17)

X = X2 + (22(n+1) − 1)

fi
X1 − X2

3

fl
22n−1

3

. (18)
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To derive a simple expression for computing X1−X2
3 , we

start from the definition of a residue:

X = k1 × (22n − 1) + X1, (19)

with k1 =
⌊

X
22n−1

⌋
< 22×(n+1)−1

3

X = k2 × (22(n+1) − 1) + X2, (20)

with k2 =
⌊

X
22(n+1)−1

⌋
< 22n−1

3 .

Subtracting (21) from (20):

X1 − X2 = (22n − 1) × (4 × k2 − k1) + 3 × k2 . (21)

Since k2 < 22n−1
3 :

〈
X1 − X2

3

〉
22n−1

3

=
〈

(22n − 1)
3

× (4 × k2 − k1)+

+ k2

〉
22n−1

3

= k2 (22)

〈X1 − X2〉22n−1 =
〈
(22n − 1) × (4 × k2 − k1)+

+ 3 × k2

〉
22n−1

= 3 × k2 . (23)

It can be concluded that
〈

X1−X2
3

〉
22n−1

3
has the same

parity that 〈X1 − X2〉22n−1. Therefore, to simplify the
identification of the parity of X , (18) can be written as:

X = X2 + (22(n+1) − 1) × k2 . (24)

Since X2 < 22(n+1) − 1 (“|” denotes the concatenation
operator):

X = [X2|(22(n+1) × k2)] − k2

〈X〉2 = 〈〈X2〉2 − 〈k2〉2〉2
〈X〉2 =

〈
〈X2〉2 ⊕

〈〈X1 − X2〉22n−1

〉
2

〉
2

, (25)

which ends the proof of theorem 1.

Corollary 1. For an integer X in the reduced range
[0, 22n − 1] and the moduli set {2n − 1, 2n + 1, 2n+1 −
1, 2n+1 + 1}, the parity of the number X can be computed
by using the the simple expression:

〈X〉2 = 〈X2〉2 . (26)

Proof. X1 = X2 when X ∈ [0,22n − 1[ in (14). For X=
22n − 1, 〈X1〉22n−1 = 〈X2〉22n−1 = 0 and (14) is also
reduced to (26).

Based on the previous equations, Algorithm 1 is pro-
posed to efficiently compare the magnitude of two RNS
numbers (A, B), represented by the residues (a1, a

∗
1, a2, a

∗
2)

Algorithm 1 Comparison of the numbers A, B represented
in RNS (a1, a

∗
1, a2, a

∗
2, b1, b

∗
1, b2, b

∗
2).

1: c1 = 〈a1 − b1〉2n−1 ; c∗1 =
˙
a∗
1 − b∗1

¸
2n+1

;

c2 = 〈a2 − b2〉2n+1−1 ; c∗2 =
˙
a∗
2 − b∗2 ;

¸
2n+1+1

;
2: (A1, A2) = 1st-level-converter(a1, a∗

1, a2, a∗
2); {(15) and (16)}

(B1, B2) = 1st-level-converter(b1, b∗1 , b2, b∗2); {(15) and (16)}
(C1, C2) = 1st-level-converter(c1, c∗1, c2, c∗2); {(15) and (16)}

3: PA = LSB(〈A1 − A2〉22n−1) ⊕ LSB(A2); {′1′ if X even}

PB = LSB(〈B1 − B2〉22n−1) ⊕ LSB(B2);

PC = LSB(〈C1 − C2〉22n−1) ⊕ LSB(C2);
4: if PA ⊕ PB ⊕ PC = ′1′ then
5: A ≥ B is TRUE;
6: else
7: A < B is TRUE;
8: end if

Table 1. Performance of the algorithms.
Algorithm Operation size

[6] ≈ 4 × M
[2] modulo(≈ 23n+2)
[14] modulo(22n−1)

proposed modulo(2n+1 − 1)

and (b1, b
∗
1, b2, b

∗
2), respectively. The parity of numbers A

and B is not known. The sequence of the algorithm is ex-
pressed by the sequential numbering of the lines, where the
computation in each line can be performed in parallel .

