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Abstract— Floating-point arithmetic is notoriously non-
associative due to the limited precision representation which
demands intermediate values be rounded to fit in the available
precision. The resulting cyclic dependency in floating-point ac-
cumulation inhibits parallelization of the computation, including
efficient use of pipelining. In practice, however, we observe that
floating-point operations are “mostly” associative. This observa-
tion can be exploited to parallelize floating-point accumulation
using a form of optimistic concurrency. In this scheme, we first
compute an optimistic associative approximation to the sum and
then relax the computation by iteratively propagating errors until
the correct sum is obtained. We map this computation to a
network of 16 statically-scheduled, pipelined, double-precision
floating-point adders on the Virtex-4 LX160 (-12) device where
each floating-point adder runs at 296 MHz and has a pipeline
depth of 10. On this 16 PE design, we demonstrate an average
speedup of 6× with randomly generated data and 3–7× with
summations extracted from Conjugate Gradient benchmarks.

I. INTRODUCTION

Scientific computing applications rely upon floating-point
arithmetic for numerical calculations. For portability, almost
all applications use the industry-standard floating-point rep-
resentation IEEE-754 [1] which provides uniform semantics
for operations across a wide range of machine implementa-
tions. Each IEEE floating-point number has a finite-precision
mantissa and a finite-range exponent specified by the standard,
and the standard defines correct behavior for all operations and
necessary rounding. A fully-compliant hardware implementa-
tion requires hundreds of logic levels and hence these units are
heavily pipelined (e.g. floating-point units in Intel Itanium 2
and Intel Pentium 4 have a latency of 4 clock cycles [2], FPGA
floating-point cores from Sandia [3] have a latency of 10–14
cycles).

The finite precision and range of floating-point numbers
in the IEEE format requires rounding in the intermediate
stages of long arithmetic calculations. This limited precision
representation makes floating-point arithmetic non-associative.
While there are well-known techniques in the literature for
maintaining unbounded precision in the middle of long se-
quences of floating-point calculations [4], [5], this comes
at the cost of performing many more primitive floating-
point operations. As a result, the limited-precision and non-
associativity of IEEE floating point is generally accepted as
a reasonable tradeoff to permit fast hardware implementation

of floating-point arithmetic. Consequently, portable floating-
point computations must always be performed strictly in the
order specified by the sequential evaluation semantics of the
programming language. This makes it impossible to parallelize
most floating-point operations without violating the standard
IEEE floating-point semantics. This restriction is particularly
troublesome when we notice that the pipeline depths of high-
performance floating-point arithmetic units is tens of cycles,
meaning common operations, such as floating-point accumula-
tion, cannot take advantage of the pipelining, but end up being
limited by the latency of the floating-point pipeline rather than
its throughput.

In this paper, we show how to parallelize floating-point
accumulation while obtaining the same answer as the sim-
ple, sequential specification. In Section II, we review how
simple associativity fails in floating-point summations, high-
light where floating-point summations occur in practice, and
introduce the technique of parallel-prefix summation. Our
algorithm, described in Section III, implements a form of
optimistic concurrency that utilizes parallel-prefix sums to
speedup the summation. We show theoretical performance
benefits and cost analysis for the algorithm in Sections III-
C and III-D. We evaluate the algorithm using sample datasets
in Section IV, and provide a concrete mapping onto a specific
hardware implementation in Section V.

II. BACKGROUND

A. Non-Associativity of Floating-Point Accumulation

The limited precision and range of the IEEE floating-point
representation cause floating-point accumulation to be non-
associative. As an illustrative example, Figure 1 shows a case
where associativity does not hold. If associativity held, we
could perform the calculation either sequentially (shown on
left) or using a balanced reduce tree (right) and obtain the
same result. However, as the example shows, the two different
associations yield different results. For portability and proper
adherence to the IEEE floating-point standard, if the program
specifies the sequential order, the highly parallel, balanced
reduce tree implementation would be non-compliant; it would
produce incorrect results for some sets of floating-point values.

