
Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Efficient polynomial L∞-approximations
ARITH 18 - Montpellier

Nicolas Brisebarre Sylvain Chevillard

Laboratoire de l’informatique du parallélisme
Arenaire team

June 26, 2007

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 1



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete and toy case

Conclusion

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 2



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Functions approximation

Graph of f : x 7→ arctan(x)

(interval [−1, 4])

I Let f be a real valued
function : f : [a, b]→ R.

I Let p ∈ Rn[X ]
approximating f.

I Approximation error at
point x :
ε(x) = p(x)− f (x).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 3



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Functions approximation

(Rn[X ] : set of polynomials with
real coefficients and degree

at most n). Here n = 2

I Let f be a real valued
function : f : [a, b]→ R.

I Let p ∈ Rn[X ]
approximating f.

I Approximation error at
point x :
ε(x) = p(x)− f (x).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 3



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Functions approximation

(Rn[X ] : set of polynomials with
real coefficients and degree

at most n). Here n = 2

I Let f be a real valued
function : f : [a, b]→ R.

I Let p ∈ Rn[X ]
approximating f.

I Approximation error at
point x :
ε(x) = p(x)− f (x).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 3



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Approximation error

I ε(x) = p(x)− f (x)
over [a, b]

I max{|ε(x)|, x ∈ [a, b]}

I Infinite norm: ‖ε‖∞ = ‖p − f ‖∞ = max{|ε(x)|, x ∈ [a, b]}
I Best approximation problem:

given a degree n, find p ∈ Rn[X ] minimizing ‖p − f ‖∞.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 4



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Approximation error

I ε(x) = p(x)− f (x)
over [a, b]

I max{|ε(x)|, x ∈ [a, b]}

I Infinite norm: ‖ε‖∞ = ‖p − f ‖∞ = max{|ε(x)|, x ∈ [a, b]}
I Best approximation problem:

given a degree n, find p ∈ Rn[X ] minimizing ‖p − f ‖∞.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 4



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Approximation error

I ε(x) = p(x)− f (x)
over [a, b]

I max{|ε(x)|, x ∈ [a, b]}

I Infinite norm: ‖ε‖∞ = ‖p − f ‖∞ = max{|ε(x)|, x ∈ [a, b]}

I Best approximation problem:
given a degree n, find p ∈ Rn[X ] minimizing ‖p − f ‖∞.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 4



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Approximation error

I ε(x) = p(x)− f (x)
over [a, b]

I max{|ε(x)|, x ∈ [a, b]}

I Infinite norm: ‖ε‖∞ = ‖p − f ‖∞ = max{|ε(x)|, x ∈ [a, b]}
I Best approximation problem:

given a degree n, find p ∈ Rn[X ] minimizing ‖p − f ‖∞.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 4



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Theory of polynomial approximation

Facts:
I There exists a unique best

approximation polynomial.

I Characterization:
Chebyshev’s theorem.

I To compute it:
Remez’ algorithm (minimax
in Maple).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 5



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Theory of polynomial approximation

Facts:
I There exists a unique best

approximation polynomial.
I Characterization:

Chebyshev’s theorem.

I To compute it:
Remez’ algorithm (minimax
in Maple).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 5



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Theory of polynomial approximation

Facts:
I There exists a unique best

approximation polynomial.
I Characterization:

Chebyshev’s theorem.
I To compute it:

Remez’ algorithm (minimax
in Maple).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 5



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

The problem

I Computers: finite memory.

I IEEE-754 standard: defines floating-point numbers.
I A floating-point number with radix 2 and precision t, is a

number of the form x = m · 2e where

I m ∈ Z (written with exactly t bits) is called its mantissa;
I e ∈ Z is its exponent.

I In practice: one has to store the coefficients into
floating-point numbers.

I Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 6



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

The problem

I Computers: finite memory.
I IEEE-754 standard: defines floating-point numbers.

I A floating-point number with radix 2 and precision t, is a
number of the form x = m · 2e where

I m ∈ Z (written with exactly t bits) is called its mantissa;
I e ∈ Z is its exponent.

I In practice: one has to store the coefficients into
floating-point numbers.

I Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 6



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

The problem

I Computers: finite memory.
I IEEE-754 standard: defines floating-point numbers.
I A floating-point number with radix 2 and precision t, is a

number of the form x = m · 2e where
I m ∈ Z (written with exactly t bits) is called its mantissa;
I e ∈ Z is its exponent.

I In practice: one has to store the coefficients into
floating-point numbers.

I Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 6



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

The problem

I Computers: finite memory.
I IEEE-754 standard: defines floating-point numbers.
I A floating-point number with radix 2 and precision t, is a

number of the form x = m · 2e where
I m ∈ Z (written with exactly t bits) is called its mantissa;
I e ∈ Z is its exponent.

I In practice: one has to store the coefficients into
floating-point numbers.

I Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 6



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

The problem

I Computers: finite memory.
I IEEE-754 standard: defines floating-point numbers.
I A floating-point number with radix 2 and precision t, is a

number of the form x = m · 2e where
I m ∈ Z (written with exactly t bits) is called its mantissa;
I e ∈ Z is its exponent.

