
Decimal Floating-Point Multiplication Via Carry-Save Addition

Mark A. Erle
International Business Machines

6677 Sauterne Drive
Macungie, PA 18062
merle@us.ibm.com

Michael J. Schulte and Brian J. Hickmann
University of Wisconsin – Madison

Dept. of Electrical and Computer Engineering
Madison, WI 53706

schulte@engr.wisc.edu and bjhickmann@wisc.edu

Abstract

Decimal multiplication is important in many commercial
applications including financial analysis, banking, tax cal-
culation, currency conversion, insurance, and accounting.
This paper presents the design of a decimal floating-point
multiplier that complies with specifications for decimal
multiplication given in the draft revision of the IEEE 754
Standard for Floating-point Arithmetic (IEEE 754R). This
multiplier extends a previously published decimal fixed-
point multiplier design by adding several features includ-
ing exponent generation, sticky bit generation, shifting of
the intermediate product, rounding, and exception detection
and handling. The core of the decimal multiplication algo-
rithm is an iterative scheme of partial product accumulation
employing decimal carry-save addition to reduce the criti-
cal path delay. Novel features of the proposed multiplier
include support for decimal floating-point numbers, on-the-
fly generation of the sticky bit, early estimation of the shift
amount, and efficient decimal rounding. Area and delay es-
timates are provided for a verified Verilog register transfer
level model of the multiplier.

1. Introduction

Due to the importance of decimal arithmetic in com-
mercial applications and the potential speedup achiev-
able [7], microprocessors which support decimal floating-
point arithmetic will soon be available [19]. Further, spec-
ifications for decimal arithmetic have been added to the
revised version of the IEEE Standard for Floating-Point
Arithmetic [12] (hereafter referred to as “IEEE 754R”).
These specifications are more comprehensive than those
specified in the radix-independent standard [8], including
formats and operations for single, double, and quadruple
precision Decimal Floating-Point (DFP) numbers.

A fundamental operation for any hardware implemen-
tation of decimal arithmetic is multiplication, which is inte-

gral to the decimal-dominant applications found in financial
analysis, banking, tax calculation, currency conversion, in-
surance, and accounting. This paper presents the design of a
decimal floating-point multiplier in compliance IEEE 754R
and a prevailing decimal arithmetic specification [3].

Over the years, several designs for fixed-point decimal
multiplication have been proposed, including [5, 9, 13, 14].
These designs iterate over the digits of the multiplier and,
based on the value of the current digit, either successively
add the multiplicand or a multiple of the multiplicand.
The multiples are generated via costly lookup tables or de-
veloped using a subset of previously generated multiples.
None of these designs support floating-point arithmetic.
Only a few previous papers present designs for decimal
floating-point multiplication [1, 2]. The multiplier designs
by Cohen et al. [2] and Bolenger et al. [1] are digit-serial
and have long latencies. Furthermore, the results they pro-
duce do not comply with IEEE 754R.

The decimal multiplier presented in this paper extends
a previously published fixed-point decimal multiplier [5].
That design features a reduced set of multiplicand multi-
ples [16], the use of carry-save addition for the iterative
portion of the multiplier [13,14], and the use of direct deci-
mal addition [18] to implement decimal carry-save addition.
Novel features of the proposed multiplier include support
for DFP arithmetic, on-the-fly generation of the sticky bit,
early estimation of the shift amount, and efficient decimal
rounding, which does not exhibit rounding overflow.

Throughout this paper, upper case variables denote mul-
tiple digit words, lower case variables with subscripts de-
note digits, and lower case variables with subscripts and in-
dices denote bits. Thus, ai corresponds to digit i of operand
A, and ai[j] corresponds to bit j in digit i. Square brackets
are not needed when the lower-case variable represents a bi-
nary number. Upper case variables with subscripts denote
multiple digit words that are part of an iterative equation,
and upper case variables with subscripts and indices denote
digits. For example, IPi[3] corresponds to the fourth digit
in the intermediate product word after i iterations. Super-

scripts are used to differentiate various forms of the same
variable. Bits and digits are indexed from most significant
to least significant, starting with index zero. A subscript
next to a constant or string indicates the base. As for termi-
nology, the precision of a number is the maximum number
of digits able to be represented in a given fixed-width for-
mat, the number of significant digits is the number of digits
from the most significant non-zero digit to the least signifi-
cant digit (LSD), inclusive, and the number of essential dig-
its is the number of digits between the most significant non-
zero digit and the least significant non-zero digit, inclusive.

The outline of the paper is as follows. In Section 2,
background information on decimal floating-point multip-
lication is presented. This section includes information on
IEEE 754R’s storage formats and the concept of a preferred
exponent. Next, Section 3 contains a flowchart of the al-
gorithm along with descriptions of the major components
of the proposed design, including exponent processing, in-
termediate product shifting, and rounding. An implementa-
tion of the proposed DFP multiplier design is described in
Section 4 including area and delay numbers from synthesis.
Section 5 contains a summary of the paper.

