
Design of the ARM VFP11 Divide and Square Root Synthesisable Macrocell

Neil Burgess
Cardiff School of Engineering,

Cardiff University,
CARDIFF UK

scenb@cf.ac.uk

Chris N. Hinds
ARM Ltd.,

Fulbourn Road,
CAMBRIDGE UK

chris.hinds@arm.com

Abstract

This paper presents the detailed design of the ARM

VFP11 Divide and Square Root synthesisable
macrocell. The macrocell was designed using the
minimum-redundancy radix-4 SRT digit recurrence
algorithm, and this paper describes a novel
acceleration technique employed to achieve the
required processor clock frequency of up to 750MHz in
90nm CMOS. Logical Effort theory is used to provide
a delay analysis of the unit, which demonstrates the
balanced nature of the two critical paths therein.

1. Introduction

The VFP11 coprocessor [1] is an implementation of
the ARM Vector Floating-point Architecture for
integration with ARM11-family cores. The VFP11
implements IEEE 754 compliant single-precision and
double-precision operations with software support for
operations and data types rarely used in an embedded
context. The arithmetic pipeline is optimized for 3D
graphics processing [2] on a chained multiply-
accumulate engine with a throughput of one FMAC
instruction per cycle for single-precision data and one
per two cycles for double-precision data. Hardware
divide and square root are optimized for 2 bits per
cycle throughput and parallel execution with data
transfer operations and operations on the FMAC
pipeline. Vector operations provide the capability to
issue up to 8 single-precision operations in a single
instruction. A vector operation will run in parallel with
data transfer operations and divide/square root
operations and result in nearly optimum utilization of
the FMAC pipeline for graphics operations and other
high data throughput computations. The VFP11 is
designed for low power consumption and small die
size.

This paper presents the detailed design of the
VFP11 divide and square root synthesisable macrocell.
The major design requirement was to achieve a logic
depth of as close to 15 logic levels as possible so as to
meet a variety of performance targets for the whole
chip. This led to the minimum-redundancy radix-4
SRT algorithm being used because multiplicative
solutions were unattractive at the required high clock
rate for two reasons:

• fast multipliers are large and power-hungry – it
was infeasible to use the extant VFP11 multiplier-
accumulator chain for performing division and square
root operations, and wasteful in area and power terms
to build a second multiplier dedicated to square root
and division

• in a deeply-pipelined processor design, Newton-
Raphson and Goldschmidt iterations take many cycles
to complete due to dependencies between and within
successive iterations – see [3], for example
By contrast, using radix-4 SRT, VFP11 takes 15 cycles
(single precision) or 29 cycles (double precision) to
compute either correctly rounded quotients or square
roots.

Some details of this block were presented
previously in [4], including:

• the digit selection Table constants
• logic for partial remainder m.s.b. compression that

is needed to preserve sign information while discarding
the m.s.b.’s of the partial remainder between iterations
(the unit was designed using signed-digit
representation of the partial remainder)

• the use of comparators instead of a look-up table
to implement digit selection

• an adaptation of “on-the-fly” conversion to derive
updated square root estimates in minimal logic depth

This paper reveals further parallelisation of the SRT
recurrence so as to remove one of two “back-to-back”
carry-propagate additions from the digit selection logic
[5].

2. VFP11 Divide and Square Root Macro-
cell Implementation

The recurrence equation for SRT division is:

11 ++ ⋅−⋅= iii qDRrR
 ___ (1)
and that for SRT square root is:

)1(2
111 2 +−

+++ ⋅−⋅−⋅= i
iiiii rqqQRrR ___ (2)

where Rx is the remainder after the xth iteration, r is the
radix of the SRT algorithm, D is the divisor, qx is the
xth digit of Rx, and Qx is the x-digit result computed
after the xth iteration. In SRT division, the divisor is
assumed to be in the range 1 ≤ D < 2 in keeping with
the significand range of the IEEE floating-point
standard. For consistency between the SRT division
implementations, the root estimate is constrained to
satisfy 1 ≤ 2Qi < 2, implying that the radicand must be
in the range 0.25 ≤ Ri < 1. This range of radicand
ensures that the exponent can always be even. To
initialise the square root recurrence, q0 is forced to 1 so
that if Qi > u, the redundancy factor defined as qmax/(r-
1), the result is still obtainable. For minimum-
redundancy radix-4 SRT iterations, u = 2/3. These two
equations are frequently combined into one unified
expression by writing:

11 ++ ⋅−⋅= iiii qFRrR ___ (3)
where Fi is the appropriate value for division or square
root derived from (1) and (2).

