
Design of the ARM VFP-11

Divide and Square Root

Synthesisable Macrocell

Neil Burgess

School of Engineering

Cardiff University

WALES, UK

Chris Hinds

ARM Design Center

Cambridge

UK

Key points

• New high-performance radix-4 SRT

square root (& divide) architecture

– There’s still life in the ol’ SRT yet...!

• Evaluation of Logical Effort

– vs Static Timing Analysis of synthesised logic

• Further Work…

ARM VFP-11

• VFP-11 is an implementation of the ARM

Vector Floating-Point Architecture

• Optimised for 3D graphics (vector) processing

– Divide & square root operations important

• VFP-11 is a synthesisable macrocell

• Co-processor for a high clock rate core

– target logic depth of 15 CMOS logic stages

N-R or SRT ?

• VFP-11 multiplications:
– Launch new FMAC operation every clock cycle…

– … but takes 8 cycles to return result
(9 cycles for double-precision)

• N-R on an FMAC with an n-cycle pipeline
takes 3n+4 cycles (single-precision division)
– (Schmookler et al – ARITH-14, 1999)

• Not good enough performance to compensate
for locking up multiplier during div/root ops
– (or compromise its performance by adding “flexibility”)

SRT it is then !

• Existing VFP implementation used radix-4

SRT with carry-propagate adder to update

remainder

– Based on Fandrianto’s work (late 80’s)

• Design decision was to stay with radix-4

SRT & find means of acceleration to

achieve required clock frequency

Statement of Problem

• Want to achieve single-cycle radix-4 SRT
iteration in 15 logic stages (“LS”)
– Logic stage ≠ logic gate (e.g. XOR gate has 2 LS)

• Critical path of SRT recurrence comprises:
– Derive new result digit, qi+1

• Compare top few bits of remainder, Ri, with “constants”, Mk

– Update remainder by adding multiple of qi+1, Fk

– Update root estimate (sort of concatenate qi+1)

• Diagram on next slide…

“Classic” SRT hardware – 1/2

• Critical path from
Ri to Ri+1:
– short CPA (6 LS)

– qi+1 LUT (6 LS)

– qi+1⋅Fk mux (2 LS)

– 3:2 adder (4 LS)

• 22 LS, allowing
2 LS / buffer

• 45% too s-l-o-w

Fk mults

Ri

Ri+1

qi+1 LUT

DQi

buf

redundant

format

carry-propagate

adder (short)

Qi+1 logic

r−(i+1)

carry-save adder
Qi+1

÷ / √

qi+1⋅Fk muxbuf

Select

Mk’s

buf

“Classic” SRT hardware – 2/2

• Parallelisation of

CPA/qi+1 logic &

Fk generation

• Merging CPA &

qi+1 comparisons

saves 2 LS

– Still 33% too slow

Fk mults

Ri

Ri+1

qi+1 logic

DQi

buf

redundant

format

carry-propagate

adder (short)

Qi+1 logic

r−(i+1)

carry-save adder
Qi+1

÷ / √

qi+1⋅Fk muxbuf

Select

Mk’s

buf

What we did
• Kept msb’s of Ri

non-redundant
– no short CPA

• 5-way Ri+1

speculation
– CSA → MUX

• Used Qi+1
+/− to

generate Fk

multiples

Fk logic

Ri[lsbs]

qi+1

Ri+1[lsbs]

M2

1-hot qi+1 logic

Qi+1
+ & Qni+1

−

Qi
+ & Qni

−D

buf

redundant format

8

cmp cmp

M1 M0 M-1

ck=sgn(trunc(Ri)–Mk) Q*i+1
+/− logic

5:1 muxes

r−(i+1)Ri[msbs]

5:1 muxes

5 54-bit R*i+1 adders

(8 msb’s assimilated)

Ri+1[msbs]

buf

5

R*i+1 = Ri – Fk

÷ / √
cmp cmp

buf

Ri+1 speculative update

• Critical path through Full Adders at lsb end

Ri[3]

Fk[3]