Previous attempts to pipeline floating-point accumulation,
such as [6], do so only at the expense of assuming associativity
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Fig. 1. Floating-Point Addition

and thereby producing non-compliant results. In contrast, the
techniques introduced here show how to exploit associativity
while obtaining results identical to the sequential ordering
specified in the program.

B. Example: Conjugate Gradient Sums

Conjugate Gradient (CG) is a scientific computing applica-
tion whose parallelism can be severely limited by sequential
accumulation. CG is a popular iterative numerical technique
for solving a sparse, linear system of equations represented by
A×x = b, where A is a square n×n matrix and x and b are
vectors of length n. Sparse Matrix-Vector Multiply (SMVM)
is the dominant computation kernel in CG. In SMVM, we
compute dot products between the rows of A and the vector x
which effectively require us to sum the products of the non-
zero matrix values with their corresponding vector entries in
x. We use an implementation of SMVM due to deLorimier
et al. [7] which performs the dot-product summations in
parallel on distinct processing elements as a reference for this
study. For sparse matrices, the number of non-zero entries per
row can be unbalanced, with average rows requiring sums of
only 50–100 products, and exceptional rows requiring much
larger sums. If each dot product sum must be sequentialized,
the size of the largest row can severely limit the parallelism
in the algorithm and prevent good load balancing of the dot
products. In addition to these dot-product sums, a typical CG
iteration requires a few global summations with length equal
to the size of the vectors, n. For large numerical calculations,
n can easily be 104, 105 or larger; if these summations must be
serialized, they can become a major performance bottleneck
in the task, limiting the benefits of parallelism.

C. Parallel Prefix

A common technique for parallelizing associative operations
is parallel-prefix reduction. It allows us to compute the result
of an associative function over N inputs in O(log(N)) time.
The computation also generates N − 1 intermediate values as
part of the process. For example, a parallel-prefix accumu-
late on an input sequence [x1,x2,x3,x4] generates an output
sequence [x1,(x1 + x2),(x1 + x2 + x3),(x1 + x2 + x3 + x4)]
which consists of 3 intermediate sums of the input as well
as the final sum of all 4 inputs. Several styles of parallel-
prefix are found in practice (e.g. Brent-Kung [8], Sklansky [9],
Kogge-Stone [10], Han-Carlson [11]). The exact number of
calculations required depends on the style of prefix used, but is
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Fig. 2. Sklansky Parallel-Prefix Tree

usually more than the simple, serial sum. Parallel-prefix allows
us to tradeoff extra computation for lower latency generation
of results. A key requirement, however, is that the reducing
function be associative. Consequently, this technique does not
directly apply to floating-point accumulation.

As an illustration, we show the working of Brent-Kung and
Sklansky parallel-prefix adders. For the Sklansky adder shown
in Figure 2, we can see that the final result is computed by
recursively adding pairs of operands in log2(N) steps. This is
the “reduce” tree. We compute the remaining N − 1 values in
the idle slots, at each stage, of this “reduce” tree. This we call
the “prefix” tree. The Sklansky-style parallel-prefix operation
requires N/2 additions at each stage of the tree. Since all
additions at a given stage in the tree are completely inde-
pendent, they can be run in parallel. This is what makes this
technique attractive for parallelizing associative functions. The
Brent-Kung adder shown in Figure 3 has the same “forward
reduce” tree as the Sklansky adder. The final N−1 values are
computed differently. For that, we use a “reverse prefix” tree
which requires less than N operations but takes an additional
log2(N) − 1 steps. Thus, the total number of operations in
Brent-Kung adders is just under 2N , meaning it requires only
twice as many additions as the simple, sequential sum. The
Sklansky adder has the advantage of computing the required
results with low latency, while the Brent-Kung adder does the
same with fewer operations and a deeper tree. Our hybrid
scheduling algorithm, described in Section V-B, borrows the
best features from these two schemes. A tutorial discussion of
parallel-prefix computations can be found in [12], [13].

