
Decimal Floating-Point Adder and Multifunction Unit with Injection-Based
Rounding

Liang-Kai Wang and Michael J. Schulte
Department of Electrical and Computer Engineering

University of Wisconsin-Madison, Madison, WI 53705, USA
lwang@cae.wisc.edu, schulte@engr.wisc.edu

Abstract

Shrinking feature sizes gives more headroom for design-
ers to extend the functionality of microprocessors. The
IEEE 754R working group has revised the IEEE 754-1985
Standard for Binary Floating-Point Arithmetic to include
specifications for decimal floating-point arithmetic and
IBM recently announced incorporating a decimal floating-
point unit into their POWER6 processor. As processor sup-
port for decimal floating-point arithmetic emerges, it is im-
portant to investigate efficient algorithms and hardware de-
signs for common decimal floating-point arithmetic algo-
rithms. This paper presents novel designs for a decimal
floating-point adder and a decimal floating-point multifunc-
tion unit. To reduce their delay, both the adder and the mul-
tifunction unit use decimal injection-based rounding, a new
form of decimal operand alignment, and a fast flag-based
method for rounding and overflow detection. Synthesis re-
sults indicate that the proposed adder is roughly 21% faster
and 1.6% smaller than a previous decimal floating-point
adder design, when implemented in the same technology.
Compared to the decimal floating-point adder, the decimal
floating-point multifunction unit provides six additional op-
erations, yet only has 2.8% more delay and 9.7% more area.

1 Introduction

Binary floating-point arithmetic is usually sufficient for
scientific and statistics applications. However, it is not suf-
ficient for many commercial applications and database sys-
tems, in which operations often need to mirror manual cal-
culations. Therefore, these applications often use software
to perform decimal floating-point arithmetic operations. Al-
though this approach eliminates errors due to converting be-
tween binary and decimal numbers and provides decimal
rounding to mirror manual calculations, it results in long la-

tencies for numerically intensive commercial applications.
Because of the growing importance of decimal floating-
point arithmetic, specifications for it have been added to the
draft revision of the IEEE-754 Standard for Floating-Point
Arithmetic (IEEE P754) [1].

Previous research in the area of decimal addition has
focused on decimal fixed-point addition [4, 6, 10–13, 16,
18]. For example, in [13], Schmookler et al. develop a
method for high-speed decimal addition that incorporates
the weight of each bit in a decimal digit and the carry into
the digit to compute a final sum digit. Busaba, Bultmann,
and Haller propose combined decimal and binary adders
using pre-sum and pre-selection logic [4, 6, 10]. Svoboda
in [18], Sacks-Davis in [12], Shirazi et al. in [16], and
Nikmehr et al. in [11] implement decimal addition based
on signed-digit arithmetic with digit sets, ranging from [-6,
6] to [-9, 9].

Only a few previous papers present techniques for deci-
mal floating-point addition [3, 7, 19]. The adder designs by
Cohen et al. [7] and Bolenger et al. [3] have long latencies
and produce one result digit each cycle. In [19], the authors
present the first IEEE P754-compliant decimal floating-
point adder. Their design introduces novel techniques for
significand alignment, result correction, and rounding. IBM
recently announced incorporating a decimal floating-point
unit into their POWER6 processor [15].

In this paper, we present novel designs for a decimal
floating-point adder and a decimal floating-point multifunc-
tion unit. Compared to the adder presented in [19], our
adder has 21% less delay and 1.6% less area when im-
plemented in the same technology. Our decimal floating-
point multifunction unit is based on our decimal adder and
performs eight decimal operations defined in IEEE P754;
addition, subtraction, compare, minNum, maxNum, quan-
tize, sameQuantum, and roundToIntegral. Synthesis results
show that the proposed multifunction unit has only 2.8%
more delay and 9.7% more area than our decimal floating-
point adder with injection-based rounding. The decimal
floating-point adder and multifunction unit presented in this

Format name decimal32 decimal64 decimal128
Total storage width 32 64 128
Combination field
width (w + 5)

11 13 17

Trailing significand
field (t)

20 50 110

Total significand
digits (p)

7 16 34

Exponent bias 101 398 6176

Table 1. Parameters for Different Decimal In-
terchange Formats.

paper support 64-bit decimal floating-point operands, but
the techniques presented in this paper could easily be ex-
tended to handle other operand sizes.

The rest of the paper is organized as follows. Section 2
gives an overview of decimal arithmetic in IEEE P754. Sec-
tion 3 describes our proposed decimal floating-point adder
with injection-based rounding. Section 4 discusses the dec-
imal floating-point multifunction unit. Section 5 presents
synthesis results for our proposed adder and multifunction
unit and for the adder from [19]. Section 6 gives our con-
clusions.

In the rest of this paper, CXY and EXY are the signif-
icand and the exponent of a decimal number, respectively.
X is either A or B to denote the operand, and the subscript
“Y ” is a digit that denotes the output of different modules.
“(N)T

Z” refers to the T th bit in digit position, Z , in a num-
ber, N , where the least significant bit and the least signifi-
cant digit have index 0. For example, (CA1)32 is the third
bit of the second BCD digit in CA1.

2 Overview of Decimal Floating-Point Arith-
metic in the IEEE P754 Standard

Figure 1 shows the basic decimal interchange format
specified in IEEE P754. S is the sign bit and G is a combi-
nation field that contains the exponent, the most significant
digit of the significand, and the encoding classification. The
rest of the significand is stored in the Trailing Significand
Field, T , using either the Densely Packed Decimal (DPD)
encoding or the Binary Integer Decimal (BID) encoding.
The DPD encoding represents every three consecutive dec-
imal digits in the decimal significand using 10 bits, and the
BID encoding represents the entire decimal significand in
binary. Table 1 shows the parameters for each decimal in-
terchange format, where the total number of significand dig-
its in each format corresponds to the format’s precision, p.
Our proposed decimal floating-point adder and multifunc-
tion unit operate on numbers in the decimal64 format with
DPD encoding.

