
Solving Constraints on the Intermediate Result of Decimal Floating-Point
Operations

Merav Aharoni, Ron Maharik, Abraham Ziv
IBM Research Lab in Haifa
email: merav@il.ibm.com

Abstract

The draft revision of the IEEE Standard for Floating-
Point Arithmetic (IEEE P754) includes a definition for dec-
imal floating-point (FP) in addition to the widely used bi-
nary FP specification.

The decimal standard raises new concerns with regard
to the verification of hardware- and software-based designs.
The verification process normally emphasizes intricate cor-
ner cases and uncommon events. The decimal format intro-
duces several new classes of such events in addition to those
characteristic of binary FP.

Our work addresses the following problem: Given a dec-
imal floating-point operation, a constraint on the interme-
diate result, and a constraint on the representation selected
for the result, find random inputs for the operation that yield
an intermediate result compatible with these specifications.

The paper supplies efficient analytic solutions for addi-
tion and for some cases of multiplication and division. We
provide probabilistic algorithms for the remaining cases.
These algorithms prove to be efficient in the actual imple-
mentation.

1 Introduction

The previous IEEE standard 754 [2] specified the for-
mats and behavior for binary floating-point (FP). The draft
for the revised standard P754 [3] specifies them both for
binary and decimal FP. Many of the earliest computers
used decimal arithmetic, but computer hardware gradually
evolved toward usage of binary arithmetic, to the point that
today most computers support only binary arithmetic in
hardware [6].

Decimal arithmetic, both integer and FP, has widespread
applications, primarily financial and commercial. Usage of
binary FP in these applications implies inexact conversions
between binary and decimal representations, and roundoff
in binary operations, which change the data in ways that are

hard to understand and debug; therefore decimal arithmetic
is supported through software on most machines. Recently,
there is renewed interest in usage of decimal FP implemen-
tations both in software [5], [7] and hardware [8], [10].

Verification of binary FP hardware is known to be an in-
tricate problem. Both formal methods and simulation meth-
ods have been developed to deal with this challenge. Veri-
fication by simulation cannot cover the entire FP domain,
which is huge and involves many corner cases. For this
purpose, coverage models are developed [17], that define
interesting cases for verification purposes. A coverage case
is said to be covered if we have at least one test that hits
this case. Coverage cases can be defined on different levels:
they can be defined in English, in terms of the implementa-
tion signals, or in some formal or mathematical expression
language. The language determines to a great extent the
kind of cases that can be covered.

Generating the test cases is often a manual process,
which is quite difficult and limits the number of test cases
that can be produced. Software tools have been devel-
oped in order to cope with this problem, for example
[4, 11, 13, 15, 16, 19].

Several papers propose algorithms that generate random
solutions for interesting special cases of constraints on bi-
nary FP operations. One example can be found in [12],
which describes algorithms for solving constraints on the
unbounded intermediate result of arithmetic operations on
binary FP numbers.

As decimal FP is a newly defined format, it lacks the
existing technology developed for binary FP verification.
Decimal FP has several notable differences as compared to
binary FP. The most obvious is that the significand com-
prises decimal digits rather than binary bits. The second
major difference is that for decimal FP numbers, the repre-
sentation of the number is deemed important, in addition to
its numerical value. The set of all representations of a single
numerical value is known as the cohort of this value.

The standard allow two representations: a normalized
format, in which the significand is in the range �0�10� and
has the form d0�d1 � � �dp�1, and an unnormalized format, in



which the significand is an integer in the range �0�10p�1�.
In the discussion that follows, we choose to use the unnor-
malized representation. Since most of the algorithms in this
paper involve calculations on the significand, it is more con-
venient to deal with it as an integer, rather than as a fraction.

Trailing zeros in the significand of a decimal FP number
are meaningful; for example, �2 �100� ��3 �100� � 6 �100, but
�20 � 10�1� � �30 � 10�1� � 600 � 10�2. The numerical value
of these two results is the same, but the values are consid-
ered different in the sense that they represent different de-
grees of precision in the result. To quantify the definition of
the precision of the result, the IEEE Standard P754 [3] de-
fines a preferred exponent for the result of every arithmetic
operation. The preferred exponent uniquely defines the rep-
resentation selected for the result among all members of its
cohort.

When defining test cases for FP, input constraints pro-
vide only limited capabilities. Targeting outputs, or in par-
ticular, intermediate results, allows much better control over
FP corner cases. In this paper, we define constraints on the
intermediate result of arithmetic operations.

For example, in a decimal FP system with 4 digits of
precision, an intermediate result of 9999.9 may have to be
shifted one digit to the right after it is rounded to the tar-
get precision, therefore this is an interesting result for test-
ing the shifter mechanism. An intermediate result such as
2222.50 can be used test the rounding mechanism, as it is on
the threshold between results that are rounded up and those
rounded down.

