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A long time ago...

(in a galaxy not so far away)

» a bit of paleo-bibliography

M. D. Ercegovac (IEEE TC, 1975)
Radix-16 evaluation of certain elementary functions.

G. Paul and M. W. Wilson (ACM TOMS, 1976)
Should the elementary functions be incorporated into computer instruction sets?

C. Wrathall and T. C. Chen. (ARITH 4, 1978)
Convergence guarantee and improvements for a hardware exponential and
logarithm evaluation scheme.

P. Farmwald (ARITH 5, 1981)
High-bandwidth evaluation of elementary functions.

M. Cosnard, A. Guyot, B. Hochet, J.-M. Muller, H. Ouaouicha, P. Paul, and
E. Zysmann (ARITH 8, 1987)
The FELIN arithmetic coprocessor chip.
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FPUs strike back

» ... then came the floating-point unit

dedicated efficient hardware operators
only basic operations: +, —, X, = and \/
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FPUs strike back

» ... then came the floating-point unit
dedicated efficient hardware operators
only basic operations: +, —, X, = and \/
» what about elementary functions?

comparatively rare operations
hardware implementation would be a waste of silicon
dedicate silicon to more useful units (ALUs, FPUs, caches)

» only software or micro-code implementations
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FPGAs: a new hope?

» Field-Programmable Gate Arrays

» reconfigurable integrated circuits
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FPGAs: a new hope?

» Field-Programmable Gate Arrays

» reconfigurable integrated circuits

» architecture based on programmable logic cells

and routing resources

lower performances than ASICs

high flexibility

fine-grain parallelism
lower cost per unit

huge computational capacity
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digital signal and image processing

cryptography

bioinformatics

scientific computing
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FPLibrary

» library of portable VHDL operators for floating-point

» all operators are parameterized in terms of range and precision
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» library of portable VHDL operators for floating-point

» all operators are parameterized in terms of range and precision
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FPLibrary

» library of portable VHDL operators for floating-point

» all operators are parameterized in terms of range and precision

single precision

double precision

log x

<A

» single-precision logarithm and exponential

hardware-specific algorithms
ad-hoc range reduction

table-based fixed-point evaluation

small and fast operators

J. Detrey, F. de Dinechin, and X. Pujol — Return of the hardware floating-point elementary functions

7/ 22



FPLibrary

» library of portable VHDL operators for floating-point

» all operators are parameterized in terms of range and precision

single precision

double precision

log x

<A

» single-precision logarithm and exponential

hardware-specific algorithms
ad-hoc range reduction

table-based fixed-point evaluation

small and fast operators

J. Detrey, F. de Dinechin, and X. Pujol — Return of the hardware floating-point elementary functions

7/ 22



Double precision: using the same method?

» range reduction and reconstruction are scalable
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» range reduction and reconstruction are scalable

» table-based method for the actual computation

exponential growth of the area

estimations w.r.t. single precision: 15x larger for the exponential, and
40x larger for the logarithm!!

unacceptable overhead for usual FPGAs

» need for another algorithm, suited to higher precisions
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Double precision: using the same method?

» range reduction and reconstruction are scalable

» table-based method for the actual computation

exponential growth of the area

estimations w.r.t. single precision: 15x larger for the exponential, and
40x larger for the logarithm!!

unacceptable overhead for usual FPGAs

» need for another algorithm, suited to higher precisions

» iterative method

smaller architecture
higher scalability
longer critical path
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Outline of the talk

» Double-precision exponential
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Number format

Ex Fx
T WE B WFE -

» 2 parameters: wg (range) and wr (precision)
» inspired from the IEEE-754 standard:

X = (_]_)SX c1.Fy - 2Ex—FEo
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Number format

Ex Fx

> - -

2 ]. WE Wg

Y

» 2 parameters: wg (range) and wr (precision)
» inspired from the IEEE-754 standard:

X = (_]_)SX c1.Fy - 2Ex—FEo

» 2 extra bits for exceptional cases: zero, infinity or Not-a-Number (NaN)
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Evaluation method

» range reduction:

X=k-log2+Y with ke Zand 0 < Y <1

» we obtain:
R=eX=2K.¢"
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Evaluation method

» range reduction:

X=k-log2+Y with ke Zand 0 < Y <1

» we obtain:
R=eX=2K.¢"

» fixed-point e”?
generalization of an idea by Wong and Goto (IEEE TC 1994)

successive range reductions of the fixed-point argument Y

once the argument sufficiently reduced, direct evaluation of the exponential
reconstructions using rectangular multipliers

computes e’ — 1
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Iterative method: range reductions

» for step each /, we consider the argument Y; (starting with Yy = Y')

100 - -0 Y, |
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» for step each /, we consider the argument Y; (starting with Yy = Y')

Oé,'—].

