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Abstract

In this paper we explore the relationship between
adder topology and energy efficiency. We compare the
energy-delay tradeoff curves of selected 32-bit adder
topologies, to determine how architectural features and
design techniques affect energy efficiency. Optimizing
different adders for the supply and threshold voltages,
and transistor sizing, we show that topologies with the
least number of logic stages having an average fanin
of two per stage, and fewest wires are most energy ef-
ficient. While a design with fully custom sizes can be
extremely tedious to layout, we show that custom siz-
ing can be used as a guide to group different gates in
the design, resulting in a manageable layout overhead
without significant loss of energy efficiency.

1. Introduction

Adder structures are ubiquitous in modern digital
systems and are often present in critical timing blocks.
Consequently, designers have studied adder topolo-
gies extensively and have developed many techniques
to improve addition algorithms. While initial papers
[15, 9, 13, 8] focused mainly on performance, recent
research [25, 16, 12] has focused on energy, now a crit-
ical issue in digital design. We extend this work by
systematically exploring 32-bit custom designed adder
topologies for their energy efficiency. We develop a
relation between topological choices and energy effi-
ciency by comparing the Pareto-optimal energy-delay
(E-D) tradeoff curves of selected adder topologies in
different logic styles, based on sizing, supply voltage
and threshold voltage optimization. We use the digital
circuit optimization tool developed at Stanford Univer-
sity [17] to obtain these curves under different design
constraints. Using this tool, we also explore how topol-
ogy affects the statistical behavior of adders under ran-
dom process variations.

In order to distinguish different adder topologies for
energy-efficiency, we start with describing the topolog-
ical parameters that affect energy and delay. Next we

describe the optimization framework with gate delay
and energy models, and discuss the design constraints
that we include in the optimization. The results and in-
sights obtained using this tool are described in Section
4, where we compare the Pareto-optimal E-D tradeoff
curves of various adders for a common set of design
constraints. In addition, we discuss the relation between
topology and statistical robustness.

2. Adder topologies

Adder topologies can be separated into their Sum
Generation Logic (SGL) and Carry Propagation Logic
(CPL) [23]. As CPL dominates the adder delay and en-
ergy, we use the following four parameters of the CPL
based on Harris’s work [6] to describe adder topologies.

1. Radix (R): In tree adders, we define R as the aver-
age number of bits combined at each logic stage1

of the CPL. In linear carry-skip or carry-select
adders, R refers to the average number of bits
combined per stage to generate a block Propagate-
Generate (PG) term.

2. Logic depth (L): L indicates the total number of
stages in the CPL, and is at least logRN for an
N-bit adder. Kogge-Stone and Sklansky adders are
examples of minimum logic depth adders [9]. Note
that the number of logic stages in the adder can be
more than L.

3. Fanout (F): F represents the maximum logical
branching seen by any stage in the CPL. For ex-
ample, Kogge-Stone and linear ripple carry adders
have F = 2, while a 32-bit Sklansky adder has
F = 17.

4. Wiring tracks (T): T measures the maximum num-
ber of wires running across the bit pitch be-
tween any successive levels of the CPL. Brent-
Kung, Sklansky and linear Manchester carry-chain
adders have the smallest T of 1.

1In this paper, every gate, including an inverter, is a logic stage



For carry generation, R, L, F, and T are inter-
dependent [6]. Figure 1 shows the CPL dot diagrams
of selected 16-bit adder topologies with different R, T,
L and F numbers. For a given radix, Kogge-Stone (KS),
Brent-Kung (BK) and Sklansky2 [21] maximize one of
the three parameters – T, L, and F respectively while
minimizing other two. The Knowles, Ladner-Fischer
(LF) and Han-Carlson (HC) topologies [9] tradeoff two
of these three parameters keeping the third fixed [6].
Simple linear adders can also be described using R, T,
L and F. For example, the 32-stage ripple carry adder
can be said to have (R, T, L, F ) = (1, 1, 32, 2) and
a 32-bit multiple output Manchester carry chain adder
can be described by (32, 1, 1, 2). A carry skip and/or
sum-select scheme in linear adders can be similarly de-
scribed based on how they modify the topology.

We consider the following frequently occurring de-
sign scenarios.