Sign
S

Combination
G

Trailing Significand
T

Width w+5 bits1 bits t=(10xJ) bits
 =(3 xJ) digits

Field

G0G w+4

Figure 1. Decimal Floating-Point Interchange
Format

The significand of a decimal number is not normalized,
which means that a single decimal floating-point number
may have multiple representations. A set of these equiva-
lent decimal numbers is called a cohort. Because of this
characteristic, the standard defines the Preferred Represen-
tation Exponent, which refers to a required exponent (and
implicitly the significand) after a decimal operation. For
example, in decimal addition, the standard selects the co-
hort member whose exponent equals the smaller exponent
of the two input operands if the result is exact. If the re-
sult is not exact, the result is rounded to p digits. In addi-
tion to the specification of the decimal interchange formats,
IEEE P754 also specifies operations on decimal numbers,
including two decimal-specific operations; sameQuantum
and quantize, which are discussed in Section 4.1.

3 Decimal Floating-Point Adder

This section presents our decimal floating-point adder,
which uses a parallel method for decimal significand align-
ment and a Kogge-Stone parallel prefix network for sig-
nificand addition and subtraction. It also applies decimal
variations of the injection-based rounding method [9] and
the flagged prefix network [5] to decrease the latency of
rounding and overflow detection. The decimal floating-
point adder supports all the rounding modes and appropri-
ate exceptions specified in IEEE P754 and all the rounding
modes specified in the Java BigDecimal library [17].

Figure 2 shows a high-level block diagram of our pro-
posed decimal floating-point adder. The ‘Forward Format
Conversion Unit’ takes the two IEEE-encoded operands, A
and B, and the operation, and produces the sign bits, SA1

and SB1, BCD significands, CA1 and CB1, biased expo-
nents, EA1 and EB1, and effective operation, EOP (not
shown in the figure). The ‘Operand Alignment Calcula-
tion and Swapping Unit’ (OACSU) takes these values and
computes the result’s temporary exponent, ER1, the right
shift amount, RSA, and the left shift amount, LSA. It also
swaps the significands if EB1 > EA1. The two signifi-
cands after swapping are denoted as CAS and CBS . Next,
two ‘Decimal Barrel Shifters’ take these results and perform
operand alignment on CAS and CBS . The two shifted sig-
nificands, CA2 and CB2, are then corrected in the ‘Pre-
correction Unit’. Based on the EOP signal and the pre-

Overflow

Op A

Op B

Forward
Format

Conversion

Operand
Alignment
Calculation

and Swapping

Pre-correction and
Operand Placement

K-S
Network

Post-
correction

Shift and
Round

Backward
Format

Conversion
Post-

processing

IEEE P754
Result (Z)

CA1

EB1

CB1

EA1

CAS

CBS

CA3

CB3

UCR

CR1 CR2

Barrel
Shifters

CA2

CB2

C1

F1

F2

R1

Rounding
Mode

Operation

SA1

SB1

Sign

ER1

SR1

overflow

ER2

RSA
LSA

Figure 2. Block Diagram of the Proposed Decimal Floating-Point Adder

vailing rounding mode, the ‘Pre-correction Unit’ prepares
the BCD operands for addition or subtraction and inserts a
value needed for injection-based rounding. The corrected
significands, CA3 and CB3, are then fed into the Kogge-
Stone (K-S) network, which produces an uncorrected result,
UCR, a digit-carry vector, C1, and flag vectors, F1 and
F2. After this, the ‘Post-correction Unit’ converts UCR
back into the BCD encoding to produce CR1. If needed,
the ‘Shift and Round Unit’ shifts and rounds CR1 to pro-
duce the result’s significand, CR2, and adjusts the tempo-
rary exponent, ER1, to produce the result’s exponent, ER2.
Simultaneously, the ‘Sign Unit’ and the ‘Overflow Unit’
compute the result’s sign bit, SR1, and the overflow signal.
The result’s values, CR2, ER2, and SR1, are combined
to generate the IEEE-encoded result in the ‘Backward For-
mat Conversion Unit’. This result and the original input
operands are examined in the ‘Post-processing Unit’ to de-
termine if a special result is needed, which happens if either
one or both of the operands are Not-a-Number (NaN) or in-
finity. Further details on each of these units are provided
below.

3.1 Forward Format Conversion and
Operand Alignment Calculation and
Swapping

The core of our decimal floating-point adder operates
on BCD significands. Therefore, converters are first em-
ployed to extract the DPD-encoded significands, binary ex-
ponents, and sign bits from both IEEE-encoded operands.
The two DPD-encoded significands are simultaneously con-
verted to BCD format using the equations given in [1, 8].
Once unpacked, the two resulting significands are swapped

if EB1 > EA1 and the temporary result exponent, ER1,
is determined. The two significands after swapping are de-
noted as CAS and CBS where the subscript “S” refers to
Swapped. The number of leading zeros in the significand
with the larger exponent, CAS , is denoted as LAS . In
parallel with swapping the operands, the effective opera-
tion (EOP) is determined by the Boolean equation EOP =
SA1⊕SB1⊕Operation, where EOP and Operation are
zero for addition and one for subtraction.