In addition to a constraint on the intermediate result, we
define a constraint over the difference between the actual
exponent of the intermediate result and the preferred ex-
ponent. This allows us to test various uncommon scenar-
ios and to verify that the correct representation of the result
value is selected.

As an example, consider a coverage model that tests all
possible values of the exponent difference in a division op-
eration. Suppose that the decimal format in question sup-
ports 4 digits of precision. As we shall see in Section 5,
the exponent difference in this case is between 0 and 7. To
generate the extreme case where the difference is 7, the div-
idend’s significand must be selected so that it has 3 leading
zeros and only 1 significant digit. The divisor must have
4 significant digits, and the resulting quotient must have
at least 4 significant digits. Here is one possible solution:
1 � 100 � 3200 � 100 = 3125�0 � 10�7. The preferred expo-
nent, as defined in Section 2, is 0.

Constraints on the allowed intermediate results and ex-
ponent differences can appear as ranges, masks, or other set
definitions. We choose to deal with the strictest constraint
among these, namely a specific intermediate result and a
specific difference between actual and preferred exponents.
Any other constraint type can be reduced to this problem by

first selecting a specific value from the set of allowed inter-
mediate results and then calling the suggested algorithms.

We provide algorithms that, given a specific intermedi-
ate result and difference between actual and preferred ex-
ponents, provide two inputs that yield the specified result.
We provide algorithms for addition, multiplication, and di-
vision. These algorithms are random, in that successive us-
age potentially yields different pairs of inputs that generate
the same result. This is important for verification purposes,
allowing more complete coverage of the scenario space and
faster uncovering of design bugs. We try to keep the selec-
tion of different inputs within the solution space as uniform
as possible, and demand that no solutions be lost.

These algorithms were implemented in the context of a
custom verification tool for FP designs, named FPgen [4].
The tool was used for the verification of the decimal FP im-
plemented in millicode in IBM System z9 [9] and in veri-
fication of decimal FP hardware in IBM Power6 [14]. Test
cases generated by this tool proved effective in uncovering
design bugs, as well as in attaining functional coverage.

FPgen was also used to generate a test suite for the IEEE
standard for binary and decimal FP. The test suite is based
on a set of coverage models described in a document that
can be found on the FPgen web site [1]. Each model in
the document describes a set of interesting cases for testing.
The full test suite for decimal FP has not yet been made
public. A preliminary version of the decimal test suite can
be found on the web site.

In Section 2, we provide some necessary definitions and
formally define the problem. In Sections 3, 4, and 5, we
present algorithms for addition, multiplication, and division
operations, respectively. Section 6 provides a summary of
the results and suggestions for future work in this area.

2 Problem Definition

We will need the following definitions before we proceed
to define the problem:

Decimal Floating-point number: Using the notation
of IEEE standard P754, a decimal floating-point num-
ber is defined by ��1�s10e�d0d1d2 � � �dp�1� where s is the
sign, e is the (unbiased) exponent, Emin � e � Emax, and
d0d1d2 � � �dp�1 is the significand with di each representing
a decimal digit, di � �0�1�2� ����9�. Unlike binary FP, deci-
mal FP numbers are not normalized and as a result a single
value may have multiple representations.

p (precision): The maximal number of digits in the sig-
nificand.

Unbounded intermediate result: The result of a
floating-point operation, assuming unbounded precision
and unbounded exponent range.

Intermediate result: Assuming the final result has a
precision p, the intermediate result is defined by a sign,



(� or �), an exponent, e, a significand, S, and a sticky
bit σ, and has the form ��1�s10e�1d0d1 � � �dp�1dp�σ where
σ � �0�1� . We will refer to dp as the guard digit. If at least
one of the remaining digits of the exact result, beyond dp is
non-zero, then σ is 1, otherwise σ is 0.

Exact result: An operation’s result is said to be exact
when the intermediate result’s guard digit and sticky bit are
both 0.

Preferred exponent: Because decimal FP numbers have
multiple representations, the IEEE standard defines a pre-
ferred exponent for each operation. Denoting by ex, ey the
exponents of the first and second operands of an arithmetic
operation, the preferred exponent for addition and subtrac-
tion is min�ex�ey�, for multiplication it is ex � ey and for di-
vision it is ex�ey. If the result is inexact, the representation
of the final (and the intermediate) result will be chosen so as
to lose the least number of significant trailing digits possi-
ble. If the result is exact, the representation of the final (and
the intermediate) result will be selected so that the actual
exponent is as near as possible to the preferred exponent.
These principles are compromised near the boundaries of
the legal range for decimal FP numbers, but such cases are
beyond the scope of this paper.

Problem definition: Given a decimal floating-point op-
eration in ���������, a constraint on the intermediate
result, and a constraint on the difference between the actual
exponent and the preferred exponent, find two operands x
and y that, when combined by the given decimal floating-
point operation, give an intermediate result, z, that is com-
patible with the constraints.