III. THE ALGORITHM

A. Idea

As the example in Figure 1 shows, trivial associativity could
fail to yield the correct answer for floating-point accumulation.
This is unfortunate, since associativity could allow us to
exploit parallelism to speedup the summation. However, many
additions will not suffer from this lack of associativity, and
most will suffer only slightly. Thus, most of the time, our
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Fig. 3. Brent-Kung Parallel-Prefix Tree

associative answer will be a close approximation to the correct
answer. However, if we do not provide IEEE floating-point
semantics, the results will differ from machine-to-machine
creating additional complexity for the developer and user.
We can retain correct semantics and still exploit associativity
using the following idea: we use an associative calculation
to approximate the result and recompute only the portion of
the accumulation that was detected to be erroneous. Thus, we
need to sequentialize only the associativity exceptions in our
result rather than the entire accumulation.

B. Description

A block diagram and accompanying pseudocode for our
optimistic-associativity algorithm for floating-point accumula-
tion is shown in Figure 4.

1) We first compute a parallel-prefix sum Prefix[] as an
approximation to the required sum from the set of inputs
Inputs[].

2) To detect completion, we follow this with an induc-
tion step, where we check the validity of the sum at
each position Prefix[i] in the associative sum vector
Prefix[] using the associative sum at the previous
position Prefix[i-1] and Input[i].

Error[i] =
Prefix[i]− (Prefix[i-1]+ Input[i])

This is similar to the Induction step of mathematical
proofs using induction.

3) If every inductive step is error free (Error[i] is 0 for
all i), then we know the final sum must be correct.

4) If there are any errors in the inductive step (Error[i]6=
0), we need to propagate these errors back into the
associative sum vector Prefix[] to correct the result.
We do this by first performing a parallel prefix on the
error vector Error[] to generate ErrPrefix[].

5) We then add the resulting error correction vector
ErrPrefix[] into Prefix[] to improve our approx-
imation of the sequential sum.

6) Since error propagation is also a floating-point operation
and therefore non-associative, the result of this update
might still not be correct. Hence, we repeat the algorithm
iteratively from Step 2 until we detect convergence; that
is, the error vector is composed entirely of 0 entries.

This solution is “optimistic” in that we optimistically as-
sume that the operation can be performed associatively. How-
ever, we check the validity of that assumption and recalculate
when the assumption is wrong. The solution is “relaxing” in
that we are continually updating our approximation with better
information until it converges.

This is an example of the “Common Case” principle in sys-
tem engineering. The common case is that the operations are
associative to the required precision. Rather than penalizing
all the cases, we handle the associative case efficiently. When
it fails, we detect the failure and iterate until we converge.

In the worst case, this algorithm reduces to full sequen-
tialization. That is, there is an error at the position following
the one that was previously corrected. Thus, we are perfectly
resolving one sequential addition step in each iteration. From
this simple observation, we can conclude that convergence is
always guaranteed. If it were to only resolve one position on
each iteration, the algorithm would be much slower and less
efficient than a conventional, sequential addition. However, as
we will see, this worst case never happens in practice.

C. Analysis

In this section, we summarize the computational require-
ment and latency of our algorithm assuming an unbounded
amount of hardware. Each “iteration” here involves:

• Assuming a Sklansky-style parallel-prefix computation,
the parallel-prefix sum (Step 1 and 4 in Figure 4) requires
N
2 × log2(N) floating-point additions with a critical path

of log2(N) sequential floating-point additions. Opera-
tions at a given level in the prefix tree (See Figure 2)
can be executed in parallel.

Nprefix =
N

2
× log2(N) (1)

Tprefix = log2(N)× Tfpadd (2)

• The Induction computation (Step 2 in Figure 4) requires
N additions and N subtractions. The latency of this step
is only two floating-point operations (one add followed
by one subtract) since all operations can performed in
parallel.