Decimal operand alignment is more complex than its bi-
nary counterpart because decimal numbers are not normal-
ized. This leads to both left and right shifts to ensure the
rounding location is in a fixed digit position. To correctly
adjust both operands to have the same exponent, the follow-
ing computations are performed:

LSA = min(|EA1 − EB1|, LAS)
RSA = min(max(|EA1 − EB1| − LAS , 0), 19)
ER1 = EAS − LSA

The above equations produce a left shift amount, LSA,
which indicates by how many digits CAS should be left
shifted. LSA is equal to the absolute value of the exponent
difference, |EA1 − EB1|, but is limited to LAS digits so
that the left-shifted significand, CA2, does not have more
than 16 digits. The RSA value indicates by how many dig-
its CBS should be right shifted in order to guarantee that
both numbers have the same exponent, ER1, after signifi-
cand alignment. RSA is limited to 19 digits, since the right-
shifted significand, CB2, contains 16 digits plus guard and
round digits and a sticky bit, as explained in Section 3.2.
The temporary result exponent, ER1 is simply the larger
exponent, EAS , after it has been adjusted to compensate
for the left shift amount, LSA.

The technique used in [19] to perform operand swap-

LZDLZD

Significand
Swapping

CA1CB1

SUB-ABS

EA1EB1

SUB

CASCBS

SUB

Right Shift
Corrector

LSA ER1
RSA

E
A

S

|E
A

1 -E
B

1 |

MUX

L
A

S

L
A

1

L
B

1

|E
A

1 -E
B

1 |-L
A

S

MUX

MUX

sw
ap

select

Figure 3. Operand Alignment Calculation and
Swapping Unit

ping and alignment computation is to subtract EB1 from
EA1 and use the sign of the result to determine which
operand has the larger exponent. With this technique, if
sign(EA1 − EB1) is one, then B has the larger expo-
nent and the operands should be swapped; otherwise the
operands should not be swapped. After operand swapping,
the significand of the number with the larger exponent is
examined to determine its leading zero count. With this ap-
proach, leading zero detection occurs after operand swap-
ping, which leads to only one leading zero detector but a
long delay.

To reduce the delay, our design uses a binary absolute
value unit [5] to compute |EA1 − EB1| and swap =
sign(EA1 − EB1) and in parallel performs leading zero
detection on both CA1 and CB1 to produce LA1 and LB1.
If swap is one, then CAS = CB1, LAS = LB1, and
EAS = EB1; Otherwise, CAS = CA1, LAS = LA1, and
EAS = EA1. LAS is then subtracted from |EA1 − EB1|
to compute RSA and select = sign(|EA1−EB1|−LAS),
which is used to select the value for LSA and ensures
RSA is greater than zero. RSA is limited to a value be-
tween 0 and 19 by the Right Shift Corrector and in paral-
lel ER1 = EAS − LSA is computed. This approach is
shown in Figure 3, where the dashed line indicates the criti-
cal delay path of the unit. Our synthesis results indicate that
this approach reduces the critical path delay of the ‘Operand
Alignment Calculation and Swapping Unit’ by roughly 41%
and increases its area by roughly 4.8% compared to the de-
sign in [19].

�������
�������

CA'2

CB'2

0

0

Addition

R S

CB2[71:4]

�
OR{CBS[3:0], sticky}

CA2[63:0] G

�����
�����0

������

CA'2

CB'2

Subtraction

R S

CB2[71:0]
sticky

CA2[63:0]

16 digits

���

G

3 digits

L

L

16 digits 3 digits

Figure 4. Operand Placement for Decimal Ad-
dition and Subtraction.

Table 2. Injection Values Based on Different
Rounding Modes (‘X’ is don’t-care).

Signinj Rounding Modes Injection Value
(R, S)

X RoundTowardZero (0 , 0)
X RoundTiesToAway (5 , 0)
X RoundTiesToZero (4 , 9)
X RoundTiesToEven (5 , 0)
- RoundTowardPositive (0 , 0)
+ RoundTowardPositive (9 , 9)
- RoundTowardNegative (9 , 9)
+ RoundTowardNegative (0 , 0)
X RoundAwayZero (9 , 9)

3.2 Operand Alignment and Pre-
correction

After computing the left and right shift amounts, two
decimal barrel shifters, which shift by multiples of four
bits, perform the operand alignment. The significands after
alignment are denoted as CA2 = left shift(CAS , LSA)
and CB2 = right shift(CBS, RSA). As noted previ-
ously, CA2 is 16 digits, and CB2 is 16 digits plus a guard
digit, G, a round digit, R and a sticky bit, S, as shown in
Figure 4. In this figure, L denotes the least significant digit
(LSD). The sticky bit is generated from the shift amount and
CB2, where the bits of the shift amount are used to create
masks. The mask bits are ANDed with several bits of CB2,
so that only bits in CB2 that would be shifted to the right
of the round digit contribute to the sticky bit. The output
bits from the AND operation are then ORed together to pro-
duce the sticky bit. With decimal floating-point arithmetic
in IEEE P754, it is possible to have a zero operand with an
exponent that is greater than the exponent of another non-
zero operand. In this case, neither operand is shifted.

Once shifted, an injection value based on the sign bit
and prevailing rounding mode is inserted into the Round

and Sticky digit positions of CA2 to form CA′
2, which is

a 19-digit BCD number. The injection value, shown in Ta-
ble 2, is determined by equations similar to those developed
for binary floating-point addition [14] and is used to facili-
tate correct rounding. CB2 may be inverted depending on
the effective operation (EOP). In Table 2, Signinj is the
temporary sign of the result, which assumes the result after
the K-S network is positive when rounding is performed.
This assumption is valid because if the result from the K-S
network is negative, there is no right shift on CBS , so no
rounding is needed. The sign bit used to select the injection
value is computed as:

Signinj = (EOP ∧ swap) ∧ SA1 ∨ (EOP ∧ swap)∧
(Operation ⊕ SB1)

(1)

Based on EOP, the modified CA2 and CB2 are placed in
different digit positions before entering the K-S network, as
shown in Figure 4 .