A block diagram of the divide and square root
synthesisable macrocell is shown in Figure 1, and
Figures 2 - 4 provide more detail of the three critical
logic blocks.

Figure 1 Block diagram of divide and square
root macrocell

Figure 2 8-bit comparator:
ck = sign(Ri[3:-4] – Mk[3:-4])

Before the first iteration, the four selection

constants used to select qi+1, denoted Mk, are loaded
into registers, and the D, Ri, Qi

+ and Qi
− registers are

initialised with the appropriate values. Then, at each
subsequent iteration, the top eight bits of the partial
remainder, Ri, are compared with the four selection
constants, Mk (Figure 2), and the four 1-bit results of
these comparisons, ck, are combined to derive the value
of the next result digit, qi+1, in a 1-hot encoding.

In parallel with these comparisons, the five possible
updated remainders R*i+1 = Ri − Fk for k = -2 … +2 are
computed, but with the top 8 bits in non-redundant
format, as shown in Figure 3. In this way, no 3:2
reduction is needed ahead of the Mk comparators on the
next iteration, thus minimising the logic depth of the
critical path through the comparators.

As discussed in [4], these short carry-propagate
additions across the m.s.b.’s also have the effect of
“compressing” the speculative signed-digit remainders,
so that sign information is not lost when the top two
bits of the remainder are discarded between iterations.
Also as discussed in [4], the four possible updated
subtrahends, Fk, (for k ∈ {−2, −1, +1, +2} only) are
formed by a circuit whose logic depth comprises a
NOR gate driving into the data input of a 2:1
multiplexer. The multiplexer is needed to select the
correct set of Fk values depending on whether a
division or a square root operation is being executed.

Finally, the new value of qi+1 as derived from the
four values of ck selects the appropriate value of Ri+1
(in redundant format except for the 8 m.s.b.’s) and the
updated range estimates of the square root, Qi+1

+ and
Qi+1

−, and the iteration is complete (see Figure 4, where
the logic that derives and concatenates the 2 l.s.b.’s of

Fk logic

Ri[lsbs]

qi+1

M2

qi+1 logic

Qi+1
+ & Qi+1

−

Qi
+ & Qi

− D

buf

redundant format

8
cmp cmp cmp cmp

M1 M0 M-1

ck = sgn(trunc(Ri)–Mk) Q*i+1
+/− logic

5:1 muxes

r-(i+1) Ri[msbs]

R*i+1 = Ri – Fk

5:1 muxes

54-bit R*i+1 adders
(8 msb’s assimilated)

Ri+1[msbs]

buf

5

Ri+1[lsbs]

ck

Ri[3] Mk[3] Ri[-4] Mk[-4]Ri[0] Mk[0]

the updated square root range estimates Qi+1
+ and Qi+1

−
is not shown).

The performance of the macrocell is summarised in
Table 2 for three different technology nodes. The
ranges of frequency at 130nm and 90nm reflect
different process technologies at those nodes that trade
off speed for leakage power.

Table 2 Operating frequencies of macrocell

Technology Frequency Delay / CMOS gate

180nm 270 MHz 142 ns
130nm 350 – 550 MHz 78 – 122 ns
90nm 450 – 750 MHz 57 – 95 ns

There were 18 stages of CMOS logic and buffers

along the critical path (that ran through the qi+1 logic),
which after allowing for clock insertion, translated to
142 ns per logic stage at 180nm. This was deemed
near enough to the initial specification (of 15 CMOS
stages) to be acceptable.