Ninduction = 2×N (3)
Tinduction = 2× Tfpadd (4)

• Termination Detection (Step 3 in Figure 4) involves a
simple comparison to the constant zero on each entry in
the error vector followed by a trivial AND reduce. These
can also be performed in parallel and, as we will see
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// Step 1
Prefix[] = ParallelPrefix(Input[]);
Output[] = coreLoop(Input[], Prefix[]);

coreLoop(Input[], Prefix[]) {
terminate = true;
// Step 2
parallel for (int i=0; i<N; i++)

specSum = Input[i] + Prefix[i-1];
Error[i] = Prefix[i] - specSum;
if (Error[i]!=0)

terminate = false;
end if

end parallel for
// Step 3
if (!terminate)

// Step 4
ErrPrefix[] = ParallelPrefix(Error[]);
// Step 5
parallel for (int i=0; i<N; i++)

Updated[i] = ErrPrefix[i]
+ Prefix[i];

end parallel for
// Step 6
return coreLoop(Input[], Updated[]);

else
// finish Step 3
return Prefix[];

end if
}

Fig. 4. The Optimistic Associative Floating-Point Accumulation Algorithm

in Section V-B, they can be overlapped with the next
iteration so that they do not contribute to the total latency
of each “iteration”.

Ntermination = N (5)
Ttermination = (Tfpadd + log2(N)× TAND) (6)

• Finally, the Update operations (Step 5 in Figure 4)
requires N additions to add the error vector into the prefix
sum. These additions can also be parallelized.

Nupdate = N (7)
Tupdate = Tfpadd (8)

If we perform k iterations, then the total number of floating-
point operations is:

Ntotal = k × (Nprefix + Ninduction + Nupdate (9)
+Ntermination)

≈ N ×
(

1
2

log2(N)k + 4k

)
(10)

Thus, we perform
(

1
2 log2(N)k + 4k

)
times as much work

as the simple, sequential summation. However, these opera-
tions can be parallelized and, if scheduled properly, will out-
perform the sequential summation. The termination detection
step can be overlapped with the next iteration and hence is
counted only once. Assuming complete parallelization of other
steps, the total number of cycles required will be:

Ttotal = k × (Tprefix + Tinduction + Tupdate) (11)
+ Ttermination

≈ k × (log2(N) + 3)× Tfpadd (12)

For reference, the sequential sum will take:

Tseqsum = N × Tfpadd (13)

As the size of the sum (N ) gets larger, the forced sequentializa-
tion in the prefix sum (the log term in Equations 1 and 12) be-
comes less significant and greater speedups (Tseqsum/Ttotal)
are possible. We can represent this ideal estimate of speedup
as:

Speedup =
Tseqsum

Ttotal

=
N × Tfpadd

k × (log2(N) + 3)× Tfpadd

≈ N

k × log2(N)
(14)

D. Finite Hardware Analysis

For interesting sizes of N , it would typically be imprac-
tical to provide hardware for complete parallelization of the
algorithm. Hence, we consider cases with limited amounts of
hardware (i.e. a fixed number of Floating-Point Processing
Elements, PE). The exact number of cycles required for the
mapping to finite hardware will depend on the efficiency of
the scheduling algorithm used and the inherent communication
latencies, Tcomm, between the hardware blocks. Nonetheless,
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we can write simple analytical equations for the upper and
lower bounds for cycles required assuming perfect scheduling,
a particular parallel-prefix strategy, and uniform communica-
tion latency. For the bounds here we assume a Sklansky-style
parallel-prefix summation and schedule a single iteration of
the relaxation algorithm.

For the upper-bound on cycles, we assume that the floating-
point adder latency and the communication latency between
adders cannot be hidden.

Tupper (N,PE) =

log2(N)×
(

N/2
PE

+ Tfpadd + Tcomm

)
+ 3

(
N

PE
+ Tfpadd

)
(15)

For the lower-bound on cycles, we assume they can be
overlapped and charge only the maximum of the latency and
throughput bound at each stage.

Tlower (N,PE) =

log2(N)×
(

max
(

N/2
PE

, Tfpadd + Tcomm

))
+ 3

(
max

(
N

PE
, Tfpadd

))
(16)

Assuming Tfpadd = 10, Figure 5 shows ratios between the
sequential case (Tseqsum) and the upper and lower bounds for
various N as a function of the number of processing elements,
PE. This ratio can also be interpreted as the breakeven number
of iterations k. If k is less than this ratio, the parallel case on
the associated number of PEs is faster, otherwise the parallel
case is slower than the sequential case.

Note that, these bounds apply only for the pure-Sklansky
scheme, and, as we will see later in Section V-B, we can reduce
T by decomposing the computation. The tighter schedule
enables greater speedups and increases the breakeven k.