Ri+1[1] Ri+1[0] Ri+1[-1] Ri+1[-2] Ri+1[-3]

Discard these

bits

54-bit 5:1 multiplexer (only 1 data input shown)

8-bit carry-propagate subtracter (1 of 5)

Ri+1[-4]

(not

implemented)

HA HA HA HA HA HA HA HA FA FA FA

Ri[2]

Fk[2]

Ri[1]

Fk[1]

Ri[0]

Fk[0]

Ri[-1]

Fk[-1]

Ri[-2]

Fk[-2]

Ri[-3]

Fk[-3]

Ri[-4]

Fk[-4]

Ri[-5]

Fk[-5]

Ri[-6]

Fk[-6]

Ri[-7]

Fk[-7]

FA

Ri[-8]

Fk[-8]

redundant

format

Fk⋅qi update

• Used “on-the-fly” algorithm
– Qi

+ & Qni
− are root estimates, where Qni

− denotes !Qi
−, but

without the trailing 1’s

• Square root Fk multiples derived as:
– qi = 0: Fk⋅qi = 0

– qi = 1: −Fk⋅qi = !(2Qi
+ ∨ 4−i)

– qi = 2: −Fk⋅qi = !(4Qi
+ ∨ 4−(i-1))

– qi = -1: −Fk⋅qi = !(2(Qni
−) ∨ 4−i)

– qi = -2: −Fk⋅qi = !(4(Qni
−) ∨ 4−(i-1))

Did it accelerate the macrocell?

• Synthesised Macrocell critical path had 18 cells

(inc. flop) on Mk comparators path

– # CMOS logic stages = 22, exc. flop

• 12 were inverters (some inside bufs)

• Synthesised macrocell logic delay = 23.4 FO4

– In 180nm CMOS:

• Average inverter cell delay ≈ 0.85 FO4 (synthesis tool characteristic)

– invs lightly loaded; invs in bufs have rfo < 4

• Average non-inverter cell delay ≈ 1.3 FO4

Evaluation / Comparison

• Proposed design met specification well

enough to be accepted

• Curious as to how good our design was

compared to published literature

• Used Logical Effort to assess design and

provide comparison

Logical Effort Method

• Calculate fan-out loads along critical paths (g⋅b)
– Use unsized gate caps (relative to NOT) & estimate wire caps

• Derive number of CMOS gates needed (N) to

achieve relative fan-out (α) ≈ 4 along critical path
– N = rnd(log4(Πg⋅b)); α = (Πg⋅b)1/N

– gives number of extra inverters needed & value of α for given N

• Calculate delay as D = (Nα + P)/5 in FO4 delays
– P denotes delay due to internal (output) capacitance of cell

Why Logical Effort?

• Transparent and repeatable analysis

– cf “we synthesised this design using X’s cell library in Yµm

CMOS on Z’s EDA tools (& process corner is a secret)”

• Analysed Knowles’ “Family of Adders” &

obtained close match to presented delays

– Consistently ≈6% optimistic w.r.t. Knowles’ results [Bur05]

• Good for comparisons of rival designs

• Can use Excel!

Why Not Logical Effort?

• Too simple a model of CMOS circuit operation
– Implicitly assumes infinite range of cell sizes

– Doesn’t model edge slew effects

– P parameter is “dodgy”

– Not great at modelling wiring load

→ Consistently optimistic results relative to tools

• Not as accurate in absolute terms as Static
Timing Analysis (certainly not SPICE!)

• Cannot handle special circuits very well

Critical paths in macrocell
• Path 1:

Ri[msbs] → cmp

→ qi+1 logic

→ 5:1 muxes

D = 15.6 FO4

• Path 2:
Qi

+/− → Fk

→ 8-bit adder

→ mux

D = 16.0 FO4

Fk logic

Ri[lsbs]

qi+1

Ri+1[lsbs]

M2

1-hot qi+1 logic

Qi+1
+ & Qni+1

−

Qi
+ & Qni

−D

buf

redundant format

8

cmp cmp

M1 M0 M-1

ck=sgn(trunc(Ri)–Mk) Q*i+1
+/− logic

5:1 muxes

r−(i+1)Ri[msbs]