1. External buffering: Inverters can be added at all
the inputs or all the outputs of the adder to best
match the load it is driving, without changing its
R, T, and L numbers, though with a possible inver-
sion of the resulting sum. Hence for a given adder
topology and design constraints, we optimize with
all possible external buffering and choose the best
of the tradeoff curves. This allows for a fair com-
parison between adders with different L.

2. Internal buffering and restructuring: Logic
functions can be evaluated using a single com-
plex high fanin (higher valency) gate or a series
of smaller low fanin (lower valency) gates. The
radix R is smaller in the latter case3. In our defi-
nition, R depends on the number of stages needed
to do a particular logic operation on a given num-
ber of input bits. Thus, inverters appended to a
complex gate in the middle of the critical path (as
opposed to external buffering) reduces the overall
radix. For example, a domino gate that consumes
four bits and generates a 4-bit PG term has a radix
of 2, because the dynamic gate and the inverter
are two separate stages of computation. A radix 4
domino design would consist of alternating 4 stack
dynamic and 4 input static stages. Even for the

2The Sklansky CPL design belongs to the Ladner-Fischer [10]
family of adders. However Sklanky’s adder predates Ladner-Fischer
adders and can be easily reduced to Ladner-Fischer design with re-
moval of conditional-sum logic. Hence in this paper, we will use
refer the Ladner-Fischer adder with highest F as Sklansky design.

3Although radix refers to the logic function and “valency” refers
to the implementation, from a circuit point of view a higher radix
CPL implemented with lower valency gates behaves similar to a lower
radix CPL. Hence, for extracting the E-D tradeoff, we consider va-
lency and radix as equivalent.
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Figure 1. CPL dot diagram of selected
adders with their (R,T,L,F). Solid lines
and circles are PG signals and PG com-
bine cells, dashed lines and diamonds
are carry signals and carry generate cells,
and empty circles represent wires or
buffers.

same radix, however, one can have two different
designs. For example, a 4 input gate followed by



an inverter and a two level tree of 2 input gates are
both radix 2, but use different implementations. In
these cases, we pick the best of the two designs for
comparison.

3. Sum selection: The SGL usually consists simply
of XOR logic. However, in sum select adders, the
SGL generates a pair of speculative sums, to be
correctly chosen when the respective carry arrives.
Because only every kth carry needs to be gener-
ated and fanned out to k muxes, a k-bit sum selec-
tion scheme re-distributes the logical fanout of the
CPL by increasing the fanout of the final carry to k.
This can potentially change the F of the CPL, inde-
pendent of its R,T and L, creating multiple adders
with the same R,T and L numbers. Sum selection
is a very common technique used for high perfor-
mance adders today [15, 25]. Because the CPL
is a more critical part of the adder, we first find
the most energy-efficient CPL structure and then
explore the related sum selection techniques. The
CPL and SGL, being in parallel, are almost inde-
pendent for optimization purposes. This sequential
procedure should therefore give optimal results.

4. Ling adders [11]: These use a reformulation
of the Propagate-Generate (PG) equations of tree
adders. Because Ling’s equations are also asso-
ciative and fall into a tree structure, they can be
described using R, T and L. In this work, we look
at the best PG adder structures and then compare
them with similarly constructed Ling adders. Sum
selection schemes are separately explored in both
cases.

3. Optimization framework

In our analysis we have focused on three principal
design metrics: energy, delay, and output load (Cout).
We optimize adders for sizing, supply (Vdd) and thresh-
old voltages (VthN and VthP). The optimization tool
uses generalized posynomial delay and energy models
[2] for gates and formulates the circuit design problem
as a large geometric program [1, 5], which is solved effi-
ciently using convex optimization solvers like MOSEK
[14]. For a given Cout, we generate E-D tradeoff by op-
timizing the delay at different total energy constraints.

3.1 Energy and Delay Models

We model the delay of a gate as

τd =
CloadVdd

2Id
+ κτin

where τin is the input slope, κ is a fitting constant deter-
mined by Vdd and Vth, and Cload is the total capacitance
driven by the gate, including self loading and wire ca-
pacitance. The saturation current Id is given by the ve-
locity saturated current model [3]. The delay of a stack
of transistors is formulated by modeling it as an equiv-
alent transistor with accounting for intermediate capac-
itances. Details of the model can be found in [19, 18].
Using this delay model, we can solve the delay opti-
mization geometric program,

minimize Tcycle

subject to max(T1, . . . , TN ) ≤ Tcycle,
Edyn + Estat ≤ Emax,
fj(W, VthN, VthP, Vdd) ≤ 1,

j = 1, . . . , m,
dg(W, VthN, VthP, Vdd, Cload) ≤ 1,

g = 1, . . . , n.