3. Logical Effort analysis of VFP11 divide
and square root macrocell

In this Section, the macrocell is analysed using
Logical Effort [6] to provide further insight into the
balanced nature of the two critical paths through the
design. Logical Effort is a design methodology for
estimating the number of CMOS stages (including
buffers) required to implement a given logic function.
While Logical Effort is not a substitute for detailed
simulation, it is excellent at comparing different
CMOS digital designs. The method described below
has been applied to Knowles’ “Family of Adders” [7],
where it identified the same trade-offs between delay
and area as were described in that paper, even to the
extent of providing the same ranking of the adders for
speed. There was also no greater than a 5% difference
in delay estimate between the Logical Effort model and
Knowles’ reported delays [8].

Logical Effort uses a small number of basic
concepts, which are:

logical effort, g: total FET gate capacitance of a
CMOS logic gate relative to that of a minimum-sized
inverter

electrical effort, h: ratio of output capacitance to
input capacitance for each CMOS logic gate along a
critical path

branching effort, b: ratio of total capacitative load
on one CMOS logic gate’s output along the critical
path to the FET gate capacitance of the next CMOS
gate on the critical path

parasitic delay, p: total diffusion capacitance on the
output node of a CMOS logic gate relative to the input
FET gate capacitance of a minimum-sized inverter

Logical Effort operates by calculating the total Path
Effort along the critical path of a digital CMOS circuit
as:

F = GBH ____ (4)
where G = Πg, B = Πb, and H = Πh. The last term
reduces to the ratio of the output capacitance loading
the last CMOS logic gate to the FET gate capacitance
of the first CMOS logic gate along the critical path.
Usually, H is forced to 1 by assuming that the circuit
being modelled is connected to a copy of itself. This
allows input branching effort to be incorporated in a
delay estimate. Values of Logical Effort and Parasitic
Delay for a selection of cells (taken from [6]) are listed
in Table 3.

Once the path effort has been calculated, a near-
optimum design for the CMOS circuit can be
determined by deriving the number of CMOS stages
(including buffers) required in the circuit as:

N = log4F ____ (5)
N is then rounded to the nearest integer to give the
parameter, α:

α = F1/N ____ (6)

Table 3 Values of Logical Effort and Parasitic

Delay for selected CMOS cells
CMOS gate g p

NOT 1 1
NOR2 5/3 2

NAND2 4/3 2
NAND3 5/3 3
AOI21 6/3 7/3
OAI21 6/3 8/3
XOR2 12/3 5

The FET’s along the critical path are now sized

such that the electrical effort of each logic gate (i.e. the
ratio of the total output load capacitance to the input
FET gate capacitance), h = α/g. Then the total delay of
the CMOS circuit under consideration may be written
as:

D = Nα + ∑p ____ (7)
in arbitrary delay units. Dividing this expression by 5
yields an approximation to the delay in terms of fan-
out = 4 (“FO4”) inverter delays.

Thus, from (4), the Path Effort of a logic circuit, F,
can be calculated by multiplying together the fan-out
loads (g⋅b) at each node along the critical path. In
computing the fan-outs, track capacitance per logic
gate fan-out has been assumed to be equivalent to one
minimum-geometry p-FET, or 2/3 of the gate

capacitance of a minimum-size inverter. Hence, a
track that has a fan-out of three cells is allocated a
track fan-out of 6/3 = 2 minimum size inverters.
However, in a datapath component, laid out with two
cells per bit or column, a track fan-out of 1 p-FET per
bit traversed is allocated. Hence, a track that traverses
4 bits of a comparator would have a lateral distance of
four columns and would be allocated a track fan-out of
4 × 2/3 = 8/3 minimum size inverters [8]. Note that in
the following analysis, the logic diagrams presented
are indicative only because the macrocell was
synthesised from a pseudo-behavioural RTL
description.

There are two parallel critical paths through the
macrocell: one starts at the Ri register and goes through
one of four 8-bit comparators followed by the 1-hot
encoding of qi+1 and into the select input of the 5:1
muxes that return the updated values Ri+1, Qi+1

+, and
Qi+1

−. The other path starts at the Qi registers and goes
through the logic that derives the five possible values
of Fk, then through one of five 56-bit carry-save adders
with 8-bit carry-propagate subtractors, (“Ri+1 adders”),
and finally into the data inputs of the 5:1 multiplexer.
The logic comprising the qi+1 1-hot encoding logic and
5:1 multiplexer, presented in Figure 4, shows that
although the logic depths of the Ri+1 and Qi+1 update
5:1 muxes are essentially the same, the path through
qi+1=0 has the largest fan-out of four NAND2 gates.