IV. ITERATIONS

As Figure 5 suggests, a key question to address is: How
many iterations does it typically take for the algorithm to
converge? In this section, we empirically characterize the

iterations required using both randomly generated data and
data from a Conjugate Gradient benchmark.

A. Generating Random Test Data

We used random datasets for initial analysis of the benefits
of the proposed algorithm. We generated floating-point num-
bers by randomly picking the sign, mantissa, and exponents.
We varied the exponent within different ranges to understand
the impact of the range on the number of iterations required
by the algorithm.

B. Conjugate Gradient Data

The main limitation of random data sets is their inability
to correctly model the natural correlation of floating-point
numbers in real applications. After encouraging initial results
using random data, we generated real data from a CG im-
plementation and applied those for our experiments. We use
matrices from the Matrix Market [14] benchmark for these
experiments; each matrix ran for 1000 iterations. From the
simulation results, we selected only those floating-point sums
of the length under test, N , or greater; for homogeneous
presentation and analysis of results, we only summed the first
N numbers in cases where the actual sums were longer than
N .

C. Evaluating the Algorithm

To evaluate convergence, we wrote Scheme [15] for the
parallel-prefix algorithm. Scheme supports a faithful im-
plementation of the IEEE-754 standard. We implemented
Sklansky-style parallel-prefix addition for summing N num-
bers (64 ≤ N ≤ 1024), and our hybrid prefix style (Sec-
tion V-B) for the 1024 input accumulation. We used datasets
described in Sections IV-A and IV-B to compute the number of
iterations required for termination of our optimistic algorithm.

D. Iteration Distribution

In Figure 6, we plot the distribution of iterations required for
a set of 1000 randomly-generated floating-point accumulations
of length 1024. We observe that, in most cases, the iterations
required are indeed small; that is, roughly three iterations are
required for the average case, while 90% of all cases require
<5 iterations. With an average of three iterations, Figure 5
suggests the parallel scheme is faster when we have PE > 4.

To illustrate why this works, consider the sum:

1.23E1 + 8.43E5 + 3.76E4 + 6.5E0 + 2.43E30 + 7.8E25

Summing the first 4 numbers, we get: 8.806188E5. Adding
those to 2.43E30, we get 2.43E30 because of the limited 53-
bit mantissa precision for double-precision floating point. The
sum of the first 4 numbers is actually irrelevant. Consequently,
we can safely add 2.43E30 + 7.8E25 to provide the result.
More importantly, non-associativity errors before the 2.43E30
are actually irrelevant to the final result and can be ignored.

The above example is an extreme case where all the
precision of a particular prefix does not contribute to the final
result. In general, we may need only part of the precision of a
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prefix. As long as the errors in the prefix due to associativity
are below the precision required form the prefix, there is no
need to compute the result perfectly. A similar observation
can be made about the suffix when its magnitude is small
compared to some prefix.

Consequently, the algorithm tends to iterate only to the
extent that non-associative precision errors actually matter to
the final result. The length of the dependency chains to resolve
these non-associative errors is typically short compared to the
sequential length of the original summation.

E. Effect of Limiting Range

It is reasonable to expect that there may be a relation
between number of iterations required for the algorithm to
converge and the range of the exponents in the summation
sequence. Here, the range of exponents is defined as:

range = log2

(
max

i
(|xi|)

)
− log2

(
min

i
(|xi|)

)
(17)

In Figure 7, we see that the number of iterations required
increases as we limit the range of random numbers appearing
in each summation. With limited range floating-point numbers,
there are fewer chances for a prefix or suffix to dominate the
sum; that is, with all numbers close in range, much of the
precision of each floating-point addition in the accumulation
has an impact on the final sum. As a result, the impact of the
non-associative floating-point additions increases, resulting in
an increase in number of iterations in our algorithm. In the
worst case, for small ranges, we see the average number of
iterations is 32 when summing 1024 numbers.