5:1 muxes

5 54-bit R*i+1 adders

(8 msb’s assimilated)

Ri+1[msbs]

buf

5

R*i+1 = Ri – Fk

÷ / √
cmp cmp

buf

Logical Effort vs Synthesis

LogEff Synth Error

Path 1 15.6 FO4 23.4 FO4 50.0%

Path 2 16.0 FO4 22.4 FO4 40.0%

– Logical Effort models “perfect” full custom design;

Synth’d logic decidedly slower than custom design

– Is Logical Effort actually any good?!

Evaluation of Logical Effort

• LogEff: Path 1 is 2.6% faster than Path 2

• Synth: Path 1 was 4.5% slower than Path 2

• LogEff: N = 12 (Path 1) or 13 (Path 2)

• Synth: N = 22 (both paths)
– Lots of extra inverters relative to Logical Effort

– Underestimate of wire cap in Logical Effort analysis?

– Relatively poor cell placement by synthesis tool?

Comparison – 1/3

• 1999 paper by Nannarelli & Lang

• Low-power design
– retiming of SRT recurrence so that iteration

ends with qi+1 selection

– Flops: disabled / minimised quantity

– dual-voltage operation

• Critical path: qi → FGEN → CSA
→ cmp → qi+1

• Reported synthd delay of 28.7
FO4
– assuming 1 FO4 in 0.6um CMOS = 216ps

FGEN

Ri

qi+1

M2

QiD

redundant

format

M1 M0 M-

1

CSA

cmp cmp cmp cmp

8-bit adder

DSMUX

SEL

qi+1 logic

Comparison – 2/3

• Logical Effort analysis
gave 24.7 FO4 logic depth

• Reviewer said 8-bit adder
& 6-bit cmp were merged,
saving ≈ 4.0 FO4 delay
– 1 XOR instead of 8-b prefix tree

(4 cells)

• 28.7 vs 20.7 → 38% error
– Consistent with earlier analyses

FGEN

Ri

qi+1

M2

QiD

redundant

format

M1 M0
M-1

CSA

cmp cmp cmp cmp

8-bit adder

DSMUX

SEL

qi+1 logic

Comparison – 3/3

• ARM VFP-11 macrocell is faster

– 23.4 FO4 logic depth (vs 28.7 FO4)

– Macrocell was not critical path in VFP (phew!)

– Single-precision result in 15 cycles; double in 29

• ARM VFP-11 macrocell is larger

– 4.5× larger than low-power unit

– Large area due to 5-way speculation of remainders

SRT division retiming

• Ri+1 msb’s only
speculated
– Saves area

• Can delay lsb’s update
to following cycle

• Nannarelli: “Retiming
causes a problem for
square root”

Ri

Ri+1

D

carry-save adder

Ri+1 mux
qi+1

Ri+qi⋅D

qi⋅D mults

qi⋅D mux

qi⋅D mults

msb’s lsb’s

pipeline

Ri+1

Ri D

Square root problem

• Ri+1 update depends on qi+1 and msb’s of Qi

– Qi also depends on qi+1

• qi+1 selection depends on msb’s of Ri

• Have to calculate Qi from qi+1 from Ri

before updating Ri+1

– After first few cycles, msb’s of Qi don’t change and

lose dependency between Ri+1 and Qi

Future possibilities?

• Big area reduction possible from retiming, but
requires msb’s of Fk (i.e. Qi) to be constant

• Could predict msb’s of Qi from radicand
– Does recurrence still work??

• Do radix-2 iterations (i.e. take 2 cycles per
iteration Ri → Qi → Ri → Qi etc) until enough
msb’s of Ri available to ensure msb’s of Qi are
constant between iterations

Summary

• Described design of new high-speed SRT
radix-4 combined divide/square root unit
– Fast enough & faster than rival publications, but

rather large

– Patent now published, so able to present this work

• Motivated use of Logical Effort
– Good for comparisons; not a replacement for TA

– Transparent & repeatable analysis