Figures 5 and 6 present logic diagrams of the 8-bit
subtractor (with its carry input held at logic ‘1’) and
full adder and also found on the critical paths of the
macrocell. Note that the i1 input of the full adder has a
shorter critical path through the full adder than the
other two.

Figure 5 Logic diagram of full adder

Figure 6 Logic diagram of 8-bit subtractor

The Logical Effort analyses of the two critical paths

through the macrocell are laid out below, and show
that the estimated delays of the two paths are 16.0 and
15.4 FO4. Thus, the design is well balanced between
the two critical paths (only a 3.8% difference), with the
path delay through the slower subtractor matched by
that through the comparator and the multi-stage buffer.

Critical path 1: through Fk logic (output connected

back onto input)
gate load g⋅b p
buf* 4 × nor2’s + wire 4×5/3 + 4×2/3 2
nor2 mux2 + wire 6/3 + 2/3 2
mux2 xnor2 + min + wire 12/3 + 12/3 + 4/3 4
xnor nand2 + nor2 +wire 4/3 + 5/3 + 4/3 5
nor2 oai21 + wire 6/3 + 2/3 2
oai21 inv + 2×aoi21 + wire 1 + 2×2 + 6/3 8/3
aoi21 inv + 3×oai21 + wire 1 + 3×2 + 8/3 7/3
oai21 xnor + wire 12/3 + 2/3 8/3
xnor aoi22 + wire 6/3 + 2/3 5
aoi22 nand3 + wire 5/3 + 2/3 4
nand3 buf + wire 1 + 2/3 3
*Buf is multi-stage due to large fan-out loading

F = Πg⋅b = 8.8 × 106; P = Σp = 34.7
N = rnd(log4F) = 12; α = 3.79
D = (Nα+P)/5 = (12×3.79+34.7)/5 = 16.0 FO4 delays

!c !s

maj

i1 i2 i3

cin = 1
(implicit)

Critical path 2: through Mk comparators (output
connected back onto input)

gate load g⋅b p
buf* 4×(nand2+nor2) +

5×(min+xor2) + wire
4×9/3 + 5×24/3

+ 36/3
2

nand2 oai21 + wire 6/3 + 2/3 2
oai21 aoi21 + wire 6/3 + 4/3 8/3
aoi21 oai21 + wire 6/3 + 8/3 7/3
oai21 2×buf + wire 2×1 + 4/3 8/3
inv nor2 + wire 5/3 + 2/3 1

nor2 2×buf + wire 2×1 + 4/3 2
buf* 56×(4×nand2) + wire 896/3 + 448/3 3

nand2 nand3 + wire 5/3 + 2/3 2
nand3 buf + wire 1 + 2/3 3
*Bufs are multi-stage due to large fan-out loading

F = Πg⋅b = 1.2 × 108; P = Σp = 22.67
N = rnd(log4F) = 13; α = 4.18
D = (Nα+P)/5 = (13×4.18+22.67)/5 = 15.4 FO4 delays

Interestingly, the synthesis results showed that the

second path (through the comparators) was slightly the
slower of the two, whereas the Logical Effort analysis
has the path through the 8-bit subtractors as slightly
slower. This reflects inaccuracies in the Logical Effort
modelling approach (discussed later), but may also be
due to less than optimal placement in the synthesised
circuit resulting in longer wires and more buffers than
assumed in the analysis. Indeed, in the synthesised
macrocell, the sets of comparators were actually
duplicated to help achieve timing closure.