F. Impact of CG Dataset

Fortunately, in practice, we do not need this worst-case of
32 iterations. In Figure 8 we plot a distribution of iterations
required for different CG graphs for variety. We observe that
the average number of iterations required in most cases is
between 3 and 8. The iterations required are similar to random
data with a limited range of 7–9.
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G. Effect of Sequence Length

As shown in Figure 9, the average number of iterations, k
grows slowly with the length of the sum, N . The slow growth
suggests a greater opportunity for speedups for longer sums.

H. Speedup Potential

Figure 9 suggest an average k < 7 for sequences of
length 1000. Adding these to upper and lower bound estimates
(Equations 15 and 16), we can estimate speedup as a function
of PEs as shown in Figure 10.

V. IMPLEMENTATION

A. Hardware Performance Model

To demonstrate concretely the benefits of our algorithm, we
map a length 1024, double-precision floating-point addition to
an FPGA implementation with 16 floating-point processing-
elements (PEs) interconnected via a statically-routed butterfly
fat-tree network (Figure 11) [16]. The raw floating-point
performance of FPGAs is beginning to rival or surpass general-
purpose processors with hardware floating-point units [17].
However, parallelism and deep pipelining are necessary to
fully exploit the floating-point capacity of these FPGAs (e.g.
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Tfpadd=10–14 in [3]). Consequently, techniques such as ours
provide a path to exploit this potential performance.

Each PE in our design has a statically-scheduled, double-
precision floating-point adder and multiplier from the Sandia
library [3] and an integer adder. The floating-point adder take
571 Virtex-4 slices while a floating-point multiplier takes 801
slices and runs at 296 MHz on a Virtex4-LX160 (speed-grade
-12) device. Multipliers and integer adders are not needed
for the simple accumulation, but are included because they
would typically be required by algorithms which precede the
summation. For example, in a dot product, the multipliers
would compute the products, then feed the products into the
parallel summation. The integer adders also find use for simple
comparisons. Each PE also has tightly coupled local memory
stores built out of Virtex Block RAMs that hold a portion
of the vector to be accumulated, intermediate sums, and the
instructions to implement the prefix schedule [7]. We use a
64-bit wide, statically routed communication network allowing
each of the 16 PEs to produce or consume a double-precision
number on each cycle. The key timing parameters for this
implementation are summarized in Table I. Based on these
latency figures, we compute achievable speedups.
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PE PE PE PE
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Fig. 11. Graph Machine with 16 PEs

TABLE I
IMPLEMENTATION MODEL PARAMETERS

Variable Value Description
Tfpadd 10 Pipeline latency of a Floating-Point addition
Tcomm 3 Communication latency in same 2-tree

7 Communication latency in same 4-tree
13 Communication latency in same 8-tree
19 Communication latency in same 16-tree

B. Scheduling

In Section III-D we showed analysis for the time complexity
of the algorithm when mapped to a finite number of float-
ing adders (PEs). We computed theoretical lower and upper
bounds for the total cycles required as shown in Equations 15
and 16. In this section, we outline a hybrid prefix strategy and
schedule that improves upon even the simple Sklanskly lower
bound in Equation 16 when scheduling floating-point sums of
length 1024 onto 16 PEs. We design a careful schedule in
which we overlap computation with communication wherever
possible.

The key idea is to reduce the total number of floating-point
operations by decomposing the computation into a series of
hierarchical Sklanksy-prefix steps. This avoids computing the
full N

2 operations at each step in the prefix tree (Figure 2) but
produces only a partial set of results. We preserve full prefix
semantics by computing the rest of the intermediate prefix
sums from the partial results produced by the hierarchical
decomposition.

We distribute the set of 1024 floating-point numbers such
that each of the 16 PEs gets a sequence of 64 numbers. We
then schedule the PEs and the network based on the com-
putational and communication requirements of the different
steps of our algorithm. Floating-point operations in the Update
and Induction steps (Figure 4) are completely data-parallel
and need only nearest-neighbor communication. These are
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Fig. 12. Sketch of the Hybrid-Schedule