I In practice: one has to store the coefficients into
floating-point numbers.

I Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 6



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Failure of the naive method

I Example with f (x) = log2(1 + 2−x ):
I on [0; 1]
I approximated by a degree 6 polynomial
I with single precision coefficients (24 bits).

Minimax Naive method Optimal
8.3 · 10−10 119 · 10−10 10.06 · 10−10

I The problem has been studied by
I W. Kahan;
I D. Kodek (precision t < 10, degree n < 20);
I N. Brisebarre, J.-M. Muller and A. Tisserand (using linear

programming).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 7



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Failure of the naive method

I Example with f (x) = log2(1 + 2−x ):
I on [0; 1]
I approximated by a degree 6 polynomial
I with single precision coefficients (24 bits).

Minimax Naive method Optimal
8.3 · 10−10 119 · 10−10 10.06 · 10−10

I The problem has been studied by
I W. Kahan;
I D. Kodek (precision t < 10, degree n < 20);
I N. Brisebarre, J.-M. Muller and A. Tisserand (using linear

programming).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 7



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Description of our method
Our goal: find p approximating f with the following form:

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn (mi ∈ Z).

I We use the idea of interpolation:

I we choose n + 1 points x0, · · · , xn in [a, b] ;
I we search m0, · · · , mn such that for all i

p(xi) = m0 · 2e0 + m1 · 2e1xi + · · ·+ mn · 2en xn
i ' f (xi) .

I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · xn

0
2en · xn

1
...

2en · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 8



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Description of our method
Our goal: find p approximating f with the following form:

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn (mi ∈ Z).

I We use the idea of interpolation:

I we choose n + 1 points x0, · · · , xn in [a, b] ;
I we search m0, · · · , mn such that for all i

p(xi) = m0 · 2e0 + m1 · 2e1xi + · · ·+ mn · 2en xn
i ' f (xi) .

I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · xn

0
2en · xn

1
...

2en · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 8



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Description of our method
Our goal: find p approximating f with the following form:

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn (mi ∈ Z).

I We use the idea of interpolation:
I we choose n + 1 points x0, · · · , xn in [a, b] ;

I we search m0, · · · , mn such that for all i
p(xi) = m0 · 2e0 + m1 · 2e1xi + · · ·+ mn · 2en xn

i ' f (xi) .
I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · xn

0
2en · xn

1
...

2en · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 8



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Description of our method
Our goal: find p approximating f with the following form:

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn (mi ∈ Z).

I We use the idea of interpolation:
I we choose n + 1 points x0, · · · , xn in [a, b] ;
I we search m0, · · · , mn such that for all i

p(xi) = m0 · 2e0 + m1 · 2e1xi + · · ·+ mn · 2en xn
i ' f (xi) .

I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · xn

0
2en · xn

1
...

2en · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 8



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Description of our method
Our goal: find p approximating f with the following form:

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn (mi ∈ Z).

I We use the idea of interpolation:
I we choose n + 1 points x0, · · · , xn in [a, b] ;
I we search m0, · · · , mn such that for all i

p(xi) = m0 · 2e0 + m1 · 2e1xi + · · ·+ mn · 2en xn
i ' f (xi) .

I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · xn

0
2en · xn

1
...

2en · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 8



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space.

The set of all
integer combinations of the

−→
bi is called a lattice:

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 9



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space. The set of all

integer combinations of the
−→
bi is called a lattice:

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 9



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space. The set of all

integer combinations of the
−→
bi is called a lattice:

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 9



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space. The set of all

integer combinations of the
−→
bi is called a lattice:

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 9



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space. The set of all

integer combinations of the
−→
bi is called a lattice:

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 9



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm:

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)

I Closest vector problem (CVP)
LLL algorithm:

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm:

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm:

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm: Lenstra, Lenstra Jr. and Lovász.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm: finds pretty short vectors in polynomial time.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Notions about lattices
Algorithmic problems:

I Shortest vector problem (SVP)
I Closest vector problem (CVP)

LLL algorithm: used by Babai to solve an approximation of CVP.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

A concrete and toy case

I We want to approximate f : x 7→ log2(1 + 2(−x))

I on [0, 1]
I by a polynomial of degree 6.
I Each coefficient is stored in a single-precision number (24 bits).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 11



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

A concrete and toy case

I We want to approximate f : x 7→ log2(1 + 2(−x))
I on [0, 1]
I by a polynomial of degree 6.
I Each coefficient is stored in a single-precision number (24 bits).

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 11



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.

I They should correspond to
the interpolation intuition.

I Chebyshev’s theorem gives
n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.

I Chebyshev’s theorem gives
n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Datas

Best real Naive method Enhanced method
8.34e−10 119e−10 49.9e−10

I How to choose the points?

I We need n + 1 points.
I They should correspond to

the interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 12



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Results with our method
Best real Naive method Enhanced method Our method
8.34e−10 119e−10 49.9e−10 10.24e−10

I Polynomial obtained
in less than 1 second
(Pentium III 1.2GHz)

I Degree 30 and
precision ≈ 100
obtained in a few
seconds

I Used in CRlibm

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Results with our method
Best real Naive method Enhanced method Our method
8.34e−10 119e−10 49.9e−10 10.24e−10

I Polynomial obtained
in less than 1 second
(Pentium III 1.2GHz)

I Degree 30 and
precision ≈ 100
obtained in a few
seconds

I Used in CRlibm

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Results with our method
Best real Naive method Enhanced method Our method
8.34e−10 119e−10 49.9e−10 10.24e−10

I Polynomial obtained
in less than 1 second
(Pentium III 1.2GHz)

I Degree 30 and
precision ≈ 100
obtained in a few
seconds

I Used in CRlibm

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Results with our method
Best real Naive method Enhanced method Our method
8.34e−10 119e−10 49.9e−10 10.24e−10

I Polynomial obtained
in less than 1 second
(Pentium III 1.2GHz)

I Degree 30 and
precision ≈ 100
obtained in a few
seconds

I Used in CRlibm

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Results with our method
Best real Naive method Enhanced method Our method
8.34e−10 119e−10 49.9e−10 10.24e−10

I Polynomial obtained
in less than 1 second
(Pentium III 1.2GHz)

I Degree 30 and
precision ≈ 100
obtained in a few
seconds

I Used in CRlibm

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Conclusion
I We have developed an algorithm to find very good polynomial

approximants with floating-point coefficients.

I The algorithm is a heuristic, but works well in practice.
I The algorithm is flexible:

I each coefficient may use a different floating-point format;
I one may search polynomial with additional constraints: fix the

value of some coefficients, search for an even polynomial;
I one may optimize the relative error

ε(x) =
p(x)− f (x)

f (x)

instead of the absolute error.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 14



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Conclusion
I We have developed an algorithm to find very good polynomial

approximants with floating-point coefficients.
I The algorithm is a heuristic, but works well in practice.

I The algorithm is flexible:
I each coefficient may use a different floating-point format;
I one may search polynomial with additional constraints: fix the

value of some coefficients, search for an even polynomial;
I one may optimize the relative error

ε(x) =
p(x)− f (x)

f (x)

instead of the absolute error.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 14



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Conclusion
I We have developed an algorithm to find very good polynomial

approximants with floating-point coefficients.
I The algorithm is a heuristic, but works well in practice.
I The algorithm is flexible:

I each coefficient may use a different floating-point format;
I one may search polynomial with additional constraints: fix the

value of some coefficients, search for an even polynomial;
I one may optimize the relative error

ε(x) =
p(x)− f (x)

f (x)

instead of the absolute error.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 14



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Conclusion
I We have developed an algorithm to find very good polynomial

approximants with floating-point coefficients.
I The algorithm is a heuristic, but works well in practice.
I The algorithm is flexible:

I each coefficient may use a different floating-point format;
I one may search polynomial with additional constraints: fix the

value of some coefficients, search for an even polynomial;
I one may optimize the relative error

ε(x) =
p(x)− f (x)

f (x)

instead of the absolute error.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 14



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Focus on polynomial approximation

I The definition often gives a natural way to find a polynomial
approximation of f .
↪→ for instance: a truncated power series with a formally
computed bound on the error.

I Truncated power series are useful but. . .

. . . usually inefficient in term of number of operations.

I Example: exp(x) on [−1; 2] with an absolute error ≤ 0.01:
I the series must be truncated to a degree 7 polynomial;
I a degree 4 polynomial is sufficient.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 15



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Focus on polynomial approximation

I The definition often gives a natural way to find a polynomial
approximation of f .
↪→ for instance: a truncated power series with a formally
computed bound on the error.

I Truncated power series are useful but. . .

. . . usually inefficient in term of number of operations.
I Example: exp(x) on [−1; 2] with an absolute error ≤ 0.01:

I the series must be truncated to a degree 7 polynomial;
I a degree 4 polynomial is sufficient.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 15



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Focus on polynomial approximation

I The definition often gives a natural way to find a polynomial
approximation of f .
↪→ for instance: a truncated power series with a formally
computed bound on the error.

I Truncated power series are useful but. . .
. . . usually inefficient in term of number of operations.

I Example: exp(x) on [−1; 2] with an absolute error ≤ 0.01:
I the series must be truncated to a degree 7 polynomial;
I a degree 4 polynomial is sufficient.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 15



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete and toy case
Conclusion

Chebyshev’s theorem

Theorem (Chebyshev)
Let f be a continuous function on [a, b]. Let
µ = inf{‖f − p‖∞}p∈Rn[X ]. Then, p satisfies ‖f − p‖∞ = µ if and
only if there exist n + 2 points

x0 < x1 < · · · < xn+1

in [a, b] such that
1. ∀i ∈ J0, n + 1K, |f (xi)− p(xi)| = ‖f − p‖∞
2. For all i ∈ J0, nK, the signs of f (xi+1)− p(xi+1) and

f (xi)− p(xi) are different.

N. Brisebarre, S. Chevillard Efficient polynomial L∞-approximations 16


	Scope of my researches
	Approximation theory
	Polynomial approximation with floating-point numbers
	Lattices and LLL algorithm
	A concrete and toy case
	Conclusion