3 Addition

We use addition in this context to mean the addition of
two numbers with the same sign (or the subtraction of two
numbers with opposite signs). The algorithm for subtrac-
tion is similar to the one we use for addition, although each
case needs to be analyzed differently. We do not describe
the algorithm used for subtraction. We also ignore the cases
in which one of the operands is 0.

We denote the addend with the smaller exponent by x,
and the addend with the larger exponent by y. Sx, Sy rep-
resent the significands of x and y respectively, and the sig-
nificand of the intermediate result is denoted by Sz. S�

x and
S�

y will denote the aligned coefficients so that the least sig-
nificant digit of S�

x has the same decimal position as that
of S�

y. Note that S�
x � Sx. The actual exponent of an addi-

tion operation cannot be less than the preferred exponent;
otherwise, it would mean the intermediate result had extra
trailing zeros, and these would obviously be shifted out to
give an intermediate result with the preferred exponent. We
use the notation d � actual exponent - preferred exponent.

We divide the problem into four subcases:

Case 1: Result is exact and the actual exponent equals
the preferred exponent.

Since the guard and sticky bit are 0, this case can be
viewed as a problem of decimal integer addition. For Sx,
we randomly select any decimal integer less than Sz. We
calculate Sy as Sz � Sx. As the base exponent, each expo-
nent is assigned the exponent of the intermediate result.

Next we select one of the operands for a possible expo-
nent shift. Exponent shift is possible only if the operand
has trailing or leading zeros, where we take leading zeros to
mean the number of digits is less than p. If exponent shift
is possible both for Sx and for Sy, randomly select one of
them. If it is possible for only one of them, select it. Other-
wise, the final exponents equal the base exponent. For the
operand selected, determine the set of all possible results
by shifting the result one position left for every leading zero
and one position right for every trailing zero. The exponents
are adjusted accordingly. Select one result out of the set of
all such possible results. This freedom in the choice of ex-
ponents is similar in the cases that follow. We leave this part
up to the reader, and explain in detail only how to select the
significands of x and y.

Case 2: Result is exact and the actual exponent dif-
fers from the preferred exponent.

We calculate an upper bound on the number of trailing
zeros that were lost. Since the guard digit and sticky bit are
0, therefore the most significant digit of the smaller operand
cannot be positioned to the right of the least significand digit
of the intermediate result. So the number of trailing zeros is
at most p�1. If the exponent, e, of the intermediate result
is near emin, then the number of trailing zeros is at most
e� emin, because the trailing zeros must be derived from
digits of one of the operands.

We set the number of trailing zeros in the intermediate
result to d, and create a new intermediate result signifi-
cand, S�

z � Sz �10d . We differentiate between the case where
�S�

z� � max�Sx�� �S�
y� and the case �S�

z� � max��Sx�� �S�
y��� 1,

the latter case indicating the operation produced carry.
Carry is possible only when the intermediate result has

the following form:

10p�1 �
Sz

10
� 10p�1 �10p�d�2�

If this condition is true, we calculate the proportion of cases
in which carry was generated out of all possible Sx�Sy whose
sum is Sz. We randomly decide whether to apply the carry
conditions or not according to this proportion. If the carry
condition holds, Sz

10 � 10p�1 �C for some C � 10p�d�2.
To generate carry, the portion of Sx without the trailing

zeros, Sx
10d�1 , must satisfy

10 �C�1�
Sx

10d�1 � 10p�d�1�1�

If there are no Sx that satisfy this inequality carry is not



possible. The number of values of Sx that give carry is

10p�d�1�10 �C�2�

If there is no carry, Sx will have d trailing zeros; therefore
the number of such significands is 10p�d�1. From here we
see that the proportion of carry cases out of the total number
of possible values for Sx is

10p�d�1�10 �C�2
11 �10p�d�10 �C�3

�

It is easy to see that when C is large, carry cases will be
rare and when C is small, most cases will be carry. Having
selected the carry case or non-carry case according to the
above proportion, we proceed to select Sx and Sy as follows.

In the case of no carry, Sx must have at least d trailing
zeros. Sz must have p digits, otherwise it would have been
shifted left to allow more trailing zeros, thus decreasing the
actual exponent. Therefore, Sy must have p digits, as there
is no carry in this case. This imposes the following limita-
tion on the p�d most significant digits of Sx:

Sx

10d � Sz�10p�1�

We randomly select such a significand Sx and subtract it
from S�

z to obtain S�
y.