As shown in Figure 4, both operands are placed start-
ing from the second to the most significant digit (MSD) of
the 19-digit wide datapath for addition and from the most
significant digit for subtraction. This placement allows the
16-digit final result to be selected from the 17 more sig-
nificant digits and simplifies the alignment of injection and
injection correction values such that these values are placed
in the same locations for both effective addition and sub-
traction. The injection value is inserted into the two least
significant digits, R and S, based on the prevailing round-
ing mode and Signinj . The injection value is inserted on
all addition/subtraction-related operations except when the
EOP is subtraction and no right shift is performed on CB2.
In this case, since rounding cannot occur and the result from
the K-S network may be negative, inserting the injection
value might unnecessarily complicate the post-correction
logic. To avoid this condition, another signal, flushing,
is generated to clear the injection value. This signal is com-
puted as flushing = EOP ∧ (RSA �= 0) The operands
after placement are denoted as CA′

2 and CB′
2 and both are

19 digits.
After the injection value is inserted into the datapath,

both operands are pre-corrected in order to generate the
proper carry-out of each digit. The equations implemented
by the ‘Pre-correction Unit’ are:

(CA3)i =
{

(CA′
2)i + 6 EOP ≡ add

(CA′
2)i otherwise

(CB3)i =
{

(CB′
2)i EOP ≡ add

(CB′
2)i otherwise

i = 0...18

(2)

where (CB′
2)i is the fifteen’s complement of (CB′

2)i and is
obtained by inverting each bit of (CB′

2)i.

L G R S

F2

Post-
correction

Original
KS

Network

row 5

row 4

row 3

row 2

row 1

row 0

row 9

row 8

row 7

row 6

Shift and
Round Unit

19 digits

row 10

Trailing Nine Detection Network

Injection
Correction

Block

Post-
correction

(LSD)

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Digit

Position

carry-out (C1)
flags (F1)

sum digits (UCR)

CR1

16 digits

16 digits

carry

CR2

Figure 5. Conceptual View of the Flag-based
Logic and the Kogge-Stone Network.

With effective addition, each digit (CA′
2)i is incre-

mented by 6 such that in each digit position the operation
performed is (CA′

2)i +6+(CB′
2)i +(C1)i, where the digit

sum is within the range of [6, 25] and (C1)i is the carry
into digit i. With effective subtraction, the operation per-
formed at each digit is (CA′

2)i + 15 − (CB′
2)i + (C1)i =

(CA′
2)i + 6 + (9 − (CB′

2)i) + (C1)i, and the digit sum is
also in range [6, 25]. Having each digit sum ∈ [6, 25] helps
generate correct carries using the Kogge-Stone network and
simplifies converting the result back to BCD. More details
on how the result from the K-S network is converted back
to BCD are given in Section 3.4.

3.3 Decimal Kogge-Stone Network

Because both operands are corrected, a binary Kogge-
Stone (K-S) network can be used to generate the proper
carry into each digit. In addition to the flags used in the
post-correction step (i.e. F1 in this paper) [19], two more
sets of flags, flagADD and flagSUB, which are used
in the ‘Shift and Round Unit’ are generated. These flags
are used for addition and subtraction, respectively, to avoid
another carry-propagate addition when the most significant
digit (MSD) of CR1 is nonzero. For example for p = 7, if
CA3 = 0 9999999 99, and CB3 = 0 0039999 91 and we
perform addition with round toward positive infinity, CR1

becomes 1 0039999 90 and has an MSD of 1. Examining
the result indicates that there are three consecutive nines
starting from the least significant digit (LSD) (the rightmost
two nine’s are discarded when p = 7). Therefore, we in-
crement the four least significant digits and the final result
becomes 1004000 × 101 after shifting and rounding. De-

CA'2 = 2 0 5 0

CB'2 = 0 000000000090000 5 0 0

UCR = 2 00000000006FFFF B 4 F

F1 = 0 000000000000000 0 1 F
F2 = 0 000000000011111

CR1 = 2 000000000009999 5 5 0
INJ_COR = 4 5 0

CR2x10EBS = 2 000000000010000

CA3 = 2 000000000100000 0 5 0
CB3 = F FFFFFFFFFF6FFFF A F F

000000000100000

+

+

C1 = 1 111111111100000 0 1 0

CASx10EAS = 0

CBSx10EBS = 9 000050000000000

G R S

000200000000010

L

x 10100

x 1085

CA1x10EA1 =

0CB1x10EB1 =

9 000050000000000

000200000000010 x 10100

x 1085

x 1096

RSA = 4

LSA = 11

Figure 6. Example of Decimal Subtraction
with Injection-Based Rounding and Trailing-
nine Detection.

termining which digits need to be incremented is performed
by a method known as trailing nine detection. It is impor-
tant to note that the trailing-nine detection is only needed
if EOP ≡ ADD or EOP ≡ SUB and CA3 − CB3 is
positive. If CA3 − CB3 is negative, there is no need to
perform rounding and trailing-nine detection since the final
result guarantees to be less than 17 digits.

Figure 5 illustrates how the original K-S network is ex-
tended to detect trailing nines. The traditional injection-
based rounding method uses conditional adders to com-
pute the uncorrected sum and the uncorrected sum plus one
and then uses the MSDs of these values and the carry into
the LSD of the uncorrected sum to select the proper sum.
To reduce area, our adder instead uses the flagged-prefix
method [5] to compute the uncorrected sum and the uncor-
rected sum plus one. Since the value generated in the K-S
network is not in BCD format, the bits of F2 are gener-
ated by observing both the sum digits, (UCR)i, and the
carry-out bits, (C1)i+1 of the 16 most significant digits. An
example of decimal floating-point subtraction is shown in
Figure 6, where F1 is the flag used in the ‘Post-correction
Unit’, described in Section 3.4. To generate the F2 flags for
trailing nine detection, UCR can be examined for trailing
F’s or CR1 can be examined for trailing nines starting from
the LSD. Examining CR1 only requires one set of flags, but
computing these flags is on the critical path. Therefore, our
design computes the F2 flags based on UCR. Although this
approach decreases the delay, two sets of flags, flagADD

and flagSUB, are needed for addition and subtraction, re-
spectively.

