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“The Cheap will Outsell the Good”

Customer Priorities

1.   Availability
2.   Price

Features
3.   Power

Size

Design Choices

1. Hardware � Software
2. Process Technology
3. MHz and Volts
4. Custom � Synthesized
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The Chip Market

Most logic chips are processors or processor-centric.

Computers have driven MOS chip evolution – the first
“product superclass”.

The second product superclass will be “cellphones”…
• Consumer driven – more cost sensitive than computers.
• High mobility – more power sensitive than computers.
• High (specialized) performance – eg. HSDPA cellular 

modem ~50GOPs.

ICs  $211bn
MOS  $174bn

Memory  $59bnMicro  $54bn Logic  $60bn
MPU ASSP

SIA 2006
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What’s New(-ish) in Logic Chip Physics?

Small dopant populations (VT variability)

Subthreshold leakage (VT reduction is constrained, so Vdd likewise)

Gate leakage (end of SiO2 Tox scaling)

Channel Stress (engineered and STI-induced)

OPC rules

Well Proximity Effect

Line Edge Roughness (gate and wire)

NBTI (RAM VT drift)

All important for designers, but not (directly) the 
main influencers of design evolution
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Top 2 Design Influencers

1. Most power-sensitive designs will set their own supply voltage.

• Design at typical, turn manufacturing speed spread (functionality risk) 
into power efficiency spread (battery life).

• Offset manufacturing leakage spread against speed spread.

• Dynamically trade performance vs power.

• Disconnect power in standby (efficient regulators are switch-mode).

2. Processors are evolving to displace fixed-function hardware

• Target multiple market sockets per design.

• Hardware-efficient (dynamic re-purposing of resources).

• Mitigation of specification uncertainty.

• Work around bugs by software change.

• Well-practiced idiom for speed.
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Modern Transistors
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Modern Transistors

ITRS distinguishes 3 roadmaps…

• High Performance (HP)

• Low Operating Power (LOP)

• Low Standby Power (LSTP)

VT (mV)Tox (nm)Lg (nm)

5241.945LSTP

2851.232LOP

1651.125HP

ITRS2005 for 65nm 2007

“cellphones”

computers

TSMC offers 12 logic T’s at 65nm…

• 2 x HP

• 6 x LOP

• 4 x LSTP
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65nm LOP Delay
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65nm LSTP vs LOP Delay
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65nm LOP Sub-Threshold Leakage
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65nm LSTP vs LOP Sub-Threshold Leakage
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High Temp ISUB Still Dominates Ig at 65nm (LOP and LSTP)
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LOP 65nm ISUB vs 90nm ISUB
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LOP 65nm Ig vs 90nm Ig
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Manufacturing Spread: 65nm mid VT LOP Delay
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Manufacturing Spread: 65nm mid VT LOP ISUB
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Optimality of Design
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Power, Money and Performance

Excellent recent work on Power vs Performance (among many)…

• Srinivasan, Brooks, Gschwind, Bose, Zyuban, Strenski and Emma, “Optimimum 
Pipelines for Power and Performance”, Micro ’02.

• Zyuban and Strenski, “Unified Methodology for Resolving Power-Performance 
Tradeoffs at the Microarchitectural and Circuit Levels”, ISLPED ‘02.

• Harstein, Puzak, “Optimum Power/Performance Pipeline Depth”, Micro ’03.

• Dao, Zeydel, Oklobdzija, “Energy Optimization of Digital Pipelined Systems Using 
Circuit Sizing and Supply Scaling”, Trans. VLSI Systems ‘05.

But outside the computer market, few chips sell on MHz.

Most designs set out to minimize cost (and power) at fixed performance…

� Decode an MPEG video without glitching.

� Execute an ADSL modem at 8Mbps.