In line 1 the residues of C can be computed by subtract-
ing in parallel the residues of A and B. All operations are
performed in the respective modulo. In line 2, the residues
of A, B and C in the first level are computed by applying
(10) and (11). All the residues, for each channel and for the
different numbers A, B, C, can be computed in parallel. In
line 3, the parity of the three numbers are computed by us-
ing theorem 1, or alternatively by applying corollary 1 when
A and B ∈ [0, 22n−1]. The logic value of each variable PX

becomes one when the corresponding number is even. Fi-
nally, depending on these parities, prepositions 1 and 2 are
used to compare the magnitude of A and B: if the cardinal
of numbers with even parity is odd (one ore three), it means
that A ≥ B, otherwise A < B.

Table 1 assesses the performance of the proposed algo-
rithm with other known comparison algorithms for RNS
sets composed by relatively prime moduli. The “operation
size” in this table corresponds to the largest modulo opera-
tion or the largest integer operated in the algorithms. For
the proposed algorithm, which is specific to the adopted
class of moduli sets, this figure is only (2n+1 − 1), an order
of magnitude smaller than the “operation size” of the best
amongst the other algorithms. Moreover the total number of
operations is drastically reduced to the point where the cost
of comparing the magnitude of two numbers represented in
RNS is lower than the cost of comparing binary numbers.
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Figure 1. Architecture for parity detection:
a) L1: range [0, 22n − 1] ; b) L1,2: full range.

The VLSI implementation of the algorithm relies on very
simple digital circuits (see fig. 1). The first level of the RNS-
to-weighted conversion ((15) and (16)), can be performed
in parallel for the two channels. A single 1’s complement
adder is needed for each computation 〈(x1 − x∗

1)〉2n−1 and
〈(x2 − x∗

2)〉2n+1−1. Scaling the result by 2n−1 (or 2n) is
performed by rotating it one bit to the right and then mul-
tiplying the result by 2n + 1 (or 2n+1 + 1) corresponds to
concatenating the result with itself. Apparently a 2n-bit bi-
nary adder is required to add x∗

1 (and x∗
2) but the hardware

can be simplified, as depicted in fig. 1, to a n + 1-bit adder
and a n + 1-bit incrementer. Finally, a simplified 1’s com-
plement adder can be used to compute the Less Significant
Bit (LSB) of 〈(X1 − X2)〉22n−1, based on a 2n-bit CSA
and a carry out generator circuit. It is worth noticing that
rotation and concatenation operations can be implemented
hardwired, thus requiring no further hardware resources.
The proposed VLSI architectures presented in fig. 1 were
described in VHDL and its overall functionality was thor-
oughly simulated. Next section applies the proposed archi-
tecture to motion estimation in video sequences.

4 Motion estimator in RNS

Block-Matching Motion Estimation (BME) searches for
the “best matching block” between the current and a refer-

ence frame, according to a search algorithm and a distance
metric. The most frequently used employed distance met-
ric is the Sum of Absolute Differences (SAD). The search
algorithm can vary from the optimal Full Search (FS) to
sub-optimal fast search algorithms [4]. As depicted in Al-
gorithm 2 for blocks with the size N × N , to compute the
SAD for a current block x, located at (i, j), and a candi-
date block x̂, with relative coordinates (u, v) in the search
area of the reference frame, three different stages can be
considered: i) absolute difference (ABS) calculation; ii) ac-
cumulation of absolute differences (SAD variable) and iii)
determination of SADmin, which is performed only once,
out of the two nested loops.

Algorithm 2 BME using SAD distortion measure for the
block x with the original coordinates (i,j)
1: for k=0 to (N-1) do
2: for l=0 to (N-1) do
3: ABS(u, v, k, l) = |x(i+ k, j + l)− x̂(u + i + k, v + j + l)|;
4: SAD(u, v) = SAD(u, v) + ABS(u, v, k, l);
5: end for
6: end for
7: if SAD(u, v) < SADmin then
8: SADmin = SAD(u, v) ;
9: Motionvector = (u, v) ;

10: end if

Typically video coding standards use N = 16 and a 2p

intensity levels with p = 8, while the H.264/AVC standard
supports variable block size [7]. A block diagram of a typ-
ical architecture for computing Algorithm 2 is presented in
fig. 2. In the first top stage of this architecture, absolute dif-
ferences are computed in parallel for 16 pixels of the cur-
rent block and of a candidate block (|x − x̂|). Then these
differences are applied to an adder tree and a final adder
is required to accumulate the sequences of 16 pixels that
compose a block. Finally the SAD_min is determined by
comparing the actual value of the SAD_min with any new
computed value. The SAD\_min register is initially set the
maximum possible value (SAD_IV=M-1).