2. Background of DFP Multiplication

A DFP number may be expressed in the following form:

D = −1s · C · 10E−bias (1)

where s is the sign bit, C is the non-negative integer signif-
icand, and E is the biased non-negative integer exponent.
The significand is an integer, which differs from normalized
Binary Floating-Point (BFP) significands (e.g., 1.01 . . .).
To maintain consistency between DFP and BFP formats,
IEEE 754R defines the parameters for various format widths
for both DFP and BFP numbers in a slightly modified sci-
entific notation form. The modification is the radix point
appearing to the right of the Most Significant Digit (MSD)
or Most Significant Bit (MSB), respectively, thereby re-
stricting the magnitude of the significands to less than their
radix. The primary parameter affected by this decision is
that of the exponent. When the significand is viewed in this
restricted-magnitude form, IEEE 754R uses the variable e
for the exponent; where emin ≤ e ≤ emax. When the sig-
nificand is viewed in integer form, IEEE 754R uses the vari-
able q (quanta) for the exponent; where emin − (p − 1) ≤
q ≤ emax−(p−1) and p is the precision. The (p−1) term
reconciles the alternative exponents since the radix points
for both significand representations with the same precision
are separated by p−1 digits. E relates to IEEE 754R’s e and
q in the following way: E = q+bias = e−(p−1)+bias. In
the spirit of making DFP similar to elementary arithmetic,
this paper uses the integer form of the significand.

The non-normalized significand leads to a few distinct
differences between DFP and binary floating-point (BFP)
arithmetic. First, when aligning significands such that dig-
its of the same order are located in the same physical po-
sition for add-type operations, both operands may need to
be shifted. Second, for multiply operations, if the number
of significant digits in the unrounded product exceeds the
format’s precision, p, then this intermediate product may
need to be left shifted prior to rounding. Third, if an inter-
mediate product contains p − i essential digits, then there
exists i equivalent representations of the value. Note the i
possible representations can only be realized if there is suf-
ficient available exponent range to allow the leading non-
zero digit to be placed in the MSD position and the trailing
non-zero digit to be placed in the LSD position. For ex-
ample, if p equals 5 and the operation is 32 × 1015 multi-
plied by 70 × 1015, then possible results are 22400 × 1029,
2240 × 1030, or 224 × 1031 (leading zeros not shown).

Because of the possibility of multiple representations of
the same value, IEEE 754R introduces the concept of a pre-
ferred exponent. The preferred exponent, PE, drawn from
elementary arithmetic, is based on the operation and the
exponent(s) of the operand(s). For multiplication, the pre-
ferred exponent, prior to any rounding or exceptions, is:

PE = EA + EB − bias (2)

For example, the product of A = 320 × 10−2, (EA =
−2+101) multiplied by B = 70×10−2, (EB = −2+101)
is P = 22400×10−4, (PE = −4+101). If an intermediate
product with leading zeros and raised to the preferred expo-
nent has essential digits to the right of the decimal point, the
significand is left shifted while decrementing the intermedi-
ate exponent to yield a product with the maximum number
of significant digits (so long as the exponent stays in range).

Although IEEE 754R specifies multiple storage formats
of DFP numbers and two encondings for the significand
within each format, the multiplier presented in this paper as-
sumes the operands are stored in the decimal64 format with
Densely Packed Decimal (DPD) encoding. The decimal64
format is comprised of a 1-bit sign, a 13-bit combination
field, and a 50-bit trailing significand field, which after de-
coding yields a 10-bit binary exponent and a 16-digit dec-
imal significand. The choice of precision, exponent base
and range, and significand representation and encoding is
examined in [4], and to a lesser extent in [12].

3. DFP Multiply Algorithm and Components

The floating-point multiplier design presented in this pa-
per is an extension of a fixed-point multiplier design pub-
lished in [5]. A flowchart-style drawing of the decimal
floating-point multiplication algorithm is shown in Figure 1,

with the steps of the decimal fixed-point multiplier from [5]
surrounded by a gray box. The solid arrows indicate the
general flow of execution, and the dashed arrows indicate a
transfer of information. The operation begins with the read-

Read
Operands

Decode DPD
Operands

Add SIP

Left Shift IP

Encode DPD
Result

Write Result

Generate C P, EP,
and GP

Detect/Handle
Exceptions

Iteratively
Generate IP

and sb *

Generate
IEIP, IESIP, SC.

SLA, and sP

Generate TuplesDetermine
LZA and LZB

Legend
DPD = Densely Packed Decimal
LZ = Leading Zero Count
IE = Intermediate Exponent
IP = Intermediate Product
SIP = Shifted IP
RIP = Rounded IP
SC = Sticky Counter
sb = Sticky Bit
SLA = Shift Left Amount
sP = Product Sign
CP = Product Significand
EP = Product Exponent
GP = Product Combination Field
 = original fixed-point
 design, except * items

Round,
generate RIP

Figure 1. Flowchart of Decimal Multiplier

ing of the operands from either a register file or from mem-
ory. As the operands are encoded via the DPD algorithm,
each must be decoded. Next, the double, quadruple, and
quintuple of the multiplicand are generated in the datapath
portion of the design. Then, in an iterative manner start-
ing with the LSD of the multiplier significand, each digit is
used to select two multiples to add together to yield a re-
spective partial product, the partial product is added with
the previous iteration’s accumulated product, and the accu-
mulated product is shifted one digit to the right. After all
the multiplier digits have been processed, the sum of all the

partial products, called the intermediate product, is stored
in a register twice as long as each input significand. All the
additions in the iterative portion of the algorithm yield inter-
mediate results in decimal carry-save form. For a diagram
of the top portion of the decimal floating-point multiplier,
the reader is referred to [6]. The top portion of the design,
with the exception of the sticky bit generation logic, is the
decimal fixed-point multiplier described in [5].

In parallel with the generation of the multiples and the
accumulation of partial products, the significands are ex-
amined to determine their leading zero counts, LZA and
LZB , the exponents are examined to determine the various
intermediate exponents, IEIP and IESIP , and the signs
are XORed to determine the product sign, sP . Based on the
leading zero counts and the intermediate exponent, two vi-
tal control values are generated: a shift left amount, SLA,
and a sticky counter, SC. The shift left amount is needed to
properly align the intermediate product, IP , prior to round-
ing. The sticky counter is needed to generate the sticky
bit, sb, created on-the-fly during the accumulation of partial
products. The intermediate product is then shifted based
on the shift left amount to produce the shifted intermedi-
ate product, SIP . Using the operands’ combination fields,
the intermediate exponent, and information from the shift
and round steps, a determination is made as to whether an
exception needs to be signaled and corrective action taken.

At the end of the iterative accumulation of partial prod-
ucts, the intermediate product is in the 2p-digit intermedi-
ate product register. Ultimately, a p-digit rounded product
needs to be delivered. Since the shifted intermediate prod-
uct is in carry-save form, an add step is necessary to produce
a non-redundant product. After rounding the shifted inter-
mediate product, the product exponent, EP , product signif-
icand, CP , and product combination field are generated∗.
Finally, these values, along with the product sign, are used
to produce a final result which is DPD encoded and written
to a register file or memory.

A critical design choice is the location of the decimal
point in the datapath as this dictates the direction the inter-
mediate product may need to be shifted and the location and
implementation of the rounding logic. For this design, the
location is chosen to be exactly in the middle of the inter-
mediate product register. This keeps the decimal point in
the same location throughout the datapath. Further, the in-
termediate product need only be shifted in one direction to
produce a rounded product (except when underflow occurs).

In the remainder of this section, the primary components
necessary to perform decimal floating-point multiplication
are described in detail. These include generating the inter-
mediate exponent, shifting the intermediate product, gener-
ating the sticky bit, generating the result sign, rounding, and

∗In actuality, the leading digit of CP and the leading two bits of EP

are contained in the combination field.

detecting and handling any exceptions.

3.1. Intermediate Exponent Generation

At the end of partial product accumulation, p digits of the
intermediate product are to the right of the decimal point.
Thus, the intermediate exponent of the intermediate prod-
uct, IEIP , is the preferred exponent increased by p:

IEIP = EA + EB − bias + p

= PE + p (3)

After left shifting the intermediate product as part of
preparing a p-digit final product, the intermediate exponent
is decreased by the shift left amount, SLA (described in the
next subsection). The exponent associated with this shifted
intermediate exponent, IESIP , is calculated as follows.

IESIP = EA + EB − bias + p − SLA

= PE + p − SLA

= IEIP − SLA (4)

The shifted intermediate product is then rounded, and the
associated exponent is named the intermediate exponent of
the rounded intermediate product, IERIP . The IERIP

is one less than IESIP or equal to IESIP depending on
whether or not a corrective left shift of one digit occurs dur-
ing rounding. However, the product exponent may differ
from IERIP due to an exception.

Related to the intermediate exponent calculations is the
determination of the amounts by which IEIP is less than
the minimum exponent, Emin, or more than the maximum
exponent, Emax. These comparisons are used to increase
or decrease the shifting of the intermediate product in an
effort to prevent an exception. As the shifting of the inter-
mediate product may be affected by these comparisons, the
generation of the sticky bit must be altered accordingly. The
computation of the shift amount for the intermediate prod-
uct and the generation of the sticky bit are described in the
next two subsections, and the handling of extreme numbers
is described in Subsections 3.4 and 3.5.

3.2. Intermediate Product Shifting

As mentioned earlier, the intermediate product may need
to be shifted to achieve the preferred exponent or to bring
the product exponent into range. Calculating the shift
amount is dependent upon, among other things, the num-
ber of leading zeros in the intermediate product. However,
instead of waiting until the intermediate product is gener-
ated to count the leading zeros, the latency of the multiplica-
tion is reduced by determining a shift amount based on the
leading zeros in both the multiplicand and multiplier signif-
icands. With this approach, the pre-calculated shift amount

may be off by one since the number of significant digits in
the final product may be one less than the sum of the signif-
icant digits of each significand. Thus, the product may need
to be left shifted one additional digit at some point after the
initial shift.

Except when IEIP < Emin, the shift is always to the
left†. This is because each partial product is added to the
previous accumulated product with its LSD one digit to the
right of the decimal point. With an estimate of the signifi-
cance of the intermediate product based on the significance
of each significand, SIP = SA + SB , the shift left amount
is determined as follows. If SIP > p, then one or more
leading zeros of the intermediate product may need to be
shifted off to the left to maximize the significance of the
result. However, if SIP ≤ p, then the entire product will
reside solely in the lower half of the intermediate product
register (assuming all the multiplier significand digits have
been processed). In the latter case, the less significant half
of the intermediate product register can be placed into the
upper half, by left shifting the intermediate product p digits.
These two situations lead to the following equation for the
shift left amount, SLA.

SLA = min((2 ∗ p) − (SA + SB), p)
= min((2 ∗ p) − ((p − LZA) + (p − LZB)), p)
= min(LZA + LZB , p) (5)

where LZA and LZB are leading zero counts of the signif-
icands, CA and CB , respectively.

In the event the actual significance of the intermediate
product is one digit less than the estimated significance,
it may be necessary to left shift the intermediate product
one more digit after the initial left shift. The potential for
a corrective left shift of one digit necessitates maintaining
an additional digit to the right of the decimal point. This
digit is referred to as the guard digit and is analogous to
the guard bit used in binary floating-point multiplication.
The handling of the final left shift by one digit occurs in
the rounding portion of the algorithm and is described in
Subsection 3.5.

The shift left amount, as estimated above, is dependent
on all the multiplier significand’s digits being processed.
One design option is to exit the iterative portion of the algo-
rithm after processing the most significant nonzero digit of
the multiplier significand. Although this option complicates
the processor’s instruction issue and completion logic, sub-
stantial cycles may be saved for certain workloads. If early
exit is to be supported, the shift left amount calculation, as
well as other design components, needs to be altered ac-
cordingly.

†This assumes every multiplier digit is processed during the partial
product accumulation portion of the multiplication algorithm.

3.3. Sticky Determination

After left shifting, any nonzero digits in the less signifi-
cant half of the intermediate product register must be eval-
uated in the context of the rounding mode to determine if
rounding up is necessary. As mentioned in the previous sub-
section, a corrective left shift of one digit may be needed if
the actual significance of the intermediate product is one
less than the sum of the significands’ significance. In the
event the corrective left shift is performed and the guard
digit is shifted into the LSD position of the more signifi-
cant half of the intermediate product register, the next digit
must be maintained such that it can be determined if the re-
maining digits are less than one half the Unit in the Last
Place (ULP), exactly one half ULP, or greater than one half
ULP. Since this digit in the next less significant position to
the guard digit is critical to rounding, it is called the round
digit, which is analogous to the round bit in binary multip-
lication. The bits of the digits to the right of the round digit
can all be logically ORed to produce a sticky bit.

To improve the latency and area of floating-point mul-
tiplication, it is desirable to know a priori which digits will
be used in the sticky bit calculation. Having such knowl-
edge allows the sticky bit to be generated on-the-fly with
less hardware and wiring resource than waiting until the
entire intermediate product is available and then selecting
which digits should be ORed together. This can be read-
ily accomplished in this design as a non-redundant digit,
formed during the accumulation of a new partial product,
enters the MSD of the less significant half of the intermedi-
ate product register while the intermediate product is right
shifted one position.

To determine when a digit being right shifted from the
round digit position to the next less significant digit position
should be included in the sticky bit generation, a counter is
used. The starting value of this counter is initialized just
prior to the first partial product entering the intermediate
product register and cleared between operations. When-
ever the counter value is greater than zero, the digit being
shifted out of the round digit position is ORed with the pre-
vious sticky bit value, which is cleared between operations.
The initial value of the sticky counter, SC, is generally the
significance of the intermediate product minus the format’s
precision, unless this difference yields a negative number.
Thus,

SC = max(0, SIP − p)
= max(0, (p − LZA) + (p − LZB) − p)
= max(0, p − (LZA + LZB)) (6)

Note the counter is decremented twice before any
nonzero data enters the digit position to the right of the
round digit position. This insures the two digits which end

up in the guard and round digit positions after left shifting
are not included in the sticky bit generation. Up to two more
cycles can be taken to generate SC so long as the value of
the counter is correspondingly less than what is described
in Equation 6. Also, if the intermediate product needs to
be left shifted one additional digit, the sticky bit calculated
in the manner above is still legitimate. This is because the
guard digit will be moved into the LSD position of the prod-
uct, and the round digit and sticky bit calculated in the man-
ner above are all that is needed for rounding.

3.4. Sign Processing & Exception Handling

Sign processing is relatively straightforward. If the result
is a number, the sign of the result is simply the XOR of the
signs of the operands. However, if the result is NaN, IEEE
754R does not specify the value of the sign bit. For ease
of implementation, the sign logic used when the result is a
number is also used when the result is NaN.

There are four exceptions that may be signaled during
multiplication: invalid operation, overflow, underflow, and
inexact. The invalid operation exception is signaled when
either operand is a signaling NaN or when zero and infinity
are multiplied The default handling of the invalid operation
exception involves signaling the exception and producing a
quiet NaN for the result. If only one operand is a signaling
NaN, then the quiet NaN result is created from the signaling
NaN. Note that any produced or propagated NaN must have
each ten-bit grouping in its trailing significand field as a de-
fined pattern (i.e., only 1000/1024 possible combinations
are defined; see IEEE 754R). If one operand is a signaling
NaN and the other is a quiet NaN, then this design converts
the signaling NaN to a quiet NaN and returns this as the
result‡. That is, the diagnostic information potentially con-
tained in the signaling NaN is deemed more important than
the diagnostic information potentially contained in the quiet
NaN.

The overflow exception is signaled when a result’s mag-
nitude exceeds the largest finite number. The detection is
accomplished after rounding by examining the computed
result as though the exponent range is unlimited. Default
overflow handling, as specified in IEEE 754R, involves the
selection of either the largest normal number or canonical
infinity and the raising of the inexact exception. Details on
overflow handling appear in the next subsection. The inex-
act exception, an indication essential digits have been lost,
is raised because the most significant nonzero digit in the
shifted intermediate product has been shifted off the most
significant end of the register, effectively, in an effort to de-
crease the exponent into range.

Under default exception handling, the underflow excep-
tion is signaled when a result is both tiny and inexact. Tini-

‡This is not required behavior in IEEE 754R.

ness is when the result’s magnitude is between zero and
the smallest normal number, exclusive. The detection of
tininess can be accomplished in two ways, although each
implementation of IEEE 754R must choose one way and
use it for all operations. The first approach detects under-
flow prior to rounding by examining the computed result as
though both the exponent range and the precision is unlim-
ited. The second approach detects underflow after rounding
by examining the computed result as though the exponent
range is unlimited but with the result format’s fixed pre-
cision. As an example, the smallest normal number in the
decimal32 format is 1000000×10Emin−bias. If 7777000×
10Emin−bias is multiplied by 9000000 × 10bias−8, the in-
termediate product is 6999300.0000000 × 10Emin−bias−1.
However, this exponent cannot be represented. Instead of
abruptly converting this number to zero, a subnormal num-
ber is produced by shifting the significand to the right one
digit position and increasing the exponent by one to achieve
the minimum exponent. Thus, the product significand is
0699930 × 10Emin−bias. By reducing the precision in this
manner, underflow occurs gradually. In the preceding ex-
ample, the shifting to the right of the significand did not
result in the loss of any nonzero digits. Thus, the results are
exact, albeit subnormal, and the underflow exception is not
raised. For an example of when the underflow exception is
signaled, consider the following: 7777000 × 10Emin−bias

multiplied by 9000000 × 10bias−13. Here, the intermediate
product is 6999300.0000000× 10Emin−bias−6. To achieve
the minimum exponent, the significand must be right shifted
and rounded§ to produce 0000007 × 10Emin−bias. Since
one or more nonzero digits are “lost” to rounding, the result
is both tiny and inexact and the underflow exception is sig-
naled. Default underflow handling is explained in the next
subsection.

3.5. Rounding

Rounding is required when all the essential digits of the
intermediate product cannot be placed into the product coef-
ficient or when overflow or underflow occurs. The descrip-
tion of each rounding mode required by IEEE 754R and its
associated condition(s) are listed in Table 1. The default
rounding mode is language-defined, but is encouraged to be
round to nearest, ties to even.

In the case of rounding based solely on the number of es-
sential digits, rounding is accomplished by selecting either
the shifted intermediate product truncated to p digits or its
incremented value. In order to determine which value is to
be selected, the following are needed: the rounding mode,
the product’s sign, the shifted intermediate product, includ-
ing a guard digit, g, round digit, r, and sticky bit, sb, and an
adder.

§The round to nearest, ties to even rounding mode is used.

The adder must be able to produce a non-redundant sum
from its inputs, some of which may be in carry-save form.
Further, it must be able to add a one into either its LSD po-
sition or its guard position. The two options for the position
to inject a one are necessary as the estimate of the shift left
amount may be off by one, in which case a corrective left
shift is required. Though this may appear to require more
than one adder, both situations can be supported by using a
single compound adder. The inputs to the adder are the data
in the p MSD positions of the shifted intermediate prod-
uct. To understand why it is sufficient to use only one com-
pound adder p digits wide, consider the four possibilities
of adding a zero or a one into the LSD or guard digit po-
sitions. Clearly, adding a zero into the guard digit position
is the same as adding a zero into the LSD position (so long
as the original guard digit is concatenated). The remaining
two possibilities are related in the following way. If a one
is added into the guard digit position and a carry occurs out
of the guard digit position (i.e., g == 9), then this is equiv-
alent to adding a one into the LSD position and changing
g to zero. Conversely, if a carry does not occur out of the
guard digit position (i.e., g < 9), then this is equivalent to
adding a zero into the LSD position and concatenating the
incremented guard digit.

Before presenting the rounding scheme employing the
compound adder, the following simplification is offered.
This design does not need to contend with rounding over-
flow. Rounding overflow is when the truncated intermediate
product is incremented due to rounding and a carry out of
the MSD position occurs. Rounding overflow cannot occur
in this design due to the range of each operand and the man-
ner in which the shift left amount is determined. To learn
why rounding overflow cannot occur, the reader is referred
to a proof in [6].

The use of a single compound adder to generate both a p-
digit significand and its incremented value, and the guaran-
tee of no post-rounding normalization, allows a simple and
efficient rounding scheme to be developed which is unique
from recent binary rounding schemes such as those pre-
sented and referenced in [15]. Here, C+0 and C+1 are used
to represent the plus zero and plus one sums, respectively,
emerging from the compound adder.

First, an indicator, grsb, is set whenever there are
nonzero digits to the right of the LSD position of the shifted
intermediate product. That is, grsb = (g > 0) + (r >
0) + sb. This indicator, when set, may lead to a correc-
tive left shift if there is a leading zero in the compound
adder’s outputs. The corrective left shift does not happen
when round up is to occur and the first p digits of the shifted
intermediate product are zero followed by all nines. In this
case, a round up will produce a carry into the MSD position
and the corrective left shift must be preempted. Fortunately,
this unique case can be readily detected. It is the only situ-

Table 1. Rounding Mode, Round Up Conditions, and Product Override for Overflow
Product Override – Overflow

Rounding Mode Condition for Round-up – Non-overflow sIP == 0 sIP == 1

Nearest, ties to even (g > 5) + ((g == 5) · (l[3] + (r > 0) + sb)) +∞ −∞
Nearest, ties away from zero g ≥ 5 +∞ −∞
Toward positive infinity !sP · ((g > 0) + (r > 0) + sb) +∞ largest finite −number
Toward negative infinity sP · ((g > 0) + (r > 0) + sb) largest finite +number −∞
Toward zero (truncate) none largest finite +number largest finite −number

ation in which the MSD of C+0 is a zero and the MSD of
C+1 is a nonzero.

Next, for the given rounding mode, two round up values,
rucls==0 and rucls==1, are computed for the cases of no
corrective left shift by one and a corrective left shift by one,
respectively. The computations are based on the shifted in-
termediate product and the round up condition(s) in Table 1.
The difference between the two round up values is for the
case of a corrective left shift, the guard digit is treated as
the LSD, and the round digit is treated as the guard digit.
As an example, if the rounding mode is round toward zero,
both round up values are zero. As another example, if the
rounding mode is round to nearest, ties away from zero and
the LSD, guard, round, and sticky values are 0, 5, 0, 0, then
rucls==0 = 1 and rucls==1 = 0.