Although there are several extra stages in the K-S net-
work for trailing-nine detection, these stages work in par-
allel with the ‘Post-correction Unit’, and ‘Injection Correc-
tion Unit’ and therefore the trailing-nine detection is not on
the critical path. The equations used in row 6, and rows
7-10 of the K-S network for trailing-nine detection are:
Row 6:

ADD : (flagADD0)i =
((UCR)i ≡ 15)∨
((UCR)i ≡ 9)∧(
(C1)i+1 ≡ 1

)
SUB : (flagSUB0)i = ((UCR)i ≡ 15)

where (C1)i+1 is the carry-out bit of digit position i.
Rows 7-10 (1 ≤ x ≤ 4) :

(flagADDx)i =
(flagADDx−1)i ∧
(flagADDx−1)i−2x−1

(flagSUBx)i =
(flagSUBx−1)i ∧
(flagSUBx−1)i−2x−1

F2 =
{

flagADD4 EOP ≡ ADD
flagSUB4 EOP ≡ SUB

Preliminary synthesis results of this method, compared to
the Kogge-Stone network in [19], which only has one set of
flags for the ‘Post-correction Unit’, shows only a 13.7% in-
crease in area. Thus, the proposed injection-based method
with trailing-nine detection can potentially use less area
than the traditional injection-based method with a minor in-
crease in delay. An even more aggresive design can use the
End-Around-Carry (EAC) technique or its variation, pre-
sented in [2].

3.4 Post-Correction and Shift and Round

The temporary result generated from the Kogge-Stone
network requires a post-correction unit to convert the un-
corrected result, UCR back to BCD to produce CR1. The
rules for performing this correction are defined below:

Rule 1: Rule enforced when performing an effective addi-
tion operation:
Add 1010 (correction of -6) to (UCR)i in digit i
for which (C1)i+1 is 0

Rule 2: Rule enforced when performing an effective
subtraction operation:
If (MSB of C1 ≡ 1) //the sign of the result is positive

1. Invert bits in UCR for which the corresponding bit in
F1 is one. This increments UCR.

2. Add ‘1010’ to the above result in digit i for which
(C1)i+1 ⊕ (F1)3i ≡ 0

Else // the sign of the result is negative

1. Invert all sum bits

2. Add ‘1010’ to the above result in digit i for which
(C1)i+1 ≡ 1

Rule 1 is straightforward, since the pre-correction value
is simply subtracted from each sum digit where no carry-
out is generated from that digit position. For Rule 2, if
the result is positive, UCR needs to be incremented by
one since a nine’s complement is performed on CB′

2 in
the ‘Pre-correction Unit’. UCR is quickly incremented
by inverting the bits in UCR for which the correspond-
ing bit in F1 is one. Because F1 is generated in the K-
S network, this action is easily performed using a row of
exclusive-or gates. Next, if the most significant flag bit,
(F1)3i and the carry-out, (C1)i+1, of digit position i are the
same, then (CA3)i:0 < (CB3)i:0. Therefore, a value of
six should be subtracted from the sum digit, which is equiv-
alent to adding a value of ten to the digit position. Sim-
ilarly, if the result is negative, we first invert all sum bits
such that CR1 = CB3 − CA3. Next, if (C1)i+1 is one,
(CB3)i:0 < (CA3)i:0, and a value of six is subtracted from
the sum digit at digit position i.

If needed, the ‘Shift and Round Unit’ rounds the cor-
rected result, CR1, from the ‘Post-correction Unit’ and
shifts it right by one digit. Although a value has been in-
jected to simplify this unit, similar to the injection-based
method in binary arithmetic, it is still necessary to have an
injection correction step if the most significant digit (MSD)
of CR1 is non-zero. In this case, a second correction value
is added to CR1 as shown in Table 3. Adding the injection
correction value from Table 3 to the injection value from
Table 2 gives the overall injection value needed when the
MSD of CR1 is non-zero.

As illustrated in Table 3, there are only two non-zero
injection correction values, and S is always zero for injec-
tion correction. Since the injection correction value is only
needed if the most significant digit (MSD) of CR1 is non-
zero, it is impossible to have another carry from the most
significant digit due to adding the injection correction value.
To avoid the carry propagation network needed to add the
injection correction value, F2 flags, which are generated in
the K-S network, are used to increment CR1, if needed.

3.5 Overflow, Sign, Backward Format
Conversion, and Post-processing

Overflow occurs when the addition or subtraction of two
operands exceeds the maximum representable value in the
destination format. Typically, the adder needs to check the
carry from the MSD after incrementing the corrected re-
sult to see if an overflow occurs. With the injection-based
rounding method, however, since the injection correction
value does not generate another carry from the MSD, the

Table 3. Injection Correction Values Based on
Different Rounding Modes.

Signinj Rounding Modes
Injection Correction
Value (G, R, S)

X RoundTowardZero (0, 0, 0)
X RoundTiesToAway (4, 5, 0)
X RoundTiesToZero (4, 5, 0)
X RoundTiesToEven (4, 5, 0)
- RoundTowardPositive (0, 0, 0)
+ RoundTowardPositive (9, 0, 0)
- RoundTowardNegative (9, 0, 0)
+ RoundTowardNegative (0, 0, 0)
X RoundAwayZero (9, 0, 0)

overflow signal can be generated by examining the final
exponent from the operand alignment unit, ER1, and the
MSD of the corrected result, CR1. The ‘Overflow Unit’,
also generates a signal to determine if the final result should
be infinity or the maximum representable value of the desti-
nation format, based on the rounding mode and the sign of
the result. Using this signal and the overflow flag, the final
result can be modified, if needed, in the ‘Post Processing
Unit’.