Optimized and efficient arithmetic structures and units
have been proposed to improve each of the stages of the
architecture presented in fig. 2. Some examples are an im-
proved architecture for determining the minimum SAD [1]
and techniques for enhancing the architectures at the three
processing stages [11]. Nevertheless, p-bit CPAs are re-
quired and a (2 × log2 N + p)-bit CPA (or at least its carry
generation part). Moreover, for example, 6 levels of CSAs
are required if N=16 differences are computes in parallel
and have to summed.

Let us design a SAD architecture for RNS based on
the proposed method to directly compare the magnitude of
numbers from their residues. Beside the comparison oper-
ations, required in the first and last stages of the algorithm
for computing the minimum SAD, only modulo 2n ± 1 ad-
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Figure 2. Block diagram of the traditional ar-
chitecture for SAD calculation and minimum
value determination.

ditions and subtractions have to be calculated.
To set up the value of n, the maximum value of the SAD,

N2×2p, has to be within the dynamic range (M ) associated
to the moduli set ({2n − 1, 2n + 1, 2n+1 − 1, 2n+1 + 1}).
Since 24n < M , for n ≥ 2, the following expression defines
the minimum value of n required for computing the SAD:

n ≥ �2 × log2 N + p

4
� . (27)

For the typical values N=16 and p=8, n can be equal to 4
leading to the moduli set: {15, 17, 31, 33}.

Fig. 3 presents a block diagram of the proposed new ar-
chitecture for motion estimation based on RNS arithmetic.
In the first top stage, the values of the pixels are converted to
residues and the absolute value of the differences are com-
puted in the RNS domain (see fig. 4). For p = 2 × n, the
minimum and maximum input values are 0 and 22n − 1, so
the binary-to-RNS converter corresponds just to four mod-
ulo adders operating in parallel to directly compute (5)-(8).
Differences are also calculated in parallel to the multiple
residues and both xi − x̂i and x̂i −xi are computed in order
to obtain the absolute value. The absolute value is achieved
by directly using the parity of xi and x̂i (LSB of input num-
bers) and by computing the parity of xi − x̂i. Given that
|xi − x̂i| ≤ 22n − 1, a “parity checker L1” simplified ar-
chitecture (see fig. 1a) is applied in fig. 4. Four modulo
adder trees are used to calculate in parallel the sum of the
absolute differences for the four channels. These modulo

adder trees can be built by applying modified CSAs trees
or by using modulo 2i − 1 and modulo 2i + 1 CPAs [15].
The final bottom stage in fig. 3 accumulates the computed
values to obtain the SAD for a block. Finally, to deter-
mine the SAD_min for each block, two “Parity Checker
L1,2” units (see fig. 1b) are employed to identify the par-
ity of the computed SAD and the parity of the difference
between the computed SAD and the actual SAD_min. The
parity of the SAD_min is initially set to ’1’ (corresponding
to SAD_IV=M-1 in fig. 3) and this is updated whenever the
value of SAD_min is updated, which occurs whenever the
number of parity bits with the value ’1’ is odd (see Algo-
rithm 1).

It is worth to notice that the largest modulo operation in
the proposed architecture is 26 + 1 while for the original
architecture in fig. 2 it is necessary to add and to compare
16-bit binary numbers. Since the efficiency of modulo 2i±1
adders is similar to the 2i adders, it can be concluded that
the proposed architecture (fig. 3) is much more efficient than
the original architecture (fig. 2) to achieve an Application
Specific Integrated Circuit (ASIC) for computing the SAD
and its minimum value. Both architectures were described
using both behavioral and fully structural parameterizable
IEEE VHDL and