Here, W is the vector of all the gate sizing vari-
ables, Edyn and Estat are the dynamic and leakage
energies, Ti is the signal arrival time of the ith out-
put out of N outputs and Tcycle is the overall cir-
cuit delay, while fj(W, VthN, VthP, Vdd) represent con-
straints like device width bounds, signal slopes, in-
put capacitances constraints, sizing ratios and so on.
The adder netlist is treated as a directed acyclic graph,
wherein the constraints for the signal propagation delay,
dg(W, VthN, VthP, Vdd, Cload) are formulated by writ-
ing the delay of each gate as the maximum of the delay
of all the paths converging at its output from its inputs
[4, 18]. The dynamic energy dissipation is modeled as

Edyn =
∑

i∈edges

αiCiV
2
dd,

where αi is the activity factor of edge i obtained by
switch level simulations using the input activity fac-
tor of 0.25, and Ci is the capacitance switched on the
ith edge, including the driver’s parasitics and wire ca-
pacitance. The input activity factor was derived from
simulating selected SPECINT benchmark traces in a
mirco-architecture simulator and observing the activity
at ALU inputs. Crow-bar switching energy can be in-
corporated in this formula by slightly increasing the ac-
tivity factor. The average leakage energy dissipation is
given by

Estat = TcycleVdd

∑

i∈gates

(δiIleakN + (1 − δi)IleakP)

where δi is the duty factor of the output of gate i and
Ileak is the leakage current, which is a function of the
Vth and W . The duty factor δi is calculated during the
activity factor extraction.



The modeling of parasitics is necessary for finding
the delay of large gates. We account for the intermediate
capacitances in the delay of a stack of transistors, but we
do not account for the fact that if there are many stacks
in parallel (like for example in a 4-bit Generate gate),
there could be parasitic capacitance from neighboring
partially turned on stacks. Thus we underestimate the
parasitic delay of large fanin gates.

3.2. Design constraints

Most of the critical wires in an adder run across bits
and thus their lengths are set by the bit pitch. Wires
along the bit pitch generally have lengths set by the
number of transistors in that bit pitch, hence we cap-
ture these using fixed capacitances. This assumption is
invalid in cases of high energy, when gate sizes become
very large. However, in this region, transistor capaci-
tances dominate the wire capacitances anyways, so the
resulting sizing errors should be small.

We have constrained the input capacitance (Cin) at
any input to be less than 25fF, or roughly 15µm of tran-
sistor width. This is a reasonable load within the driving
capability of library flip-flops in a 90nm CMOS tech-
nology. Except at the high energy points, this constraint
does not come into play. For small loads, if the Cin con-
straint is active, the adder has already entered the region
of diminishing performance returns for added energy.
For large loads, external buffering at the output of the
adder is always more efficient than increasing the sizes
of the gates in the adder. Adding inverters at the output
generally reduces the required input capacitance to fall
within the specified Cin constraint. To check the effect
of a Cin constraint we optimize a few adders without the
input constraint and show that it makes little difference.

Reasonable signal slopes are maintained at every net,
by limiting the delay of every logic stage. The minimum
transistor width is constrained to 0.25µm. Vdd ranges
from 0.5V to 1.3V, while Vths range continuously from
about 0.2V to 0.4V. Both are common for all gates in
the netlist. All dynamic gates have footers, keepers and
intermediate precharge transistors, which are used for
stacks of three or more transistors. The sizes of all these
three devices are ratioed to their respective NMOS pull-
down transistors in order to track their sizes under op-
timization. The final XOR gate for sum generation (or
sum select mux) is static in all cases except for dual-rail
domino circuits.

Because different topologies have different logic
depth, fanout, and internal loading and hence can be op-
timal under different load conditions, we generate the
pareto-optimal E–D tradeoff curves for various values
of Cout.

4. Results and analysis

The delay of an N -bit adder primarily depends on
how fast the carry reaches each bit position. Parallel
prefix logic networks [9], which use tree structures to
compute the carry, are very efficient for large N [22].
Hence, for a systematic traversal of adders, we start
with the triangular region based on L, T and F (Sec-
tion 2) of radix 2 parallel prefix adders built in static
CMOS logic. We will show in Section 4.3 that this is
the optimal radix.