4. Timing and Area comparisons

Fandrianto [9] was the first to publish a combined
radix-4 SRT divide and square root unit, but this
design employed a complicated digit selection
algorithm and a PLA to provide an initial estimate of
the radicand. Ercegovac and Lang [10] showed how
the initial estimate PLA could be dispensed with and
refined Fandrianto’s digit selection technique. The
cycle time of their design comprised the following
delays:

• register load (& clocking)
• 4-to-1 multiplexer
• 3:2 carry-save adder
• digit selector (8-bit carry-propagate adder & 12-

input logic network)
The 12-input logic network contains a short

wordlength comparison which requires a carry-
propagate subtraction, so that each SRT iteration
contains two sequential short wordlength carry-
propagate additions, considerably impacting on the

cycle time. Harris et al described a variety of methods
for accelerating radix-2 and radix-4 SRT division,
achieved by overlapping non-dependent elements of
successive iterations [11]. However, none of these
methods can be readily extended to square root
calculations because of the need to generate updated
root estimates every cycle (Qi+1

+ and Qi+1
− in Figures 1

and 4 above) which have a dependency on the new
result digit produced that same cycle. Most recently,
two new approaches to designing low-power combined
divide / square root units have both focussed on using
radix-4 SRT [12,13]: however, these proposals have
the equivalent of two back-to-back short-wordlength
carry-propagate adders on their critical paths. The
proposal of [13] also uses a retiming technique to
reduce power consumption, and a block diagram of the
critical path of the retimed architecture is presented in
Figure 7. It comprises three main blocks:

• DSMUX / FGEN, which is akin to the Fk logic of
Figure 1;

• CSA, which is a 3:2 carry-save adder;
• SEL, which provides the next quotient digit, qi+1,

and in turn comprises two sub-blocks – an 8-bit carry
propagate adder and 4 6-bit comparators followed by a
small logic network to return qi+1 in a zero/one-hot
format.

Figure 7 Block diagram of retimed low-power
combined SRT divide / square root unit [13]

FGEN

Ri

qi+1

M2

qi+1 logic

Qi D

redundant format

M1 M0 M-1

CSA

cmp cmp cmp cmp

8-bit adder

DSMUX

SEL

The FGEN unit comprises a 2-to-1 multiplexer (to
select between D or Qi depending on whether a
division or square root operation is being performed)
driving a 4-to-1 multiplexer (to return the new value of
Fi depending on the most recent quotient digit). The
output of the FGEN unit is connected to the fast input
of the CSA unit. Finally, in SEL, the most significant
8 output digits of the CSA unit (in redundant format)
are assimilated in an 8-bit carry-propagate adder and
then broadcast to 4 6-bit comparators to derive the next
value of qi+1 using logic similar to that in Figure 4.
Logic diagrams of circuits unique to this architecture
are presented below in Figures 8 and 9.

Figure 8 6-bit comparator

Figure 9 1-hot logic and 4:1 multiplexer for

SRT divider

The Logical Effort analysis of this architecture
proceeds as before by computing the capacitative load
on each cell along the critical path of the logic circuit,
assuming 2/3 inverter wire load per fan-out or per bit
across a datapath element. The full analysis is laid out
below:

Critical path: through FGEN, CSA, and SEL

(output connected back onto input)
gate load g⋅b p
buf* 56 × mux2’s

+ wire
56×2 + 56×2/3 3

mux2 4 × aoi22 + wire 4 × 6/3 + 8/3 4
aoi22 nand2 + wire 6/3 + 2/3 4
nand2 xnor2 + min + wire 12/3 + 12/3 + 4/3 2
xnor nand2 + nor2 +wire 4/3 + 5/3 + 4/3 5
nor2 oai21 + wire 6/3 + 2/3 2
oai21 inv + 2×aoi21 + wire 1 + 2×2 + 6/3 8/3
aoi21 inv + 3×oai21 + wire 1 + 3×2 + 8/3 7/3
oai21 xnor + wire 12/3 + 2/3 8/3
xnor 4×min + wire 4×6/3 + 8/3 5
min oai21 + wire 2 + 2/3 2

oai21 aoi21 + wire 2 + 4/3 8/3
aoi21 oai21 + wire 2 + 8/3 7/3
oai21 2×nor2 + wire 2×5/3 + 6/3 8/3
nor2 mux2 + wire 6/3 + 2/3 2

*Buf is multi-stage due to large fan-out loading
F = Πg⋅b = 9.1 × 1011; P = Σp = 41.33
N = rnd(log4(F) = 20; α = 3.96
D = (Nα+P)/5 = (20×3.96+44.33)/5 = 24.7 FO4 delays