The sign bit of the result is determined by several factors.
Due to space limitations, we only show the normal case in
Equation (3) for when no special cases or exceptions occur.

SignNormal = (EOP ∧ SignA) ∨ (EOP∧
(swap ⊕ SignA ⊕ CarryMSD))

(3)

Since the sign bit is necessary in several other modules such
as the ‘Overflow Unit’ and the ‘Shift and Round Unit’, we
need to determine its value as soon as possible. To quickly
determine the sign of the result, all the equations for the
special cases are duplicated and the carry out of the MSD
from the K-S network is used to select the correct sign bit.

The ‘Backward Format Conversion Unit’ encodes the
sign bit, the exponent bits, and the significand digits to
form the IEEE-encoded result. Finally, the ‘Post-processing
Unit’ handles special input operands in IEEE P754, such as
infinity, signaling, and quiet NaNs, and results that trigger
exceptions, such as overflow. To comply with the standard,
both inputs are propagated to this unit (not shown in Fig-
ure 2). In general, underflow occurs when the final result is
subnormal and inexact [1]. Although it is possible to have
a subnormal result when performing decimal floating-point
addition and subtraction, such a subnormal result cannot
also be inexact. Therefore, underflow does not occur when
performing decimal floating-point addition or subtraction.
It also does not occur for any of the other operations per-
formed by the decimal multifunction unit described in Sec-
tion 4.

3.6 Design Comparisons

There are some major differences between the pro-
posed decimal floating-point adder and the design presented
in [19]. First, the proposed design in parallel computes
|EA1 −EB1| and performs leading zero detection on CA1

and CB1 to reduce the overall delay. Second, it uses a dec-
imal injection-based rounding method to reduce the length
of the critical path in the ‘Shift and Round Unit’. Third,
in addition to the flags for the post-correction used in [19],
there are two extra sets of flags, flagADD and flagSUB,
to more quickly increment the corrected result and gener-
ate the overflow flag via trailing-nine detection. There are
also a few other minor optimization including the internal
use of BCD encoding instead of excess-3 encoding, which
leads to a simpler circuit in the ‘Pre-correction Unit’ and the
more efficient placement of the corrected operands for addi-
tion and subtraction to simplify the design of the ‘Shift and
Round Unit’. A quantitative comparison of the two designs
using results from synthesis is given in Section 5.

4 Decimal Floating-Point Multifunction Unit

There are several operations defined in IEEE P754 that
can use hardware available in the decimal floating-point
adder. In this section, we described how six other decimal
operations can be integrated into the adder’s datapath with
only a small increase in area and delay.

4.1 SameQuantum, Quantize, and Round-
ToIntegral

SameQuantum and Quantize are the only two
decimal-specific operations defined in IEEE P754.
SameQuantum(A, B) compares the exponents of A and
B and outputs true if they are the same and false if
they are different. Since signaling and quiet NaNs are
valid operands to SameQuantum, it does not signal any
exceptions. SameQuantum is implemented by extending
the ‘Subtract and Absolute Value’ (SUB-ABS) module
in the ‘Operand Alignment Calculation and Swapping
Unit’ (OACSU). The original SUB-ABS module computes
|EA1 − EB1| and outputs a swap signal. To perform
SameQuantum, logic is added to detect if |EA1 − EB1| is
zero.

Quantize(A, B) generates a decimal floating-point num-
ber that has the same value as A and the same exponent
as B, unless rounding or an exception occurs. Due to the
length of the significand in the destination format, Quan-
tize sometimes raises an inexact or invalid operation flag.
For example, if the exponent of B is larger than the expo-
nent of A, the significand of A is right-shifted and round-
ing occurs based on the prevailing rounding mode. In this

case, the inexact flag is raised if any nonzero digit is dis-
carded. On the other hand, if the exponent of B is smaller,
the significand of A is left-shifted and therefore it is pos-
sible that the required length of the significand is greater
than the length of the destination format. In this case, the
invalid operation flag is raised and the output is a quiet
NaN. Thus, Quantize(A, B) is equivalent to rounding A
only when EA1 < EB1.

The Quantize operation is implemented by modifying
the OACSU to handle several special cases and performing
decimal addition with CB1 set to zero before sending it to
OACSU. For example, if EA1 ≥ EB1, CA1 is left-shifted
and the invalid operation flag is raised if the required length
of the result is longer than the length of the destination for-
mat. Also, if EA1 < EB1, CA1 needs to be right-shifted
even though CB1 ≡ 0. To provide the correct sign bit and
rounding action for Quantize in this case, the EOP is forced
to “ADD” even when the sign bit of A is negative.

RoundToIntegral(A) rounds a floating-point number to
an integer based on the prevailing rounding mode. Round-
ToIntegral(A) is easily implemented as Quantize(A, 0) by
setting CB1 to zero and setting EB1 to the bias of the ex-
ponent in the destination format. To avoid the condition
where the invalid operation flag is raised and a quiet NaN
is generated in Quantize, a ‘Special Operation Unit’ exam-
ines the exponent of A and selects A as the final result if
EA1 ≥ 0.