At this point, the guard digit must be incremented and
an indicator developed when the original guard digit equals
nine. The incremented guard digit is needed during a cor-
rective left shift when round up is performed. The carry out
of the decimal digit adder can be used as the g == 9 in-
dicator, g9. However, it is important to note this carry out
is never allowed to propagate into the LSD position of the
compound adder.

Using C+0, C+1, rucls==0, rucls==1, grsb, g, g + 1,
and g9, the algorithm presented in Figure 2 realizes round-
ing for the decimal floating-point multiplier design. The
algorithm is presented as three distinct cases involving the
MSDs of the two conditional sums, C[0]+0 and C[0]+1.
The fourth case, when the plus zero sum has a zero in its
MSD and the plus one sum has a nonzero digit in its MSD,
cannot happen.

Though the rounding scheme of Figure 2 may appear
complex, the choice is simply between C+0, C+1, or these
values left shifted one digit with either g or g + 1 con-
catenated. For those cases in which a left-shifted form of
a conditional sum is chosen, the intermediate exponent of
the shifted intermediate product is decremented.

In the case of rounding due to overflow, the product is
rounded according to column IV in Table 1. The table de-
scribes the product to be generated for each rounding mode
under default exception handling as specified in IEEE 754R.

Ultimately, the detection of overflow occurs by compar-
ing the intermediate exponent of the rounded intermedi-

ate product, IERIP , with the maximum exponent, Emax.
However, the following steps are taken prior to this com-
parison in an effort to keep the intermediate exponent in
range. If the intermediate exponent of the intermediate
product (IEIP in Equation 3) minus the shift left amount
(SLA in Equation 5) is greater than Emax, then SLA is in-
creased to subsequently decrease the intermediate exponent
of the shifted intermediate product (IESIP in Equation 4).
SLA can only be increased to the extent all the leading ze-
ros of the intermediate product are removed. If there are
only enough leading zeros to bring IESIP down to at least
Emax+1, then it is possible there will be one more leading
zero in the shifted intermediate product than estimated, and
a left shift of one digit can occur during rounding to prevent
overflow. Note the sticky counter (SC in Equation 6) must
be decreased by the same amount SLA is increased. After
adjusting SLA and SC, shifting the intermediate product,
and rounding the shifted intermediate product, IERIP is
compared to Emax. If IERIP > Emax, then overflow
has occurred and the rounding mode and product sign are
used to select a product based on Table 1. Both the over-
flow and inexact exceptions are signaled.

Averting underflow is similar to that described for over-
flow. The calculated SLA must be decreased by the amount
which would lead IESIP to drop below Emin. The sticky
counter must be increased by the same amount SLA is de-
creased. Dissimilar from overflow, however, is the follow-
ing behavior. If IEIP < Emin, then SLA is set to zero,
and the intermediate product is shifted to the right to bring
the IESIP into range. To accomplish the right shift, the
iterative portion of the algorithm is allowed to continue be-
yond the processing of all the multiplier significand dig-
its. Partial products of value zero are used in the addi-
tional iterations so as not to alter the value of the interme-
diate product. The number of additional iterations is equal
to the amount by which Emin exceeds IEIP . Note the
sticky counter must be increased by the number of addi-
tional iterations. The number of additional iterations need
not exceed p + 2 as this amount is guaranteed to place the
most significant nonzero digit of any accumulated product
beyond the round digit position. Thus, with a properly ad-
justed sticky counter, all the intermediate product data is
ORed into the sticky bit. After clearing SLA, adjusting

“No leading zeros, no corrective left shift”

1. C[0]+0 ! = 0 and C[0]+1 ! = 0

(a) rucls==0 == 0 ⇒ CP = C+0

(b) rucls==0 == 1 ⇒ CP = C+1

“Leading zeros, possible corrective left shift”

2. C[0]+0 == 0 and C[0]+1 == 0

(a) grsb == 0

i. IESIP == PE or IESIP ≤ Emin
⇒ CP = C+0

ii. IESIP > PE and IESIP > Emin
⇒ CP = (C+0 � 1) || g

(b) grsb == 1 and IESIP ≤ Emin

i. rucls==0 == 0 ⇒ CP = C+0

ii. rucls==0 == 1 ⇒ CP = C+1

(c) grsb == 1, IESIP > Emin, and rucls==1 == 0
⇒ CP = (C+0 � 1) || g

(d) grsb == 1, IESIP > Emin, and rucls==1 == 1

i. g9 == 0 ⇒ CP = (C+0 � 1) || (g + 1)

ii. g9 == 1 ⇒ CP = (C+1 � 1) || (g + 1),
note g + 1 == 0

“Zero followed by all nines”

3. C[0]+0 == 0 and C[0]+1 ! = 0

(a) – (c) same as in Case 2

(d) grsb == 1, IESIP > Emin, and rucls==1 == 1
⇒ CP = C+1

Figure 2. Rounding Scheme

SC, “shifting” the intermediate product, and rounding the
shifted intermediate product, IERIP is compared to Emin.
If IERIP < Emin and grsb of the chosen compound
adder output is one, then underflow has occurred. Addition-
ally, if IERIP == Emin, the MSD of the chosen com-
pound adder output is zero, and grsb of the chosen com-
pound adder output is one, then underflow has occurred.
Both the underflow and inexact exceptions are signaled.