The low-power design is more than 50% slower
than the VFP11 design, mostly because of the two
successive carry-propagate structures (8-bit adder and
6-bit comparator). Incidentally, [13] reported a logic
delay (excluding flop and clock insertion delays) of
6.2ns in 0.6um CMOS, equivalent to 28.7 FO4
(assuming 1 FO4 = 360 × 0.6 = 216ps [14]). The
theoretical result given by Logical Effort is optimistic
compared to the synthesis result of [13], probably due
to Logical Effort’s ignoring of slew effects and its
implicit assumption that logic gates are available in an
infinite number of logic strengths.

By contrast, the ARM VFP11 unit has two well-
matched critical paths, each with only one carry-
propagate operation on them, allowing the design to fit
in a processor with a shallow pipeline. This was
achieved by using the next result digit, qi+1, to select
one of five speculative results; moreover, by
performing an 8-bit carry-propagate addition across the
msb’s of the speculatively updated partial remainders,
the result digit comparisons needed to derive the next
result digit were also accelerated.

maj

ck

Fk(q=2)

Fk(q=1)
Fk(q=-2)

Fk(q=-1)

Fk

c2 c1 c0 c-1

pipeline cut

However, the speculative computations needed to
accelerate the SRT iteration have come at a major
hardware cost. Table 4 compares the cell counts of the
VFP11 design with the low-power design counting 2
for XOR cells, 5 for flops, and assuming that the qi+1
and Qi+1 logic is negligible. The area of the low-power
design is much smaller than that of the high-
performance divide and square root macrocell because
the 5 full-length carry-save adders that formed the
speculative values of the new remainder in the VFP11
macrocell have been replaced by a single carry-save
adder, and the four full-length multiplexers used to
return the speculative values of Fk in the VFP11
macrocell have been replaced by one multiplexer in the
low-power design. Moreover, the number and sizes of
the required registers have been reduced in the low-
power design. Excluding buffers, the overall hardware
saving is around a factor of 4.5. This is an excellent
illustration of the perennial trade-off in high-
performance VLSI design between delay and area: in
this case, in order to meet the required processor clock
rate, quintuple parallel speculation was required; if the
required clock rate were relaxed, considerable
hardware savings could have been implemented
because speculation would not have been necessary.

Table 4 Estimated cell counts for combined

and divide-only macrocells
Logic block # CMOS

cells
ARM
macrocell

Low-power
unit [13]

Fk / qkD logic
(Figs. 4 & 9)

10 or
3 / bit

10×56 = 560 3×56 = 168

Comparators
(Figs. 2 & 8)

26 or
20

26×4 = 104 20×4 = 104

8-b subtractor
(Fig. 6)

65 65×5 = 325 65

(3:2) adders
(Fig. 5)

5 5×(5×48) =
1200

5×56 = 280

half adders 3 3×(5×6) = 90 -
5-to-1 mux
(Fig. 4)

14 54×14 = 756 -

Flops 5 5×(54×6 +
10×4) = 1820

5×(56 + 24
+ 4) = 420

TOTAL (exc.
buffers, etc)

 4855 1037

5. Summary

This paper has presented the ARM VFP11 divide
and square root unit, which makes use of partial
remainder speculation to achieve a cycle time that is
50% faster than the best previous proposal. However,
the amount of speculation required led to a significant

increase in area when compared with a recently-
proposed low-power design making use of a retiming
technique. It may yet prove possible to combine the
retiming technique with the speculation employed in
this unit: after a small number of iterations, the top few
bits of the root estimate do not change, thus facilitating
both short-wordlength speculation and delayed long-
wordlength reduction, as described recently in a
hardware-efficient yet comparably fast divide-only
architecture [15].

6. Acknowledgements

The authors wish to acknowledge the efforts of the
reviewers in helping make the published version of this
paper markedly better than the original submission.

7. References

[1] ARM. VFP11 Vector Floating-Point Coprocessor
Technical Reference Manual, DDI 0274B, 2002.