We first consider the corner adders: Kogge-Stone,
Brent-Kung and Sklansky, designed in 90nm static
CMOS logic. Figure 2 shows the pareto-optimal E–D
tradeoffs (with external buffering, if necessary) of these
adders for Cout = 25fF and Cout = 100fF. Figure 2(b)
also shows the E–D curve for a Sklansky adder with no
input capacitance constraint. Clearly this constraint is
active only in high energy regions.

Figure 3 shows how the supply and threshold volt-
ages change across the E–D curve for a Sklanksy adder.
When Vdd reaches its upper bound, the threshold volt-
ages continue to decrease. At the lower bound of
Vdd, the design becomes infeasible due to signal slope
constraints, even though Vths have not hit their upper
bounds. If the input activity factor is increased (de-
creased), the supply and threshold voltages both de-
crease (increase), increasing (decreasing) the leakage
power in relation to the increase (decrease) in active
power.

The E–D curves show diminishing returns as we go
towards either higher performance or lower energy. At
higher energies, as device sizes continually increase, the
effect of wires and Cout decreases. After a certain point,
the gates would largely be driving their own parasitic
capacitance and further improvement in delay would
not be possible. With Cin constrained, after a certain en-
ergy, the design becomes identical to one based solely
on logical effort [22], for which the marginal cost of
energy for improvement in delay is infinite. Similarly,
as energy is lowered, the supply and threshold voltage
both change (see Figure 3) until the design enters a re-
gion where, analogous to the minimum delay solution,
the marginal cost in delay for lowering the energy is
very high.

The three radix 2 adders in Figure 2 each minimize
two parameters out of L, T and F, at the cost of the
third. Our experiments indicate that the Sklansky adder,
which has the highest F, but smallest L and T, is the most
energy efficient. Clearly, these three parameters do not
trade equally with each other.

A large logical fanout at a particular stage does not
necessarily imply a that that stage will be slow. What
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Figure 2. E–D curves for the three radix 2
corner adders.

matters to the delay is the electrical fanout (due to ca-
pacitive loading). In a Sklansky adder, at every nth

stage of the CPL tree, the carry drives 2n + 1 gates.
After optimal sizing, we find that of these 2n + 1 PG
combine gates at the (n + 1)th stage, the one gate that
drives 2n+1 + 1 PG combine cells at the next stage (or
the largest load in general) is sized much larger than the
others, resulting in an overall electrical fanout closer
to 2. This optimization of electrical-vs-logical fanout
arises due to the possibility of differential sizing of the
gates at the same stage. With its highest F of 16, Sklan-
sky adder can take maximum advantage of differential
sizing. Unlike F, L has a real cost. A Brent-Kung adder
has the same T, but almost twice the L as the Sklansky
adder. This may seem useful at for a large Cout, but
inverters are far more efficient than P/G gates and can
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Figure 3. Change in Vdd and Vths across
the E–D space for a Sklansky adder.

always be padded to a lower logic depth design to make
up for the required gain at lower energy cost.

Like L, T also has real costs. A larger T means a
higher portion of the total energy consumed in wires.
With its smallest T of 1, the Sklansky design spends
most of the energy budget in driving useful logic, with
the least amount wasted in wires. A Kogge-Stone adder,
having the largest T, suffers from high energy loss to re-
sult in poor energy efficiency. Figure 4 shows the per-
centage of total adder energy consumed in wires for the
three adders. Note that wire energy changes with Vdd,
which changes with the optimal E–D point.
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At lower energies, resources are constrained and
adders with fewer gates have an advantage. The Brent
Kung adder is most economical in gate count. Hence



it comes closer to Sklansky at lower energies, unlike
Kogge-Stone, which has a comparable number of gates
to Sklansky, but more wires.
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Figure 5. Comparison of Sklansky adder
E–D curves to its closest neighbors and
to a 2-bit sum select scheme.