One design consideration is whether or not to allow un-
derflow to have a variable latency. The number of additional
iterations need only be min(p + 2, Emin − IEIP). How-
ever, to keep the processor’s instruction issue and comple-
tion logic simple, it may be best to stall for p + 2 cycles
always. If handling underflow with fewer fixed cycles is de-
sired, the existing left shifter can be altered to support right
shifting as well. Since in this design the shifter is before
the adder (i.e., the more significant half of the intermedi-
ate product is in carry-save form), the adder would need to
be widened to support a greater number of digit positions

containing carry-save data. The next section describes how
the components in the previous subsections are combined to
realize a decimal floating-point multiplier.

4. Decimal Floating-Point Multiplier Design

Figure 3 shows all the design components from the pre-
vious section together to realize DFP multiplication. The
block-level drawing is of the bottom datapath portion of the
decimal floating-point multiplier design, beginning with the
2p-digit intermediate product register and a sticky bit that
was generated on-the-fly (see Subsection 3.3). The top dat-
apath portion of the design, ending with the same interme-
diate product register, is shown in [6]. Not shown in either
design drawing is the control logic, which is where the inter-
mediate exponents, the sticky counter, the shift left amount,
and the rounding control are calculated. These calculations
are not timing critical in a non-pipelined multiplier.

Referring again to Figure 3, the first step is to shift the in-
termediate product based on the shift left amount, SLA (de-
scribed in Subsection 3.2), and store the p+2 digit output in
the shifted intermediate product register. The two additional
digits are needed for the guard and round digits. Then, in
support of the rounding scheme presented in Subsection 3.5,
a compound adder receives the data stored in the shifted in-
termediate product register. Since the data are either in non-
redundant form or in sum and carry form (four sum bits and
one carry bit), a unique compound adder is needed. For the
sum portion of the addition, the sumi + carryi + 0 and the
sumi + carryi + 1 is generated for each digit position, i.
For the carry portion of the addition, a digit generate equal
to si[0]·si[3]·ci and digit propagate equal to si[0]·(si[3]+ci)
are produced. The digit propagate and generate are then fed
into a carry network that generates the carries to select the
appropriate digits to yield C+0 and C+1. The compound
adder is only p digits long, as described in Subsection 3.5.
Once the two compound adder outputs are available in reg-
isters (i.e., C+0 and C+1), the rounding logic produces the
product significand, CP , based on the rounding scheme in
Figure 2.

Notable implementation choices include leveraging the
leading zero counts of the operands’ signficands, passing
NaNs through the dataflow with minimal overhead, and
handling gradual underflow via minor modification to the
control logic. Equations 5 and 6, and indirectly 4, use the
leading zero counts of the significands. This is intentional
as the determination of leading zeros is a common function
in floating-point units [17]. Once each digit is identified as
zero or nonzero, the generation of the leading zero count is
the same as that for a BFP mantissa. As the accumulation
of partial products is iterative, a single leading zero counter
is used to determine successively the leading zero counts
of CA and CB . If an operand is NaN, that operand’s NaN

Intermediate Product Register (Master/Slave with Reset) B/Intermediate Product Register (Master/Slave)

5 bits/digit (data in carry-save form) 4 bits/digit

Compound Adder (p Digits)

Shifted Non-Redundant Product Register (Master/Slave)

l g r
l

guard
digit

(4 bits)
sum

(4 bits)

carry
(1 bit)

Final Shift Left By One

SLA

Final Product Register (Master/Slave)

On-the-fly sticky
generation

SC
digit from round
digit position

4 bits/digit
Legend
SC = Sticky Counter
SLA = Shift Left Amount
l,g,r = LSD, guard, and round digit positions
sb = sticky bit

Note
Less significant half of intermediate product
register and shifted non-redundant product
register can be shared

sb

sticky
bit

(1 bit)

round
digit

(4 bits)

g r sb

sb

Round

5 bits/digit

2:1 Multiplexor

C+0

C+1

Shifted Intermediate Product Register (Master/Slave)

CP

Location of decimal point

Left Shifter

l

SIP

IP

C+1 C+0

C+0

C+0

Figure 3. Bottom Portion of Decimal Floating-Point Multiplier Design

payload is used when forming the result. Instead of sup-
porting alternative paths through the dataflow, the control
logic passes CA through the dataflow by multiplying it by
1. If operand B is NaN, CB is held in the less significant
portion of the intermediate product register while the con-
trol logic overrides the shift left amount such that CB is left
shifted into the more significant half of the shifted interme-
diate product register. As for gradual underflow, the control
logic extends the iterative partial product accumulation por-
tion of the algorithm and successively adds partial products
equal to zero such that the accumulated partial product is
right shifted until IEIP increases to Emin or all nonzero
data are shifted into the sticky bit. This support of grad-
ual underflow extends the latency of the multiplier from 25

cycles to a maximum of 43 = 25 + (p + 2) cycles.

Register transfer level models of both the presented 64-
bit DFP multiplier and its predecessor decimal fixed-point
multiplier [5] were coded in Verilog. Both designs were
synthesized using LSI Logic’s gflxp 0.11um CMOS stan-
dard cell library and the Synopsys Design Compiler. To
validate the correctness of the design, over 50, 000 testcases
covering all rounding modes and exceptions were simulated
successfully on the pre-synthesis design. Publicly available
tests include directed-random testcases from IBM’s FPgen
tool [11] and directed tests soon to be available at [10]. Ta-
ble 2 contains area and delay estimates for the DFP mul-
tiplier design presented and its predecessor decimal fixed-
point multiplier design. The values in the FO4 Delay col-

umn are based on the delay of an inverter driving four same-
size inverters having a 55ps delay, in the aforementioned
technology. The critical path in the DFP multiplier is in the
stage with the 128-bit barrel shifter, while for the decimal
fixed-point multiplier it is the decimal 4 : 2 compressor.