[2] C.N. Hinds and D.R. Lutz, “Accelerating Floating-Point
3D Graphics for Vector Microprocessors”, Proc. Asilomar
Conference, Pacific Grove, CA, Nov. 2003, pp. 355-359.

[3] R.C. Agarwal, F.G. Gustavson, and M.S. Schmookler,
“Series Approximation Methods for Divide and Square Root
in the Power3TM Processor”, Proc. IEEE Symp. Comp.
Arith., Adelaide, Australia, April 1999, pp. 116 – 123

[4] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT
Square Root and Divide Unit”, Proc. 35th Asilomar
Conference, Pacific Grove, CA, Nov. 2001, pp. 1646-1650

[5] C.N. Hinds and N. Burgess, “Apparatus and Method for
Performing Operations Implemented by Iterative Execution
of a Recurrence Equation”, ARM Ltd., U.S. patent 7016930,
2006

[6] I.E. Sutherland, R.F. Sproull and D. Harris, Logical
Effort: Designing Fast CMOS Circuits. San Francisco, CA:
Morgan-Kaufman, 1999

[7] S. Knowles, “A Family of Adders”, Proc. IEEE Symp.
Comp. Arith., Vail, CO, June 2001, pp. 277 – 284

[8] N. Burgess, “New Models of Prefix Adder Topologies”,
J. VLSI Sig. Proc., 40, pp. 125-141 (2005)

[9] J. Fandrianto, “Algorithm for High Speed Shared Radix 4
Division and Radix 4 Square Root”, Proc. IEEE Symp.
Comp. Arith., Como, Italy, May 1987, pp. 73 – 79

[10] M.D. Ercegovac and T. Lang, “Radix-4 Square Root
Without Initial PLA”, IEEE Trans. Comp., 39, pp. 1016 -
1024 (1990)

[11] D.L. Harris, S.F. Oberman, M.A. Horowitz, “SRT
Division Architectures and Implementations”, Proc. IEEE
Symp. Comp. Arith., Asilomar, CA, July 1997, pp. 18 – 25

[12] M. Kuhlmann, and K.K. Parhi, “Fast low-power shared
division and square-root architecture”, Proc. ICCD, Austin,
TX, Oct. 1998, pp. 128-135

[13] A. Nannarelli and T. Lang, “Low-power radix-4
combined division and square root”, Proc. ICCD, Austin,
TX, Oct. 1999, pp. 236-242

[14] R. Ho, K.W. Mai and M.A. Horowitz, “The future of
wires”, Proc. IEEE, 89, pp. 490-504 (2001)

[15] E. Antelo et al, “Digit-recurrence Dividers with Reduced
Logical Depth”, IEEE Trans. Comp., 54, pp. 837-851 (2005)

Figure 3 M.s.b.’s of Ri+1 adder and 5:1 multiplexer

Figure 4 Logic diagram of qi+1 1-hot encoding and 5:1 multiplexers

Ri[3]
Fk[3]

Ri+1[1] Ri+1[0] Ri+1[-1] Ri+1[-2] Ri+1[-3]

Binary
point

Discard these bits 54-bit 5:1 multiplexer (only 1 data input shown)

8-bit carry-propagate subtracter (1 of 5)

Ri+1[-4] Ri+1[-5] Ri+1[-6] Ri+1[-7]

(not
implemented

Ri+1[-8]

HA HA HA HA HA HA HA HA FA FA FA

Ri[2]

Fk[2]

Ri[1]

Fk[1]

Ri[0]

Fk[0]

Ri[-1]

Fk[-1]

Ri[-2]

Fk[-2]

Ri[-3]

Fk[-3]

Ri[-4]

Fk[-4]

Ri[-5]

Fk[-5]

Ri[-6]

Fk[-6]

Ri[-7]

Fk[-7]

FA

Ri[-7]

Fk[-7]

R*
i+1(2)

R*
i+1(1)

R*
i+1(0)

R*
i+1(-2)

R*
i+1(-1)

Ri+1 (duplicated due to redundant

c2 c1 c0 c-1

Qi
+ Qi

−

Qi+1
+ Qi+1

−

qi+1 logic

qi+1=2 qi+1=−2