+j00- - -0_A | B; |

» splitting Y; as A; + B;, we address two look-up tables with A;:

e’ — 1, rounded to its o; most significant bits, noted e/ — 1
L; = log (eAi>, rounded to its «; + 3; most significant bits
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Oé,'—].

+j00- - -0_A | B; |
£]o.0o - -0 [ |

» splitting Y; as A; + B;, we address two look-up tables with A;:

e’ — 1, rounded to its o; most significant bits, noted e/ — 1
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Iterative method: range reductions

» for step each /, we consider the argument Y; (starting with Yy = Y')

Oé,'—].

+j00- - -0_A | B; |

EO 0 0 Yo

» splitting Y; as A; + B;, we address two look-up tables with A;:

e’ — 1, rounded to its o; most significant bits, noted e/ — 1
L; = log (eAi), rounded to its «; + 3; most significant bits

» by construction, L; = Y]

» we then define Y, 1 as Y, — L;:

the a; — 1 most significant bits of Y; are cancelled
Yir1is a 1 + (;-bit number
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Iterative method: computing the exponential

» the reduction process is iterated until the step k such that

Y, < 27 [wr/2]
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Iterative method: computing the exponential

» the reduction process is iterated until the step k such that

Y, < 27 [wr/2]

» we can then approximate the exponential as

eYk—lek
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Iterative method: reconstructions

» at each step /, we have:

eAi — 1, from the corresponding range reduction step

Y]

e'i+1 — 1, from the previous reconstruction, with Y;.; = Y; — log (eAi)

J. Detrey, F. de Dinechin, and X. Pujol — Return of the hardware floating-point elementary functions 14 /22



Iterative method: reconstructions

» at each step /, we have:

eAi — 1, from the corresponding range reduction step

Y]

e'i+1 — 1, from the previous reconstruction, with Y;.; = Y; — log (eAi)

Y

» we then compute e’/ — 1 as

(57\/- - 1) x (e¥it1 — 1) + (57\/- - 1) + (¥ —1)
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Iterative method: reconstructions

» at each step /, we have:

eAi — 1, from the corresponding range reduction step
eYit1 — 1, from the previous reconstruction, with Y;.; = Y; — log (eAi)

Y

» we then compute e’/ — 1 as

(57\/- - 1) x (e¥it1 — 1) + (57\/- - 1) + (¥ —1)

— A eVitl — 1]

— _ —Iog(eA/Ai>
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Architecture

ean d EX I| FX
Eo 1
overflow/
underflow
k
eV —1
EO -
7] GZ
e
normalize / round

sign / exception handling :

NNeX

R ~
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Architecture

Y

Eo _?
— X +1 o Yo |
’ 1 1
shift g :
1/log?2 K . ;
| ’ 1 1
= S :
round / : :
log 2 N : :
'] ’ 1 1
X ’ : :
" 1 1
- 2 ! !
Y 'l' 1 1
e’ —1 : :
Eo = i :
- + ]- ~~~ 1 1
- s ! !
normalize / round \\ . :
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Outline of the talk

» Results
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Operator area (exponential)

area (in slices) FPGA occupation
2000 —— table-based :‘40%
1500—5 5—30%
1000 0%
500—5 5—10%
0- : 0%

6 10 14 18 22 26 30 34 38 42 46 50

precision wg (in bits)

» single precision (wg, wr) = (8, 23) (table-based method):
938 slices (18% of a Virtex-1l 1000 FPGA)
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Operator area (exponential)

area (in slices) FPGA occupation
2000 —— table-based a -40%
{ — iterative K i
1500 - -30%
10001 -20%
5001 -10%
0- 0%

6 10 14 18 22 26 30 34 38 42 46 50

precision wg (in bits)

» single precision (wg, wr) = (8, 23) (table-based method):
938 slices (18% of a Virtex-1l 1000 FPGA)

» double precision (wg, wr) = (11, 52) (iterative method):
2045 slices (40%)
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Operator latency (exponential)

latency (in ns)

| —— table-based
2207 — jterative
1801
140 -

100{/_./

60 r-—rr—rr—r—r- 1t —r 1 T 1T T T T T T T
6 10 14 18 22 26 30 34 38 42 46 50

precision wg (in bits)

» single precision (wg, wr) = (8,23) (table-based method): 97 ns

» double precision (wg, wg) = (11, 52) (iterative method): 229 ns
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Outline of the talk

» Conclusion
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Our contribution

» exponential and logarithm operators
» up to double precision

» guaranteed faithful rounding

» scalable method

» hardware-specific algorithms: fast and cheap operators
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Future work

» pipeline

» implement double precision for other functions for FPLibrary

» study compound functions
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Future work

» pipeline
» implement double precision for other functions for FPLibrary
» study compound functions

» careful error analysis:

certified algorithms and operators
generic proofs (Gappa)

» most of this work is not FPGA-specific: extend it to ASICs
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Thank you for your attention

» more information & download page:
http://www.ens-1lyon.fr/LIP/Arenaire/
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