In the case of carry, Sx must have at least d� 1 trailing
zeros. Since S�

z has p � d digits, S�
y has p � d � 1 digits,

therefore
10p�d�2 � S�

y � 10p�d�1�

From here we get the following condition on Sx:

S�
z�10p�d�1 � Sx � min�10p�1�S�

z�10p�d�2��

Dividing by 10d�1, we get the following condition on the
leading non-zero digits of Sx (in addition to the conditions
which must hold for carry):

10Sz�10p �
Sx

10d�1 � min�10p�d�1�1�10Sz�10p�1��

We select such an Sx, add d�1 trailing zeros to it, and then
compute S�

y � S�
z � Sx. Finally, we remove d � 1 trailing

zeros, and get Sy.
Example. Let p � 4, d � 3 and z � 12340 � 10�1,

and let’s assume we would like to create an addition op-
eration that produces carry. We check if carry is possi-
ble, that is if Sz

10 � 1234 is in the range �104�1�104�1 �

104�3 � 2� � �1000�1008�. This condition does not hold,
so we cannot fulfill this constraint. Let us select instead
a value that is in the range allowing carry, for example
let’s select Sz � 10050, i.e., S�

z � 1005000. Sx must have
at least 2 trailing zeros, and Sx

100 must be in the range
�10 �5�1�104�3�1�1� � �51�99�. Let’s choose the smallest

possible value, i.e., Sx � 5100. By subracting Sx from S�
z we

obtain S�
y � 999900, and finally Sy � 9999.

Case 3: Result is inexact but the sticky bit is 0, d � 0.
The guard digit is non-zero and S�

z has p� d digits, in-
cluding exactly d� 1 trailing zeros, where d 	 1. Sx must
have the same number of trailing zeros as S�

z, that is d� 1.
The least significant non-zero digit of Sx must be the same
as the guard digit of Sz. As before, we observe two possible
cases here: the case in which the operation did not create
carry and the case in which it did. The condition for carry
and the proportion of cases with carry are calculated as in
Case 2.

In the case of no carry, S�
y must have at least d trailing

zeros, and a total of p� d digits. In other words,
S�y

10d is an

integer and 10p�1 �
S�y

10d � 10p. By substituting the lower
and upper bounds on S�

y in the equation Sx �S�
y � S�

z, we get
the following condition on the leading portion of Sx (with-
out the trailing zeros):

Sz�10p�1 �
Sx

10d�1
� 10p�d�

We choose Sx in this range and then compute S�
y � S�

z�Sx.
The case of carry is similar, the only difference being

that S�
y must have at least d�1 trailing zeros and a total of

p�d�1 digits.
Case 4: The result is not exact and the sticky bit is 1.
This case implies d 	 2 and the number of digits of S�

z
equals d � p. We select the solution from the following
three possible subcases:

d � p : In this case S�
z must be composed of three disjoint

substrings. A head of at most p digits that are equal to the
digits of Sy, a tail of at most p digits that are equal to the
digits of Sx, and a middle, which is all zeros. This solution
is possible if and only if the guard digit of Sz is 0.

d � p : In this case, we observe two possible subcases:
that in which the number of digits of S�

z equals the number
of digits of S�

y, and that in which S�
z has one digit more. In

the first subcase, the solution is similar to that of the previ-
ous case, the only difference being that the middle part has
zero length. In the second subcase, the addition operation
must have created carry. Both Sx and Sy must have p digits,
and the lowest non-0 digit of S�

y must have the same posi-
tion as the highest digit of Sx, which is the position of the
guard digit of Sz. The sum of these two digits must create a
carry that is propagated through all the digits of S�

y to create
a carry on the complete addition operation. This can only
occur if Sy has the form 99���9y, where only the least signif-
icant digit is free (though it cannot be 0). This only occurs
if Sz has the form 100���0z, where z is the guard digit, and
z 
� 9. If Sz indeed has this form, then the lower digits of
S�

z can be selected at random. Sx is constructed by setting
its most significant digit to be greater than the guard digit



of Sz. The remaining digits of Sx must be identical to the
lower digits of S�

z. As usual, we compute S�
y by subtracting

Sx from S�
z.

d � p : Once more, we divide this into the subcase in
which the number of digits of S�

z equals the number of digits
of S�

y, and the subcase in which S�
z has one digit more. In the

first subcase, the lower n digits of Sx coincide with the lower
digits of S�

z, and we are free to choose them at random. The

lower d digits of S�
y are 0, and 10p�1 �

S�y
10d � 10p. From

here, we get the following condition on Sx:

S�
z�10p�d � Sx � min�10p�1�S�

z�10p�d�1��

Computing Sy is done as in previous cases. In the second
subcase, the lower d�1 digits of Sx coincide with the lower
digits of S�

z, and we are free to choose them at random. The

lower d � 1 digits of S�
y are 0, and 10p�1 �

S�y
10d�1 � 10p.

From here we get the condition S�
z� 10p�d�1 � Sx � 10p.

Furthermore, for carry to be possible, we notice S�
z must

have the form 100 � � �0zz � � � z, where the number of zeros is
d�1.

4 Multiplication

The result of a multiplication operation often requires
more than p digits and at most 2p digits. Therefore the dif-
ference between actual result and preferred result is 0� d �
p. We use the notation S�

z to represent the significand of the
unbounded intermediate result, which has up to 2p digits.
The main distinction here is between exact intermediate re-
sults, which require factorization, and inexact results.