trivially scheduled. The parallel-prefix step, however, has a
log2(N) × Tfpadd sequential critical path as well as more
communication requirements. To schedule this step, we use
a hybrid scheme where we first hierarchically decompose the
prefix into three stages as shown in Figure 12. We can see
in Table II that this reduces the number of floating-point
additions from the full Sklansky-style computation by 45%.
The first stage is run in parallel on all the PEs and involves
computing an independent prefix on the local set of numbers.
The second stage is mapped to a single PE (PE-0 in Figure 12)
and computes a prefix on the results from the first stage.
Concurrently, with this stage, the rest of the PEs are unfolding
the intermediate prefix sums for the 64 local inputs. At the
end of these two stages, we have a partial global prefix of
the inputs. In the third stage, the partial global prefix is then
distributed to corresponding PEs to independently generate
the remaining prefix sums. During stage 2, since PE-0 was
busy computing the partial global prefix, it was unable to
compute the unfolding. Moreover, unlike other PEs, PE-0
is not required to calculate the intermediate sums from the
global prefix. Hence, in stage 3, we can conveniently schedule
the unfolding of the intermediate prefix sums on PE-0. The
termination detection step is scheduled to run concurrently on
the integer adder since it involves a trivial zero comparison. We
can use the idle floating-point adder to speculatively start the
execution of the next iteration. When termination is detected,
the speculative iteration is flushed from the execution pipeline.
The number of cycles required to schedule all these steps is
shown in Equations 18.

TABLE II
FLOATING-POINT OPERATIONS PER ITERATION

Prefix-Scheme Floating-Point Operations
Brent-Kung 2036

Sklansky 5120
Hybrid 2847

TABLE III
AVERAGE SPEEDUPS FOR DIFFERENT DATASETS

Dataset Average Speedup
add20 3.3

bcsstk11 4.6
bcsstm27 3.5
mhd3200b 7.3
mhd4800b 7.4
plat1919 4.0

random, range=11 6.4

Tupdate = 64
Tinduction = 128

Tprefix = 248
Titeration = Tupdate + Tinduction + Tprefix

= 248 + 64 + 128 = 440
Ttermination = 84

Ttotal = k × (Titeration) + Ttermination

= k × 440 + 84 (18)

C. Speedups for 16 PE Implementation

On the 16-PE FPGA-based design point, scheduled using
the hybrid scheme, this translates into speedups in the range
of 2–11 over the non-associative, sequential implementation
for the different Conjugate Gradient benchmarks and random
datasets as shown in Figure 13. We tabulate the average
speedups achieved in Table III. We achieve average speedups
of 3–7 at the expense of using 16 times the hardware of the
sequential case.
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VI. DISCUSSION

A. Generality
The optimistic associative sum technique used here is ap-

plicable to any floating-point addition, not just IEEE. What
the technique actually provides is a transformation to perform
a parallel, associative summation on a number of identical
copies of a base floating-point adder core while achieving the
same semantics as if the sum were performed sequentially
on a single floating-point adder core. The rate of convergence
may differ for floating-point cores with different behavior and
semantics than the IEEE double-precision core assumed here.

B. Design Exploration
As Section II-C suggests and Section V-B reinforces there

are many different formulations for parallel prefix. These
tradeoff latency and throughput. The different prefix shapes
may also have an impact on the rate of convergence and hence
the number of iterations, k, required. We have not performed a
systematic study of the scheduling options. Rather, the results
presented here are an indication that there are schedules which
make this technique interesting and useful. We expect there
is room to improve upon these results by more carefully
exploring the parallel-prefix design space.

VII. CONCLUSIONS

Floating-point accumulation has been widely assumed to be
non-parallelizable due to non-associativity of IEEE floating-
point arithmetic. In this paper, we demonstrate how to par-
allelize floating-point accumulation while retaining sequential
IEEE accumulation semantics. For this purpose, we devised
a ‘relaxation’-algorithm based on optimistic concurrency that
iteratively converges to the final result. We observe that the
algorithm requires very few iterations in practice for both
randomly generated datasets as well as those extracted from a
real Conjugate Gradient benchmark. We mapped our algorithm
to a 16-PE implementation and optimized a schedule for
summing 1024 numbers to demonstrate speedups. We show
that, on average, the 1024 input accumulation takes 3–7
iterations and manages to achieve an overall speedup of 3–
7× compared to the sequential sum.
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