Table 2. Area/Delay for Decimal Multipliers
Cell Area Delay FO4

Decimal Design Count (um2) (ps) Delay

Floating-point 117,627 237,607 850 15.45
Fixed-point logica 32,347 65,341
Data path logicb 20,580 41,572
Add/round 16,489 33,308
Left shift 5,958 12,035
Encode/decode 1,768 3,571
Control logic 362 731
Otherc 40,123 81,049

Fixed-point [5] 59,234 119,653 810 14.72

aDoes not include the final adder.
bIncludes LZA, LZB , SC, and SLA generation, input registers, etc.
cIncludes additional latches, interconnect, spacing, etc.

5. Summary

A justification for decimal arithmetic hardware and a
motivation for decimal floating-point multiplication were
presented. Next, the design components necessary to extend
a previously published fixed-point decimal multiplier were
described. The components include exponent generation,
sticky bit generation, shifting of the intermediate product,
rounding, and exception detection and handling. An algo-
rithm and block-level drawing of a proposed DFP multiplier
were presented. Novel features of the proposed multiplier
include support for decimal floating-point numbers, on-the-
fly generation of the sticky bit, early estimation of the shift
amount, and efficient decimal rounding. All the presented
design components, except the on-the-fly generation of the
sticky bit, can be applied to pipelined floating-point decimal
multipliers. Area and delay estimates were presented from
the synthesized results of the verified register transfer level
model.

Acknowledgment

The authors thank Liang-Kai Wang for his contributions
to the Verilog model of this design. This work is sponsored
in part by International Business Machines.

References

[1] G. Bohlender and T. Teufel. Computer Arithmetic: Scientific
Computation and Programming Languages, chapter BAP-

SC: A Decimal Floating-Point Processor for Optimal Arith-
metic, pages 31–58. B. G. Teubner, Stuttgart, Germany, 1987.

[2] M. S. Cohen, T. E. Hull, and V. C. Hamacher. CADAC: A
Controlled-Precision Decimal Arithmetic Unit. IEEE Trans-
actions on Computers, C-32(4):370–377, April 1983.

[3] M. F. Cowlishaw. Decimal Floating-Point: Algorism for
Computers. 16th Symposium on Computer Arithmetic, pages
104–111, June 2003.

[4] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F.
Webb. A Decimal Floating-Point Specification. In 15th Sym-
posium on Computer Arithmetic, pages 147–154. IEEE, IEEE
Computer Society Press, July 2001.

[5] M. A. Erle and M. J. Schulte. Decimal Multiplication Via
Carry-Save Addition. In Conference on Application-Specific
Systems, Architectures, and Processors, pages 348–358, June
2003.

[6] M. A. Erle, M. J. Schulte, and B. J. Hickmann. Decimal
Floating-Point Multiplication Via Carry-Save Addition – Ex-
tended Version. World Wide Web, June 2007. http://mesa.-
ece.wisc.edu.

[7] M. A. Erle, M. J. Schulte, and J. M. Linebarger. Potential
Speedup Using Decimal Floating-Point Hardware. In Asilo-
mar Conference on Signals, Systems and Computers, vol-
ume 2, pages 1073–1077, November 2002.

[8] Floating-Point Working Group. ANSI/IEEE Std 854-1987:
IEEE Standard for Radix-Independent Floating-Point Arith-
metic. The Institute of Electrical and Electronics Engineers,
New York, October 1987. 16 pages.

[9] R. L. Hoffman and T. L. Schardt. Packed Decimal Multiply
Algorithm. IBM Technical Disclosure Bulletin, 18(5):1562–
1563, October 1975.

[10] IBM. General Decimal Arithmetic Testcases. World Wide
Web. http://www2.hursley.ibm.com/decimal/dectest.html.

[11] IBM Floating-Point Test Generator. Floating-Point Test
Suite for IEEE 754R Standard. World Wide Web. http://-
www.haifa.il.ibm.com/projects/verification/fpgen/ieeets.html.

[12] IEEE Standards Committee. IEEE Standard for Floating-
Point Arithmetic. World Wide Web. http://754r.ucbtest.org/-
drafts/754r.pdf.

[13] R. H. Larson. High Speed Multiply Using Four Input Carry
Save Adder. IBM Technical Disclosure Bulletin, pages 2053–
2054, December 1973.

[14] T. Ohtsuki, Y. Oshima, S. Ishikawa, K. Yabe, and M. Fukuta.
Apparatus for Decimal Multiplication. U.S. Patent, June
1987. #4,677,583.

[15] N. T. Quach, N. Takagi, and M. J. Flynn. Systematic IEEE
Rounding Method for High-Speed Floating-Point Multipli-
ers. IEEE Transactions on VLSI Systems, 12(5):511–521,
May 2004.

[16] R. K. Richards. Arithmetic Operations in Digital Computers.
D. Van Nostrand Company, Inc., New Jersey, 1955.

[17] M. S. Schmookler and K. J. Nowka. Leading Zero Anticipa-
tion and Detection – A Comparison of Methods. In 15th Sym-
posium on Computer Arithmetic, page 7. IEEE, IEEE Com-
puter Society Press, July 2001.

[18] M. S. Schmookler and A. W. Weinberger. High Speed Dec-
imal Addition. IEEE Transaction on Computers, C(20):862–
867, August 1971.

[19] S. Shankland. IBM’s Power6 Gets Help with Math, Multi-
media. World Wide Web, October 2006. http://news.zdnet.-
com/2100-9584 22-6124451.html.