Case 1: Sticky bit is 0
An exact intermediate result can mean either the guard

and sticky are both zero, or the guard is non-zero and the
sticky is zero. d � 1 defines the number of trailing zeros
that are in S�

z beyond the guard digit. In this case, we have
Sx � Sy � Sz � 10d�1, where Sz is the significand of the inter-
mediate result including the guard digit. We find the prime
factors of S�

z by some factoring method; for example, the
quadratic sieve method [18]. Another option is to first re-
move all the trailing zeros from S�

z, factorize the remaining
number, and for every trailing zero to add a 5 and a 2 to the
list of factors.

Finally, we construct Sx and Sy by distributing the factors
between the two operands, while making sure each of them
remains smaller than 10p. If that is not possible, no solution
exists. Finally, we select the operand exponents so that ex �
ey � ez�d.

Case 2: Sticky bit is 1
Note that in this case we must have d 	 2, since a sig-

nificant digit was shifted out beyond the guard digit when
forming the intermediate result.

The following inequality holds:

Sz �
Sx �Sy

10d�1 � Sz �1

therefore

Sz �10d�1

Sy
� Sx �

�Sz �1� �10d�1

Sy

We use the following straightforward algorithm:

1. Compute the range of possible values for S�
z, i.e., �Sz �

10d�1��Sz �1� �10d�1�.

2. Select the number of digits of Sy.

3. Select a random value for Sy.

4. Compute the range of possible values for Sx, i.e.,

� Sz�10d�1

Sy
� �Sz�1��10d�1

Sy
�.

5. If a decimal integer exists in this range, then set Sx to
that number and we have found a solution ; Otherwise,
return to step (2).

Steps (2) and (3) require further explanation. We need to
determine how many digits Sy can have. We use the notation
�Sx�� �Sy�� �Sz� to signify the number of digits in Sx, Sy, and Sz

respectively. There are two cases: �Sx�� �Sy�� �Sz�� p�d
(the case of a product with carry), or �Sx�� �Sy� � �Sz��
1 � p � d � 1 (a product without carry). In other words,
�Sy�� p�d��Sx� or �Sy�� p�d��Sx��1. Since �Sx� � p
and �Sy� � p, we have d � �Sy� � p or d �1� �Sy� � p.

In step (3), if we select Sy such that �Sy� 	 d � 1, there
is no restriction on the values of Sy, since these may either
produce carry or not. However, if �Sy�� d, we need to make
sure this is a case with carry, otherwise we get an Sx that has
too many digits. To do this, we divide the minimum value
for S�

z by the maximum value for Sx, which is 10p�1. This
gives us a lower limit on the possible values of Sy.

It remains to show that the number of iterations of this
loop is not too large; that is, we find a solution within a
reasonable amount of time. To show this, we calculate the
probability that an integer Sx exists in any given iteration.
We compute this by calculating the size of the range of so-
lutions for Sx divided by the distance between two decimal
machine numbers, assuming a uniform distribution of the
solutions.

Sz has the form zz � � � z, where the rightmost z is the guard
digit and the number of digits is p� 1. S�

z is in the range
�zz � � � z00 � � �01�zz � � �z99 � � �99�, where the number of zeros
equals d� 2 and the number of 9s equals d� 1. The size
of the interval of possible S�

z is therefore 99 � � �98 where the
number of 9s is d � 2. To compute the size of the inter-
val of possible Sx, we divide the size of the interval on S�

z
by Sy that was selected. The size of the interval of possi-

ble Sx is approximately 10d�1

10�Sy�
. The distance between two



possible machine numbers on this scale is 1. Therefore, the
size of the interval represents the probability that a machine
number, Sx, exists in this interval, assuming a uniform dis-
tribution of the intervals on the line of machine numbers.

In the worst case, when d � 2 and �Sy� � p, we get a
probability of 1

10p�1 that such an Sx exists. It is the scenario
where the unbounded intermediate result has p� 2 digits,
and one of the significands has p digits. It is intuitively
quite unlikely to find a solution in this case. At the other
extreme, when d is unrestricted, or d � p, the size of the
interval is approximately 1

10 . This probability is quite rea-
sonable. On the average we find a solution for Sx within
10 trials. For small values of d, the specified algorithm can
be improved by choosing �Sy� so that it is less than or equal
to �Sx�. This does not harm the uniformity of the solutions
because Sx and Sy can be swapped at the end. An additional
improvement can be achieved by selecting a very small �Sy�.
However, this impacts the uniformity of solution.

Example. Let p � 4, d � 2, and z � 89030 � 10�1 with
σ � 1. This means S�

z is in the range �8903001�8903099�.
Let’s select Sy to have d digits. This means both carry and
non-carry cases are possible. Let’s assume we want a carry
case. The restriction on Sy is Sy 	

8903001
9999 � 890�389. We

select Sy � 935. The range of possible real values for Sx

is approximately �9521�93�9522�03�. Since this range con-
tains an integer, Sx can be chosen to be 9522.