To confirm our inferences about the Sklansky design
we optimized its two closest radix 2 adders – a LF adder
with an extra logic level ((R, T, L) = (2, 1, 6)) and a
Knowles adder with an extra wire track ((R, T, L) =
(2, 2, 5)). We also optimized a 2-bit sum select Sklan-
sky adder to check if reduced fanout (F=8) in Sklansky
CPL at the cost of increased fanout for the final carry
gives any benefit. We found that the cost of generat-
ing the conditional sum in SGL was more than the ad-
vantage of having CPL and SGL in parallel. The re-
sults shown in Figure 5 confirm that Sklansky was bet-
ter than its three closest relatives. Due to lower gate
count, the selected Ladner-Fischer adder tends to com-
pete with Sklansky adder at lower energies.

4.1. Layout efficiency

While adders in ASIC flow can have each cell sized
individually, a custom designed adder, with all gates
sized differently, can be extremely tedious to layout.
For ease of layout, gates at the same stage are usually
sized the same. This constraint severely penalizes the
high fanout stages, as it incorrectly allocates as many
resources as the critical path to the side paths. How-
ever, a close observation of the gate sizes in the fully
custom designed Sklansky adder shows that of all the
fanout gates at each stage, only one gate needs to be
large and the rest can be sized uniformly smaller. Other
gates, like the initial bit PG generate gates or the final

XOR gates or external buffers, can be divided in uni-
formly sized blocks of 8 or 16. This tremendously re-
duces the layout effort, bringing it to within twice the
layout effort of an adder with completely uniform stage
sizing. Figure 6 shows this semi-uniform sizing for a
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Figure 6. Semi-uniform sizing for a 16-bit
Sklansky adder. Sizes of different shapes
indicate the relative cell sizes within that
level. � are XORs and � are inverters.

16-bit Sklansky adder and Figure 2(b) shows that the
32-bit semi-uniformly sized Sklansky adder is still much
better than the fully custom sized Kogge Stone or Brent
Kung adder.

4.2. Other logic styles and topologies

Given the effect of loading and parasitics is similar
in all logic styles, the topology that is the most energy-
efficient in one, will be the most energy-efficient in the
other as well. Following are the results of our experi-
ments on other logic styles designed on the basis of the
results from static CMOS logic.

1. Domino and dual rail designs. We also made
Sklansky designs in radix 24 domino and dual rail
domino logic. Similar to the static case, a fully dy-
namic 2-bit sum select scheme does not give any
benefit. However, a 2-bit sum select using static
SGL improves the energy-efficiency due to lower
activity factor in the SGL. On the other hand, dual-
rail designs consume almost twice the energy with
the only benefit that the XORs in the SGL are
faster. Hence they are better than the domino de-
signs only at high energy by a small amount. Fig-
ure 7 shows the E–D curves of selected Sklansky
domino/dual-rail topologies.

Ling adder performs about 5% better in delay than
the PG adder if only 4 transistor stacks are allowed,
but it is worse than an equivalent PG adder (which

4Because the fanin of the domino gate (dynamic gate and inverter)
is 4, some researchers [25] call this radix 4.
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will have a 5 transistor stack in the first dynamic
gate). However, as mentioned before, our model-
ing of the parasitic delay is most optimistic in the
5 stack gate, so we expect the two designs to be
comparable in practice. Due to large fanin right
at the inputs, the Cin constraint becomes active in
these adders pretty early on, which is why the 4
stack PG adder looks better at higher energy.
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2. Linear adders. While a linear ripple carry adder
is extremely inefficient due to a large logic depth,
a full 32-bit Manchester carry chain adder suffers
from excessive parasitic delay. Carry skip and sum
selection techniques exploit parallelism by over-
lapping the PG generation of a block of bits with
the ripple carry inside the block. If, using sim-

ilar gates, linear adders can be designed to have
similar number of stages and wire tracks as the
best tree adders, they should be equally energy-
efficient. We designed such a linear carry-skip
sum-select adder, with block sizes of 1,1,2,4,6,6,6
and 6, resulting in 9 logic stages, similar to LF1
adder. Figure 8 clearly shows that not surprisingly,
with a T equal to that of a Knowles 84421 adder,
this linear adder compares well with the tree de-
signs.

While their L is comparable for N = 32 bits, the
logic depth of linear adders increases faster than
that of a tree structure, where it is logarithmic with
N. For example, for N = 64, L for Sklansky
adder increases by unity, whereas for the best lin-
ear adder, it increases by 3. Hence linear adders
are less efficient for higher N .