4.2 Compare, minNum, and maxNum

Compare(A, B) compares A and B and indicates if A >
B, A < B, A ≡ B, or A and B are unordered, which oc-
curs if A or B is NaN. minNum(A, B) returns A if A < B
and returns B if B < A, while maxNum(A, B) returns
A if A > B and returns B if B > A. For both min-
Num and maxNum, if one operand is NaN and the other
operand is a number, the operand that is a number is re-
turned. As mentioned in Section 2, members of a co-
hort represent the same value. However, to ensure identi-
cal results on different platforms, they are not considered
equal when performing minNum or maxNum. For exam-
ple, min(−1234 × 105,−12340 × 104) = −1234 × 105

and max(−0, +0) = +0. Unlike minNum and maxNum
operations, the compare operation only compares the values
of its input operands and therefore in the above examples,
the two input operands are considered to be equal.

To implement Compare, minNum, and maxNum, our
multifunction unit reuses the original decimal floating-point
adder with the Operation set to Subtract. Since the signifi-
cands are aligned, and the sign bit of the result and the rela-
tionship between the exponents of the operands are gener-
ated by the original design, all of the normal and the special
cases mentioned above are implemented by adding a ‘Spe-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

For
ward

 F
or

mat
Con

ve
rsi

on

OACSU

Barr
el

Shif
ter

 (R
igh

t)

Ope
ran

d P
re-

co
rre

cti
on

Kog
ge

 S
ton

e N
etw

or
k

Pos
t-c

or
rec

tio
n

Shif
t a

nd
 R

ou
nd

Bac
kw

ard
 F

or
mat

Con
ve

rsi
on

Pos
t-P

ro
ce

ssi
ng

Spe
cia

l O
pe

rat
ion

 H
an

dle
r

D
el

ay
 (

ns
)

Thompson's Adder [14]

Adder with Inj-based Rounding

Multifunction with Inj-based Rounding

Figure 7. Delay Comparison

cial Operation Unit’ to the design. As most of the functions
in this unit are performed in parallel with the original dat-
apath, the only increase in the overall critical path delay is
from a 64-bit 2-to-1 multiplexer.

5 Hardware Designs and Synthesis Results

Both decimal floating-point adders and the multifunc-
tion unit were modeled using RTL Verilog and then sim-
ulated using Modelsim and a comprehensive testbench gen-
erated using the decNumber library (version 3.32). Ran-
dom, pattern-based, and corner-case testing were performed
to ensure the correctness of the design. For a fair compar-
ison, the adder design from [19] was extended to have the
same functionality (i.e. handling both normal and special
operands) as the proposed injection-based adder.

The decimal floating-point adders and multifunction unit
were synthesized using Synopsys’ Design Compiler and the
0.11um Gflx-p standard cell library from LSI Logic under
normal operating condition. The clock, input signals, and
output signals are assumed to be ideal. Inputs and outputs
of the design are registered and the design is optimized for
delay.

Figure 7 and Figure 8 compare the critical delay path
and the area of the designs, respectively, when they are not
pipelined. Table 4 compares the total area and delay of the
three designs. As shown in Figure 7, the proposed injection-
based adder reduces the latency in the ‘Operand Alignment
Calculation Unit’ and the ‘Shift and Round Unit’ signifi-
cantly, compared to the design presented in [19]. The pro-
posed adder requires more area in the K-S network due to
the generation of flags for the ‘Post-correction Unit’ and the
trailing-nine detection, and in the ‘Pre-correction Unit’ due
to the round-injection logic. However, the ‘Shift and Round
Unit’ is smaller and less random logic exists in the proposed
adder than in the design in [19].

From Table 4, our proposed decimal floating-point adder
has about 21% less delay and 1.6% less area than the de-

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

Bar
re

l S
hif

te
r (

Le
ft)

Bar
re

l S
hif

te
r (

Righ
t)

For
war

d
For

m
at

 C
on

ve
rs

ion

Effe
cti

ve
 O

pe
ra

tio
n

Bac
kw

ar
d

For
m

at
 C

on
ve

rs
ion

Kog
ge

 S
to

ne
 N

et
wor

k

OACSU

Ope
ra

nd
 P

re
-c

or
re

cti
on

Pos
t-c

or
re

cti
on

Pos
t-P

ro
ce

ss
ing

Shif
t a

nd
 R

ou
nd

Sign

Zer
o

Det
ec

tio
n

Spe
cia

l O
pe

ra
tio

n
Han

dle
r

Oth
er

 L
og

ic

A
re

a
(N

A
N

D
 E

q
u

iv
al

en
t

U
n

it
s)

Thompson's Adder [14]

Adder with Inj-based Rounding

Multifunction with Inj-based Rounding

Figure 8. Area Comparison

Table 4. Delay and Area Comparison
Adder from Injection-based Multifunction

[19] Adder Unit
Delay (ns) 3.50 2.76 2.84

Delay (FO4) 63.6 50.2 51.6
Area (mm2) 0.1451 0.1428 0.1566

Area (NAND Gates) 22443.3 22085.5 24232.9

sign presented in [19]. The proposed multifunction unit
has 2.8% more delay and 9.7% more area than our deci-
mal floating-point adder. Compared to the theoretical FO4
delay calculation for the double precision binary floating-
point adder presented in [14], which uses a dual-path tech-
nique, our decimal injection-based adder has roughtly 64%
more delay.