5 Division

We denote the dividend, divisor, and quotient by x, y, and
z respectively. Their significands are denoted Sx, Sy, and Sz,
and the exponents are ex, ey, and ez.

Given the definition of the preferred exponent for divi-
sion, which is ex � ey, and the nature of the operation, we
conclude that the actual exponent of the result is always less
than or equal to the preferred exponent (as opposed to the
cases of addition and multiplication). We denote the expo-
nent difference d � preferred exponent - actual exponent.

The division problem is partitioned into three subcases.
Case 1: The exponent difference is 0 and the result is

exact.
This case can be viewed as an integer division. The guard

digit does not come into play and must be 0. Let S�
z denote

the integer value of Sz with the guard digit removed. S�
z has

p digits at the most. We proceed as follows:

1. Choose a random value for Sy. Since Sx � Sy � S�
z and

Sx � 10p, the value chosen for Sy must be in the range
1 � Sy �

10p

S�z
. Note that the trivial solution Sy � 1 is

always applicable.

2. Calculate Sx � Sy �S�
z

3. Choose ex and ey such that ex� ey � ez.

Case 2: The sticky bit is 0, and either the exponent
difference is not 0 or the result is not exact (i.e., the
guard digit is non-zero).

The following equation, based on the definition of dec-
imal division and preferred exponent, applies to any case
where the sticky bit is 0:

Sx�Sy � Sz�10d�1 (1)

therefore
Sx �10d�1 � Sy �Sz (2)

Our case imposes certain constraints on Sz:

� Sz can have at most one trailing zero (in the guard
digit).

Any further trailing zeros would be shifted out, in-
creasing ez and thereby approaching the preferred ex-
ponent. If d � 0 then there are no trailing zeros, by the
definition of the case (otherwise we are back in Case
1).

� Let Sz � S�
z � 2

j � 5k, where S�
z is prime to 10. Then S�

z
must have p digits or less. Specifically, if Sz has p�1
digits, then it cannot be prime to 10.

This is a result of Equation (2) – note that according to
the equation, Sx must be a multiple of S�

z, and remem-
ber that Sx has p digits or less.

Formation of the solution is based on Equation (2) and on
the factorization given above for Sz. As we saw, Sx must be
a multiple of S�

z. We note also that any instances of 2 or 5 in
the factorization beyond those available in the term 10d�1

must originate from Sx as well. We proceed as follows:

1. Initialize Sx to S�
z � 2

max�0� j�d�1� � 5max�0�k�d�1�. If Sx

has more than p digits, there is no solution.

2. Set Sy so that Equation (2) holds: Sy � 2max�0�d�1� j� �

5max�0�d�1�k�.

3. Steps 1 and 2 are deterministic. We now randomize
the solution by multiplying Sx and Sy by some identical
random factor, keeping their sizes less than 10p.

4. Choose exponents ex and ey so that ex� ey � ez �d.

Example. Let p � 4, d � 3 and z � 43750 � 10�1.
Since Sz � 43750 � 7 � 21 � 55, we have S�

z � 7, j � 1 and
k � 5. Initialize Sx to 7 � 2max�0�1�3�1� � 5max�0�5�3�1� � 35.
Set Sy � 2max�0�3�1�1� � 5max�0�3�1�5� � 8. To randomize,
multiply Sx and Sy by the random factor 62, obtaining a
solution of Sx � 2170�Sy � 496. Note that both signif-
icands conform to the 4-digit precision bound. Finally,
set the exponents ex and ey so as to uphold the equality
ex � ey � ez � d � 0� 3, for example: ex � 8�ey � 5, and



obtain x � 2170 � 108�y � 496 � 105. The real quotient of
these numbers is 4�375 �103. The significand is shifted left
to allow minimum loss of precision. Therefore the result is
re-aligned to 4375 �100, which corresponds to the interme-
diate result 43750 �10�1 as required.

Case 3: The sticky bit is 1.
This case occurs when the exact quotient x�y has more

than p� 1 significant digits. Conceptually, the result z is
formed by dividing the coefficients and then normalizing
the result so that the most significant nonzero digit is in the
left-most position of Sz.

The following relationship holds in this case:

Sz�10d�1 � Sx�Sy � �Sz �1��10d�1 (3)

therefore

Sz �Sy � Sx �10d�1 � �Sz �1� �Sy (4)

We denote by �Sx� and �Sy� the number of significant dig-
its in Sx and Sy respectively. Let S�

x and S�
y be the values of Sx

and Sy respectively, each shifted left so that it has p signifi-
cant digits, with zeros shifted in on the right. The exponent
difference depends only on �Sx�, �Sy�, and the relative mag-
nitude of S�

x and S�
y. Specifically: if S�

x � S�
y (”no-borrow”

case), then d � p��Sx�� �Sy��1, and if S�
x � S�

y (”borrow”
case), then d � p��Sx�� �Sy�. Note that the case S�

x � S�
y is

irrelevant, since the result would not have its sticky bit set.
From these relations we learn that d belongs to

�0�1� ����2p�1�, where d � 0 only applies in the no-borrow
case, and d � 2p�1 only applies in the borrow case. Other
values of d may occur with or without borrow.