4.3. Optimal radix

From our definition of the radix, a logical operation
performed on N inputs in p stages has a radix of logpN
regardless of the kind of gates used. For delay, p is
optimal (popt) when each stage has a delay of about a
FO45 [22]. The value of popt depends on the load and
the kind of gates used in the design. For all reasonable
adder loads (where Cout is at least about Cin), the num-
ber of stages in a minimum logic depth radix 2 adder is
about equal to or less than their respective popt. Exter-
nal buffering makes up for the lack of sufficient number
of stages. Also, popts for these radices for N = 32 and
above are about the same [7]. Therefore the choice of
optimal radix really comes down to the parasitic delay
of gates involved. Because parasitic delay grows at least
as the square of the number of inputs [24], the parasitic
delay of higher fanin gates dominates any gain from the
reduced L, given that inverters are padded to reach popt

stages. Complex high fanin gates like the ones that pro-
duce the group generate signals grow in the number of
parallel transistor stacks as well, significantly increas-
ing their parasitic delay.

From the energy point of view, using higher fanin
gates does not save on switching activity. Adders be-
ing multiple output structures, the intermediate signals
generated by using trees of lower fanin gates are typi-
cally used for other computation. Also, while the propa-
gate function benefits from having a large fanin gate, as
it is an AND function and activity factor reduces with
more inputs, switching simulations show that the gen-
erate operation maintains the switching factor. Hence

5A fanout-of-four (FO4) delay is the delay of a single inverter driv-
ing 4 copies of itself.



overall, higher fanin PG cells have a marginal reduc-
tion of switching activity over trees of lower fanin cells.
For domino designs however, because NMOS is faster
than PMOS, it is better to have series NMOS stacks in
the dynamic gate than having PMOS stacks in the fol-
lowing static stage. Hence the gates with four input dy-
namic gates followed by an inverter are more efficient.
Note that the radix is 2 in both cases.

To validate this intuition we designed static CMOS
32-bit Sklansky adder, one with radix 3 and another
with radix

√
6 (using alternate 3 bit and 2 bit combine

stages). To avoid the irregularity of a 32-bit radix 3
adder, we also designed 27-bit adders with radix 2 and
3. Figure 9 compares the E–D tradeoff and confirms our
understanding. The results remain unchanged for Cout
= 25f.
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Figure 9. E–D tradeoff curves of 32-bit
and 27-bit Sklansky adders of different
radices.

4.4. Effect of buffers on energy-efficiency

External buffers increases the number of stages in
the adder. Hence one might expect that while they are
useful for adders with small logic depth driving large
loads, they would be inefficient for an adder with L that
is already at or bigger than the optimal L. However, in-
verters are the most efficient drivers. Hence, in addition
to buffering, padding inverters at the output leads to a
reduction in the size of the complex gates that precede
them, thus saving energy. The reduction of gate sizes
on the side paths helps to reduce the load on the critical
path and more than compensates for the increased de-
lay due to the extra logic stage. Figure 10 shows that

while buffering is inefficient in the high energy region
due to the delay added by the extra inverter stage(s), as
the energy budget is reduced, the same design padded
with a single inverter stage does much better than the
original. The potential increase in delay by adding an
extra logic stage is more than compensated by the en-
ergy benefit from smaller SGL gates, even in the Brent
Kung adder, which already has a large L. In fact, all
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Figure 10. Effect of external buffering on
radix 2 Sklansky and Brent Kung adders.

the E–D curves shown in this paper are with a single
inverter padding, except for the dual rail ling adder de-
sign, which was more efficient without external buffer-
ing. This is expected, because there the outputs are al-
ready driven by the inverter in the dual rail domino gate.
Selective padding of different paths can possibly bring
more gains, but would affect the logical functionality of
the design.

4.5. Adder design space

The E–D tradeoff curves of the different adders
across different logic styles intersect at points at where
one adder achieves better energy efficiency than the
other. Static adders are good at low performance re-
gions because, with lower switching activity factor and
no clock load, they consume lower energy; but they sat-
urate quickly as higher performance is desired, due to
inherently large logical effort. With lower logical ef-
fort gates, dynamic adders have potentially higher per-
formance and at higher energy they perform much bet-
ter than their static counter parts. The overall Pareto-
optimal curve is the lower bounding curve of all these
curves. It gives an indication of the E–D space of op-
timally designed adders. Figure 11 shows the com-
plete 32-bit adder E–D space. Incidently, at or before
the point where Cin constraint becomes active, the next
logic family takes over the pareto-optimal curve. We
can also observe that sensitivity to R,T, and L to energy-
efficiency depends on the location on E–D curve. At
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Figure 11. 32-bit adder E–D space.