To fit in a processor datapath, the designs should be
pipelined to have roughly 10 to 18 FO4 inverter delays per
stage. Based on the data from Table 4, a decimal floating-
point adder or multifunction unit requires 3 or 4 pipeline

Backward Format
Conversion

2.36

Forward Format
Conversion

4.55
Operand

Alignment
Calculation: AVCU

6.00

Operand
Alignment

Calculation: SUB
4.55

Operand
Alignment

Calculation: others
3.27

Special Operation
Handler

0.91
Post-Processing

1.27

Shift and Round
8.18

Post-correction
6.18

Operand Pre-
correction

1.27

Barrel Shifter
(Right)

8.18

Kogge Stone
Network

8.55

Figure 9. The Critical Path Delay in FO4 In-
verter Delays of the Multifunction Unit

stages. To pipeline the multifunction unit, we can parti-
tion the design into 4 stages with a latency of about 15 FO4
inverter delays per stage (about 0.77ns per stage in Gflx-
p 0.11um technology). Figure 9 shows the delay of each
module on the critical path. From the figure, to achieve
the required delay, we can group the ‘Forward Format Con-
version’, the ‘Leading Zero Detectors’, the ‘Subtract and
Absolute Value’ (SUB-ABS) and the binary subtractor in
the ‘Operand Alignment Calculation and Swapping Unit’
in one stage (14.91 FO4). The rest of the logic in the
‘Operand Alignment Calculation and Swapping Unit’, ‘Bar-
rel Shifters’ and ‘Operation Pre-correction Unit’ can form
the second stage (12.73 FO4). The ‘K-S Network’ and the
‘Post-correction Unit’ can be in the third stage (14.73 FO4),
and all the remaining logic can be in the fourth stage (12.73
FO4). We can partition the pipeline of our decimal floating-
point adder in a similar fashion.

6 Conclusion

In this paper, hardware implementations of a decimal
floating-point adder and a multifunction unit were intro-
duced. We described in detail several novel components in
the designs, including those for the adder with injection-
based rounding, extension to the decimal multifunction
unit, and datapath parallelism. The proposed decimal adder
inserts injection values during the operand pre-correction
stage and applies injection correction values if needed, to
accelerate the generation of results and the detection of the
overflow flag. We extended the decimal floating-point adder
to support eight operations with only a minor increase in de-
lay and area. Finally, we have provided a detailed analysis
on our synthesis results and a comparison between a pre-
vious design from [19] and the proposed decimal floating-
point adder design and multifunction unit designs. Synthe-
sis results show that the proposed adder design has 21% less
delay and 1.6% less area than the previous design in [19]
and the multifunction unit only has about 2.8% more de-
lay and 9.7% more area than the proposed decimal floating-
point adder.

Acknowledgement

This work was supported by the UW-Madison Graduate
School and an IBM Faculty Award. The authors would like
to thank Ying-Cherng Lan and Professor Sao-Jie Chen from
National Taiwan University for the help they provided with
design experience.

References

[1] 754 Working Group. Draft of the IEEE standard for floating-
point arithmetic, November 2006.

[2] A. Beaumont-Smith and C.-C. Lim. Parallel prefix adder de-
sign. In Proceedings of the 15th IEEE Symposium on Com-
puter Arithmetic, pages 218–225, 2001.

[3] G. Bohlender and T. Teufel. BAP-SC: A decimal floating-
point processors for optimal arithmetic. In Computer
arithmetic: Scientific Computation and Programming Lan-
guages, pages 31–58. B.G Teubner Verlag, 1987.

[4] W. Bultmann, W. Haller, H. Wetter, and A. Worner. Binary
and decimal adder unit. U.S. Patent 6,292,819, September
2001.

[5] N. Burgess. Prenormalization rounding in IEEE floating-
point operations using a flagged prefix adder. IEEE Trans-
actions on VLSI System, 13(2):266–277, Feb 2005.

[6] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz,
and S. R. Carlough. The IBM z900 decimal arithmetic unit.
In Proceedings of the 35th Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 1335 –1339. IEEE
Computer Society, November 2001.

[7] M. S. Cohen, T. E. Hull, and V. C. Hamacher. CADAC: A
controlled-precision decimal arithmetic unit. IEEE Transac-
tions on Computers, 32(4):370–377, 1983.

[8] M. F. Cowlishaw. Densely packed decimal encoding. In IEE
Proceedings - Computers and Digital Techniques, volume
149, pages 102–104, May 2002.

[9] G. Even and P. M. Seidel. A comparison of three round-
ing algorithms for IEEE floating-point multiplication. IEEE
Transactions on Computers, 49(7), July 2000.

[10] W. Haller, U. Krauch, T. Ludwig, and H. Wetter. Combined
binary/decimal adder unit. U.S. Patent 5,928,319, July 1999.

[11] H. Nikmehr, B. Phillips, and C. C. Lim. A decimal carry-
free adder. In Proceedings of SPIE, SPIE Symposium on
Smart Materials, Nano-, and Micro-Smart Systems, volume
5649, pages 786–797, February 28, 2005 2005.

[12] R. Sacks-Davis. Applications of redundant number repre-
sentations to decimal arithmetic. The Computer Journal,
25(4):471–477, 1982.

[13] M. S. Schmookler and A. W. Weinberger. High speed deci-
mal addition. IEEE Transactions on Computers, C-20:862–
867, Aug 1971.

[14] P. M. Seidel and G. Even. Delay-optimized implementa-
tion of IEEE floating-point addition. IEEE Transactions on
Computers, 53(2):97–113, 2004.

[15] S. Shankland. IBM’s POWER6 gets help with math, multi-
media. ZDNet News, October 2006.

[16] B. Shirazi, D. Y. Y. Yun, and C. N. Zhang. RBCD: redundant
binary coded decimal adder. IEE Proceedings on Computers
and Digital Techniques, 136(2):156–160, 1989.

[17] Sun Microsystem. BigDecimal class, Java 2 platform stan-
dard edition 5.0, API specification, 2004.

[18] A. Svoboda. Decimal adder with signed digit arithmetic.
IEEE Transactions on Computers, C-18(3):212–215, 1969.

[19] J. Thompson, M. J. Schulte, and N. Karra. A 64-bit decimal
floating-point adder. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, Lafayette, LA,, pages
297–298, Feb 2004.