Example. Let p � 4, let Sx � 4321 and Sy � 59. Then
�Sx�� 4, �Sy�� 2, and S�

x and S�
y are 4321 and 5900 respec-

tively. The result of dividing the two significands is approx-
imately 73�237288. The amount of alignment required to
preserve maximum precision is therefore d � 2, which is
consistent with the formula given above for the ”borrow”
case. It is not difficult to observe that selecting different
digits for Sx and Sy would have no effect on the resulting
value of d, so long as the quotient is not exact and the bor-
row case is maintained. Switching to the ”no-borrow” case,
however, results in d � 1, for example: Sx � 4567 , Sy � 14
, Sx

Sy
� 326�214286.

The solution proceeds as follows:

1. Calculate t � ���Sx�� �Sy�� according to the borrow-
case relation above: t � d� p. (this does not necessar-
ily make the solution a borrow case).

2. Use the value of t to determine upper and lower bounds
for �Sy�. Given that both �Sx� and �Sy� must lie in
�1�2� ���� p�, we have:

�Sy�� t � �Sx�


 t �1� �Sy� � t � p


 1�max�0� t�� �Sy� � p�min�0� t�

for the no-borrow case, we should add 1 to the value of
t. The final legal range of �Sy� is the union of the two
ranges:

1�max�0� t�� �Sy� � p�min�0� t �1�

3. Choose a value for �Sy� from the resulting range.

4. Choose a random Sy with the selected number of digits.

If the maximal allowed value is chosen for �Sy�, and
is not the trivial maximum p, then only the no-borrow
case is possible. We reduce the allowed range of Sy so
as to ensure that the operation does not cause borrow.

We calculate the bound of Sx�10d�1

Sz�1 , which serves as an
upper bound for Sy. This bound is reached when Sx is
maximal, i.e., Sx � 10p�1, therefore:

Sy �
�10p�1� �10d�1

Sz �1

5. Calculate lower and upper bounds, α and β, for Sx �
10d�1 using Equation (4).

6. If a number with at least d � 1 trailing zeros exists in
the open interval �α�β�, set Sx to this number, shifting
out d �1 zeros.

7. Choose exponents ex and ey so that ex� ey � ez �d.

Example. Let p � 4, d � 5 and z � 13198 � 10�1

with a sticky bit value of 1. By definition we have t �
d � p � 1. By step 2 we have: 2 � �Sy� � 4. We ran-
domly choose to set �Sy� � 4. By step 4, we may choose
any digits for Sy. Let Sy � 2576. By equation (4) we
have: �α�β� � �33998048�34000624�. This range includes
the value 34000000, which has 6 � d�1 trailing zeros. We
now set Sx � 34, and select appropriate exponents to arrive
at the required solution. Note that this is a ”no-borrow” so-
lution.

This algorithm usually requires several iterations, but in
practical terms it produces a solution very quickly for most
values of d. An iteration fails if the interval between Sz �Sy

and �Sz � 1� � Sy has no number with d � 1 trailing zeros.
The size of the interval is Sy� 1, while the size of the in-
terval between two successive numbers with d � 1 trailing
zeros is 10d�1. The probability of success may therefore be
approximated as

Sy

10d�1 	
10�Sy��1

10d�1 � 10�Sy��d�2�

When d approaches its maximal value of 2p� 1, this ap-
proach fails. Test cases for large d values are often gener-
ated by relaxing the constraint on Sz when possible.



6 Conclusion

We presented a method for defining interesting verifica-
tion test cases for IEEE Decimal Floating-Point operations.
This definition includes specification of a constraint on the
intermediate result of the operation, as well as on the dif-
ference between the actual exponent of the result and the
preferred exponent.

We proposed algorithms that solve such constraints for
addition, multiplication, and division. The algorithms as-
sume the most difficult type of constraint, i.e., a single inter-
mediate result with a single exponent difference. The algo-
rithms for addition, and cases of multiplication and division
where the sticky bit is 0, are guaranteed to find a solution ef-
ficiently when one exists. Multiplication and division with a
sticky bit value of 1 are solved probabilistically, using meth-
ods that have been empirically shown to be practical in all
but the most extreme cases.

These algorithms have been implemented in a the frame-
work of a test generator for floating-point data. Experience
has shown that the methods presented here are very effec-
tive in generating corner cases, covering segments of the FP
domain as defined in various coverage models, and recon-
structing known bugs so as to refine the faulty scenario and
pinpoint the root cause.