low energy side, wire tracks T have a large weight be-
cause they consume a greater portion of the energy bud-
get. At low delay points logic depth L matters more be-
cause every added stage adds a minimum delay, which
causes external buffering to be inefficient at high ener-
gies and enables the Kogge-Stone E–D curve to cross
the Brent-Kung one. Change in gate to drain/overlap
capacitance ratio, the transistor drive capability (β) or
the extent of velocity saturation in a given technology
affects which radix is more optimal.

4.6. Effect of random process variations

Random process variations reduce the energy effi-
ciency in two ways. Firstly, they push the circuit delay
outward, because Tcycle is the maximum of the delays of
all paths, and secondly, due to exponential dependence
of leakage current on threshold voltage, they cause an
increase in the average leakage energy. The tail of
the delay Probability Distribution Function (PDF) gets
worse as the number of critical paths increases, because
the max() is taken over larger set of random variables.
The standard deviation to mean (σ/µ) ratio improves
as the length of the critical path increases, due to more
averaging.

The tool is capable of doing statistical optimization
by adding delay margins to the gate [19] and using the
statistical estimate of energy [18]. The results are veri-
fied by doing Statistical Static Timing Analysis(SSTA)
using monte carlo simulations. We assume independent
gaussian delay distributions for every gate. As a very
conservative estimate, we choose σ(Vth) to be constant
at 10% of the medium Vth device and the σ(β)/β to be
5%, for a 1µ device. The overall σ(Id) changes with
device size as per Pelgrom’s model [20].

If only deterministic delay models are used, the op-

timizer tends to make all paths in the adder critical.
While Kogge Stone adder has many paths of similar
length, Brent Kung has a single long path with many
small side paths, that the optimizer downsizes to make
them critical. These small paths suffer from large vari-
ability. Consequently, SSTA performed on nominally
designed Brent Kung, Kogge Stone and Sklansky adder
shows that Brent Kung adder has the largest and Kogge
Stone the smallest spread in their delay PDF. How-
ever, when statistical optimization is performed (with
the same constraints as before), SSTA results show a
complete reversal. Brent Kung adder is the most robust
while Kogge Stone the least. The statistical optimizer,
having knowledge of variations, prevents the side paths
from being downsized to criticality while maintaining
a reasonable overall delay. There is ample opportunity
to do this in the Brent Kung adder, but Kogge Stone,
owing to its uniform structure, is a poor candidate. So
while the σ/µ ratio for Kogge Stone improves, its 95th

percentile delay (t95), which depends on the number
of critical paths, remains the same. For robustness (as
measured by σ/µ ratio), Sklansky adder topology falls
in the middle of the two extremes. However, even with
the overestimated amount of process variations we have
considered, Sklansky topology is still the most energy
efficient among the three as the t95 points in Table 1
show.

Table 1. SSTA results on statistically opti-
mized adders at 2pJ energy
adder mean (µ) σ σ/µ in % σ/µ t95

in ps in ps before in % in ps
KS 456 8 2.9 1.78 470

Sklansky 318 5 3.5 1.51 326
BK 352 4.5 4.3 1.28 360

5. Conclusions

With careful optimization for energy-efficiency,
most efficient topologies lead to a design that is not far
from the best. These adder designs in a given logic fam-
ily have the same shape for their E–D curves and hence
rarely cross each other. Because it has the fewest wires
and minimum logic depth, a radix 2 Sklansky adder
topology is the most energy-efficient.

Changing the logic family simply shifts the E–D
curve, while retaining its shape. Sum-selection im-
proves the energy-efficiency of dynamic adders if the
conditional sum generate logic is in static CMOS. Dual
rail domino adders are useful only at the highest perfor-
mance, or if dual rail outputs are needed.



Because logic gates are relatively poor drivers, for
any reasonable load, it is always beneficial at lower en-
ergies to have inverters drive the output load, as they
are the most energy-efficient drivers. At higher ener-
gies, however, the inefficiency due to increased number
of stages dominates the energy advantage of external
buffering.

Overall, circuit optimization can change the delay of
32-bit adders designed in 90nm by an order of magni-
tude while the energy spans about 60X.
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