� etc…
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Design Levers

1. Pipelining

2. Replication (parallelism)

3. Speculation

4. Logical redundancy (eg. carry-skip adder)

5. Arithmetic redundancy (eg. carry-save)

6. Vdd

7. VT

8. tOX

9. Lg

10. Manhattan cell height (transistor sizing)

11. Wire geometry

12. Wire screening

13. Structured layout (wire control)

14. Logic circuit engineering

15. Clock circuit engineering

16. Package engineering

(micro)architecture

transistors

geometry

circuits
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Electro-Thermal Model

Package
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Delay
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Pipeline Model

Flux � = nC/τC (T/i/b)

Performance � = KnCf (T/s)

Cost N = K(nC+nS) (T)

Frequency f = 1/τ� (Hz)

nC nS

τC τS

Clock period τ

K “pipettes”…

1 bit
Average nC transistors of combinatorial 
logic per pipe stage per pipeline bit.

nS transistors per pipeline latch.

Units of τ are “i” � “FO4”; 1i = � seconds.

Arbitrary width/depth mix of pipettes make 
up the pipelined logic.

RAM

non-pipeline latches

pipelined logic

IO
 (f

ix
ed

 V
dd

)

Define…

Chip…
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Reality not Included…

• Performance � (TCOMB/s) tends to over-state effective performance at low τ, because 
logical redundancy is introduced to speed up logic paths and mitigate latency by 
speculation.

• Flux � (T/i/b) varies a lot locally; tends to rise at low τ for the same redundancy 
reason, and because pipe cuts have less freedom to avoid high-flux logic.

Prefix
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Eg. adders…
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Pipeline Flux in Icera’s DXP®

-
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All logic macros except regfiles

Flux
(T/i/b)

� ~ 3-4 for arithmetic and random translation logic.

� ~ 1-2 for steering logic.
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Required � to meet specified Performance � and Cost N
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Specification

Latch delay 4i
Latch cost 40T
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Design Cost 10MT

0

5

10

15

20

25

30

35

40

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74

Pipe stage delay τ (number of �’s)

R
eq

ui
re

d 
�

(p
s)

� = 2

� = 4



Arith18 Montpellier June 07 simon@icerasemi.com

Constant Flux Implications (� = 3, τS = 4i)
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DXP® Logic Stage Population, by #Transistors

Clock distrib.
(mostly invs)

All other logic <0.5%

Regfiles
(latch-like)

22%

29%

18%

11%

9%

8%

(mostly pipeline)Manhattan cells are 
ubiquitous in all digital 
design methodologies.

Complex cells can be 
important for performance 
but account for negligible 
% of total transistors.

Designs are characterized 
(capacitance, leakage, 
delay, area) by a few 
simple Manhattan stages.
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The Design Hull



Arith18 Montpellier June 07 simon@icerasemi.com

Example Design Spec

Performance � = 15PT/s
Flux � = 4T/i/b
Latch Cost nS = 40T
Latch Delay τS = 4i
Non-Pipe Logic = 5MT
RAM = 1MB
Latch Activity = 3x Combinatorial Activity
RAM Activity = 0.2x Combinatorial Activity
65nm high VT LOP Process
Ambient Temp = 85°C
Max Die Temp = 125°C
Package �JC = 15°C/W
Supply R = 50m�
Fixed Parasitic Power = 100mW
Vdd Limit Range = 0.7V – 1.2V
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Design Hull
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Feasible Designs
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Minimum Power Pipelines
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The Cost of Minimizing Power
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design choice
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Minimum Power Pipelines
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Sensitivity to Pipeline Flux
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LOP vs LSTP
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LOP vs LSTP
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Feasible Solutions in Cost-Frequency Space
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Implications for Design
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Implications for Chip Design

Every logic chip will have control over its supply voltage.

• Integrated regulators?

• Switch off in standby – limited call for LSTP processes?

We can’t minimize cost and power simultaneously.

Good cost-power points require fairly high speed.

• Beyond synthesis and auto-P&R today � more Structured Custom?

Short pipelines expose the basic TA assumption (single path sensitization).

• Wavefront timing analysis tools?

• Voltage agility makes TA sign-off harder.
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Structured Custom

…is enough for predictable auto-routingNatural cell placement by engineers…
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Thank You

Enjoy the Symposium�


