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Scope of my researches

Functions approximation
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Graph of f : x +— arctan(x)
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> Let  be a real valued
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Scope of my researches

Functions approximation

15 T

> Let f be a real valued
function : f : [a, b] — R.

> Let p € Ry[X]

s ] approximating f.

» Approximation error at
a o : 2 5 p point x:

£(x) = p(x) = F(x).

(Rp[X] : set of polynomials with
real coefficients and degree
at most n). Here n =2
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Approximation error
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1 »e(x)=p(x) = f(x)
over [a, b]
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Scope of my researches

Approximation error

> =(x) = p(x) — F(x)
over [a, b]
» max{|z(x)], x € [a, b]}
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Scope of my researches
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Scope of my researches

015

Approximation error

01

> (x) = p(x) — £(x)
over [a, b]

» max{|z(x)], x € [a, b]}

I I
-1 0 1 2 3 4

> Infinite norm: |||/, = [|p — f|l = max{|e(x)|, x € [a, b]}
> Best approximation problem:
given a degree n, find p € R,[X] minimizing ||p — || -

N. Brisebarre, S. Chevillard Efficient polynomial L~ -approximations



Approximation theory

Theory of polynomial approximation

Facts:

» There exists a unique best
approximation polynomial.
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Facts:

» There exists a unique best
approximation polynomial.

» Characterization:
Chebyshev's theorem.
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Approximation theory

Theory of polynomial approximation

Facts:

» There exists a unique best
approximation polynomial.

» Characterization:
Chebyshev's theorem.

» To compute it:
Remez' algorithm (minimax
in Maple).
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Approximation theory

The problem

» Computers: finite memory.
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Approximation theory

The problem

» Computers: finite memory.

» IEEE-754 standard: defines floating-point numbers.
» A floating-point number with radix 2 and precision t, is a
number of the form x = m - 2¢ where
» m € Z (written with exactly t bits) is called its mantissa;
» e € Zis its exponent.
» In practice: one has to store the coefficients into
floating-point numbers.
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Approximation theory

The problem

» Computers: finite memory.

» IEEE-754 standard: defines floating-point numbers.
» A floating-point number with radix 2 and precision t, is a
number of the form x = m - 2¢ where
» m € Z (written with exactly t bits) is called its mantissa;
» e € Zis its exponent.
» In practice: one has to store the coefficients into
floating-point numbers.

» Naive method: compute the minimax with Remez’ algorithm
and a high precision. Then round each coefficient to the
nearest floating-point number.
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Polynomial approximation with floating-point numbers

Failure of the naive method

» Example with f(x) = log,(1 +27):

» on [0; 1]

> approximated by a degree 6 polynomial
» with single precision coefficients (24 bits).

Minimax

Naive method

Optimal

8.3-10710

119-10710

10.06 - 10~10
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Polynomial approximation with floating-point numbers

Failure of the naive method

» Example with f(x) = log,(1 +27):
» on [0; 1]
> approximated by a degree 6 polynomial
» with single precision coefficients (24 bits).

Minimax | Naive method Optimal
8.3-10710 11910710 10.06 - 10710

» The problem has been studied by
» W. Kahan;
» D. Kodek (precision t < 10, degree n < 20);
» N. Brisebarre, J.-M. Muller and A. Tisserand (using linear
programming).
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Polynomial approximation with floating-point numbers

Description of our method
Our goal: find p approximating f with the following form:

mo-2% 4+ my - 29X + -+ m, - 2% X" (m; € Z).
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Polynomial approximation with floating-point numbers

Description of our method
Our goal: find p approximating f with the following form:

mo-2% 4+ my - 29X + -+ m, - 2% X" (m; € Z).

» We use the idea of interpolation:
» we choose n+ 1 points xg, -+, X, in [a, b] ;
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Polynomial approximation with floating-point numbers

Description of our method
Our goal: find p approximating f with the following form:
m0-2eo+m1-2eIX+"'+mn'2e"Xn (m,-EZ).

» We use the idea of interpolation:
» we choose n+ 1 points xg, -+, X, in [a, b] ;
» we search myq, ---, m, such that for all

p(xi) = mg-2% 4+ mq - 2%%; + - - - + m, - 2% x{" =~ f(x;)
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Polynomial approximation with floating-point numbers

Description of our method
Our goal: find p approximating f with the following form:
m0-2eo+m1-2eIX+"'+mn'2e"Xn (m,-EZ).

» We use the idea of interpolation:
» we choose n+ 1 points xg, -+, X, in [a, b] ;
» we search myq, ---, m, such that for all
p(xi) = mo - 2% + my - 2% x; + - -+ my, - 2%7x7 >~ (x;)

» Rewritten with vectors:

€ € n

2% 2% - x§ f(x0)
€ €n n

2% 2% . x] f(x1)

mo . + s+ my . o~ .

€ €, n

2% 26 . x] f(xn)

— — — —
I of the form Zbg+Zby+---+Zb, t eRrt1

N. Brisebarre, S. Chevillard Efficient polynomial L~ -approximations



Lattices and LLL algorithm

Notions about lattices
— —
Let (b1, -+, bp) be a basis of a real vector space.
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:

F + + + + + +
+ + + + + + +
oy + + + + +

= + + + + +
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)

F + + +
+ + + +
& + +
= + +
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)
> Closest vector problem (CVP)
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Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)
» Closest vector problem (CVP)
LLL algorithm: Lenstra, Lenstra Jr. and Lovasz.

F + + + + + +

T
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)
» Closest vector problem (CVP)
LLL algorithm: finds pretty short vectors in polynomial time.

F + + + + + +

T
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Lattices and LLL algorithm

Notions about lattices
Algorithmic problems:
» Shortest vector problem (SVP)
» Closest vector problem (CVP)
LLL algorithm: used by Babai to solve an approximation of CVP.

F + + + + + +

T
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A concrete and toy case

A concrete and toy case

» We want to approximate f : x — log,(1 4 2(~))
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A concrete and toy case

A concrete and toy case

» We want to approximate f : x — log,(1 4 2(~))
» on [0, 1]
> by a polynomial of degree 6.
» Each coefficient is stored in a single-precision number (24 bits).
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A concrete and toy case

Datas

Best real | Naive method | Enhanced method
8.34e—10 119e—10 49.9¢—10

8e-10 [ B

6e-10 |- ul

4e-10

2e-10

-2e-10

-4e-10 H

-6e-10 -~ R

-8e-10 | 1 1 |
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A concrete and toy case

Datas

Best real | Naive method | Enhanced method
8.34e—10 119¢—10 49.9¢—10

-2e-09 —

-4e-09 4

-6e-09 - —

-8e-09 - —

-1e-08 - .l
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A concrete and toy case

Datas

Best real | Naive method | Enhanced method
8.34e—10 119e—10 49.9¢—10

» How to choose the points?

™ pal

B\
-2e-09 B
-4e-09
-6e-09 - B
-8e-09 [ —

-1e-08 - .l
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Datas

-2e-09

-4e-09

-6e-09

-8e-09

-le-08

A concrete and toy case

Best real

Naive method

Enhanced method

8.34e—10

119e—10

49.9e—10

» How to choose the points?

™ pal

\4
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» We need n+ 1 points.
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Datas

8e-10

6e-10 |-

4e-10

2e-10

-2e-10

-4e-10

-6e-10

-8e-10

>

A concrete and toy case

Best real

Naive method

Enhanced method

8.34e—10

119e—10

49.9e—10

How to choose the points?

. Brisebarre, S. Chevillard

0.8 1

» We need n+ 1 points.

» They should correspond to
the interpolation intuition.
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A concrete and toy case

Datas

Best real | Naive method | Enhanced method
8.34e—10 119e—10 49.9¢—10

» How to choose the points?

8e-10 [
6e-10 |-
4e-10
2e-10
0 \

» We need n+ 1 points.

» They should correspond to

// the interpolation intuition.

-2e-10

» Chebyshev's theorem gives
n+ 1 such points.

-4e-10 H

-6e-10 -~

-8e-10 I
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A concrete and toy case

Results with our method

Best real

Naive method

Enhanced method

Our method

8.34e—10

119e—10

49.9e¢—10

10.24e—10
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A concrete and toy case

Results with our method

Best real | Naive method | Enhanced method | Our method
8.34e—10 119e—10 49.9¢—10 10.24e—-10

1e-09 =

5e-10 - -

-5e-10

-le-09 & 1 1 1 1 =
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A concrete and toy case

Results with our method

Best real | Naive method | Enhanced method | Our method
8.34e—10 119¢—10 49.9¢—10 10.24e—10

1e-09 =

» Polynomial obtained
se10 |- ¥ in less than 1 second
(Pentium 11l 1.2GHz)
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A concrete and toy case

Results with our method

Best real | Naive method | Enhanced method | Our method
8.34e—10 119¢—10 49.9¢—10 10.24e—10

1e-09 =

» Polynomial obtained

se0 | N in less than 1 second
(Pentium 11l 1.2GHz)
0 » Degree 30 and

precision = 100
obtained in a few
seconds
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A concrete and toy case

Results with our method

Best real | Naive method | Enhanced method | Our method
8.34e—10 119¢—10 49.9¢—10 10.24e—10

1e-09 =

» Polynomial obtained

se0 | N in less than 1 second
(Pentium 11l 1.2GHz)
0 » Degree 30 and

precision = 100
obtained in a few
seconds

» Used in CR1ibm
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Conclusion

Conclusion

» We have developed an algorithm to find very good polynomial
approximants with floating-point coefficients.
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Conclusion

Conclusion

» We have developed an algorithm to find very good polynomial
approximants with floating-point coefficients.

» The algorithm is a heuristic, but works well in practice.

» The algorithm is flexible:
» each coefficient may use a different floating-point format;
» one may search polynomial with additional constraints: fix the
value of some coefficients, search for an even polynomial;
» one may optimize the relative error
p(x) = f(x)

O

instead of the absolute error.
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Conclusion

Focus on polynomial approximation

» The definition often gives a natural way to find a polynomial
approximation of f.
— for instance: a truncated power series with a formally
computed bound on the error.
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Conclusion

Focus on polynomial approximation

» The definition often gives a natural way to find a polynomial
approximation of f.
— for instance: a truncated power series with a formally
computed bound on the error.

» Truncated power series are useful but. ..
... usually inefficient in term of number of operations.

» Example: exp(x) on [—1;2] with an absolute error < 0.01:

> the series must be truncated to a degree 7 polynomial,
> a degree 4 polynomial is sufficient.
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Conclusion

Chebyshev's theorem

Theorem (Chebyshev)

Let f be a continuous function on [a, b]. Let
= inf{||f — plloo}per,x]- Then, p satisfies ||f — p||., =y if and
only if there exist n + 2 points

X < x1 < - < Xpy1

in [a, b] such that
1. Vie [[07 n+ 1]]7 ’f(x,) - ,D(X,')| = Hf_ p”oo
2. For all i € [0, n], the signs of f(x;+1) — p(xi+1) and
f(xi) — p(x;) are different.
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