In the meanwhile, we implemented a SAD unit in a
FPGA by exploiting the modular and local processing of the
proposed architecture. The arithmetic units were directly
mapped on Look-Up-Tables (LUT) by employing the inter-
nal memory of actual FPGAs–such implementation is not
possible for the binary architectures, because a single 16-bit
adder requires 8 GB of memory. The minimum amount of
memory required for implementing the proposed architec-
ture directly on LUTs is 274,304 B (approximately 268 kB).
This amount of memory can be considerably decreased if
some of the tables are replaced by logic circuits: e.g. the
computation of the symmetrical to obtain the absolute value
takes about 50% of the total amount of memory required.
Since the internal memory blocks (BRAMs) in a FPGA are
synchronous and have registered outputs, a pipeline struc-
ture is automatically established. The SAD unit with the
architecture presented in fig 3 was directly implemented in
an Xilinx VirtexII Pro (xc2vp50-7) using the ISE (8.2) tools
also from Xilinx, without any optimization effort. This de-
vice provides 232 dual-port BRAMS, with a capacity of
16 kb each and operating a a maximum clock frequency of
350 MHz, which means a total memory capacity of 464 kB.
All the logic circuits were directly implemented through
LUTs on the BRAMS, except the 2 × n-bit CSA with 3
inputs of the “Parity Checker L1,2” unit (see fig. 1b) that is
implemented with logic gates. The dual-ports in BRAMs
were exploited to implement twice, in parallel, the same
function in a single LUT.

Table 2 presents the implementation results after Place
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Figure 3. Block Diagram of the proposed architecture for SAD calculation and minimum value deter-
mination.

Table 2. Implementation results of the SAD
computation and minimum calculation.

Slices BRAMs Freq. Latency Throughput
(% total) (% total) MHz Cycles Blocks/s

246 (1%) 211 (90%) 254 12 1.5 ×107

and Route. The achieved throughput is very high, leading
to a processing rate above 1.5× 107 Blocks/s (N = 16) for
a maximum operating frequency of around 250 MHz. This
means that real time motion estimation is achieved even
when the most demanding conditions are considered. A
frame rate of about 40 frames/s is achieved when 4CIF high
resolution images (704×576) are processed and the exhaus-
tive search procedure is adopted on 16 × 16 search areas.
The output latency is 12 clock cycles, 5 of them are spent
to sum the 16 absolute values and to accumulate the result.
The optimized SAD architecture for binary representation
proposed in [12] led to the fastest known implementation of
a SAD unit in a FPGA [3], also a VirtexII Pro FPGA. The
maximum clock frequency for this optimized implementa-
tion is higher than our implementation, around 300 MHz
versus 250 MHz, but the latency is also higher, 17 versus
12 clock cycles. So our implementation, which can be con-

siderably optimized, already allows a performance near the
ones obtained with the best SAD units implemented in FP-
GAs.

Due to the direct mapping of a LUT in a BRAM, the
amount of used memory is about 50% higher than the min-
imum amount of required memory and corresponds to 90%
of the total number of FPGA internal memory blocks. As
referred above, this amount of memory can be reduced by
using the internal memory more efficiently or/and by imple-
menting parts of the circuits with logic gates.

5 Conclusions

This paper proposes a new efficient method for magni-
tude comparison in RNS based on two pairs of conjugate
moduli ({2n − 1, 2n + 1, 2n+1 − 1, 2n+1 + 1}). This new
method relies on characteristics of the moduli set and on
elementary properties that relates the parity of integer num-
bers when they are subtracted. Not only this method is the
first to compare the magnitude of numbers in RNS based
on sets of non relatively prime moduli, but it is also the
first leading to VLSI architectures with practical interest for
comparing the magnitude of numbers in residue represen-
tation. These RNS proposed architectures are even more
efficient than the weighted number systems counterpart.
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Figure 4. Architecture proposed for computing the absolute difference in RNS.

The practical interest of the proposed comparison
method was illustrated by applying it for computing the
minimum SAD, which is by far the most time consuming
and compute intensive task in video coding. A very efficient
minimum SAD computation unit is obtained in RNS based
on two pairs of conjugate moduli just by implementing the
RNS arithmetic units through look-up-tables. Experimental
results show that, by directly mapping these look-up-tables
into on-chip memory blocks of a Xilinx xc2vp50-7 FPGA,
a throughout of more than 1.5 × 107 Blocks/s is achieved
(16 × 16 pixels per block). This throughput allows to code
in real time high resolution 4CIF video sequence with the
optimal full search block matching motion estimation and
16 × 16 search areas.
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