The algorithms described in this paper apply to most
forms of the general problem, but may not be suitable for
some corner cases (e.g., when the inputs are subnormal
numbers). Several refinements and heuristics have already
been identified and included in our implementations, to im-
prove the handling of corner cases. There is room for fur-
ther analysis of these cases, and development of efficient
random algorithms for them. In addition, when the con-
straint is looser, such as a range of possible results, or no
constraint on the exponent difference, it may be possible to
find more efficient algorithms.

Also of interest are additional arithmetic instructions that
are specified in the standard and not discussed in the paper,
in particular fused multiply-add �a�b�c� and square root.
An additional direction for development is to tackle vari-
ous types of constraints, e.g., simultaneous constraints on
the inputs and output, or constraints on the unbounded in-
termediate result. Most of the results can be generalized for
unnormalized arithmetic using any radix r.

References

[1] ”Floating-Point Test Suite for IEEE 754R Standard”.
http://www.haifa.il.ibm.com/projects/verification/fpgen/
ieeets.html.

[2] ”IEEE Standard for Binary Floating Point Arithmetic”,
1985. An American National Standard, ANSI/IEEE Std 754.

[3] ”Draft Standard for Floating Point Arithmetic - P754”, 2006.
http://754r.ucbtest.org/drafts/754r.pdf.

[4] M. Aharoni, S. A. L. Fournier, A. Koifman, and R. Nagel.
”FPgen - A Test Generation Framework for Datapath
Floating-Point Verification”. In Proc. IEEE International
High Level Design Validation and Test Workshop 2003
(HLDVT03), 2003.

[5] M. Cornea and C. Anderson. ”Software Implementation of
the IEEE 754R Decimal Floating-Point Arithmetic”. Real
Numbers and Computers, 2006.

[6] M. Cowlishaw. ”Decimal Floating-Point: Algorism for
Computers”. In Proc. IEEE 16th Symp. Computer-
Arithmetic (ARITH16), pages 104 – 111, 2003.

[7] M. Cowlishaw. The decNumber C library, 2005.
http://www2.hursley.ibm.com/decimal/decnumber.pdf.

[8] M. Cowlishaw, E. Schwarz, R. Smith, and C. Webb. ”A
Decimal Floating-Point Specification”. In Proc. IEEE 15th
Symp. Computer-Arithmetic (ARITH15), pages 147 – 154,
2001.

[9] A. Y. Duale, M. H. Decker, H. G. Zipperer, M. Aharoni, and
T. J. Bohizic. ”Decimal Floating-Point in z9: An Implemen-
tation and Testing Perspective”. IBM Journal of Research
and Development, 51, 2007.

[10] M. Erle, E. Schwarz, and M. Schulte. ”Decimal Multipli-
cation with Efficient Partial Product Generation”. In Proc.
IEEE 17th Symp. Computer-Arithmetic (ARITH17), pages
21 – 28, 2005.

[11] W. Kahan. ”A Test for Correctly Rounded SQRT”.
http://www.cs.berkeley.edu/�wkahan/SQRTest.ps.

[12] M. Aharoni, S. Asaf, R. Maharik, I. Nehama, I. Nikul-
shin, and A. Ziv. ”Solving Constraints on the Invisible
Bits of the Intermediate Result for Floating-Point Verifica-
tion”. In Proc. 17th IEEE Symposium on Computer Arith-
metic (ARITH17), pages 76 – 86, 2005.

[13] D. W. Matula and L. D. McFearin. ”A p X p Bit Frac-
tion Model of Binary Floating Point Division and Extremal
Rounding Cases”. Theoretical Computer Science, 291:159
– 182, 2003.

[14] B. McCredie. ”POWER Roadmap”.
http://www2.hursley.ibm.com/decimal/IBM-Power-
Roadmap-McCredie.pdf.

[15] L. D. McFearin and D. W. Matula. ”Generation and Anal-
ysis of Hard to Round Cases for Binary Floating Point Di-
vision”. In 15th IEEE Symposium on Computer Arithmetic
(ARITH15), pages 119 – 127, 2001.

[16] M. Parks. ”Number-Theoretic Test Generation for Directed
Rounding”. In Proc. IEEE 14th Symp. Computer-Arithmetic
(ARITH14), pages 241 – 248, 1999.

[17] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. ”User
defined coverage - a tool supported methodology for design
verification”. Proc. 35th Design Automation Conference,
pages 158 – 163, 1998.

[18] D. R. Stinson. ”Cryptography Theory and Practice”. CRC
Press, second edition, 1996.

[19] B. Verdonk, A. Cuyt, and D. Verschaeren. ”A Precision and
Range Independent Tool for Testing FP Arithmetic: Basic
Operations, Square Root and Remainder”. ACM TOMS, 20,
Number 1:92 – 118, 2001.


