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Key points

• New high-performance radix-4 SRT 

square root (& divide) architecture

– There’s still life in the ol’ SRT yet...!

• Evaluation of Logical Effort

– vs Static Timing Analysis of synthesised logic

• Further Work…



ARM VFP-11

• VFP-11 is an implementation of the ARM 

Vector Floating-Point Architecture

• Optimised for 3D graphics (vector) processing

– Divide & square root operations important

• VFP-11 is a synthesisable macrocell

• Co-processor for a high clock rate core

– target logic depth of 15 CMOS logic stages



N-R or SRT ?

• VFP-11 multiplications:
– Launch new FMAC operation every clock cycle…

– … but takes 8 cycles to return result
(9 cycles for double-precision)

• N-R on an FMAC with an n-cycle pipeline 
takes 3n+4 cycles (single-precision division)
– (Schmookler et al – ARITH-14, 1999)

• Not good enough performance to compensate 
for locking up multiplier during div/root ops
– (or compromise its performance by adding “flexibility”)



SRT it is then !

• Existing VFP implementation used radix-4 

SRT with carry-propagate adder to update 

remainder

– Based on Fandrianto’s work (late 80’s)

• Design decision was to stay with radix-4 

SRT & find means of acceleration to 

achieve required clock frequency 



Statement of Problem

• Want to achieve single-cycle radix-4 SRT 
iteration in 15 logic stages (“LS”)
– Logic stage ≠ logic gate (e.g. XOR gate has 2 LS)

• Critical path of SRT recurrence comprises:
– Derive new result digit, qi+1

• Compare top few bits of remainder, Ri, with “constants”, Mk

– Update remainder by adding multiple of qi+1, Fk

– Update root estimate (sort of concatenate qi+1)

• Diagram on next slide…



“Classic” SRT hardware – 1/2

• Critical path from 
Ri to Ri+1:
– short CPA (6 LS)

– qi+1 LUT (6 LS)

– qi+1⋅Fk mux (2 LS)

– 3:2 adder (4 LS)

• 22 LS, allowing     
2 LS / buffer 

• 45% too s-l-o-w

Fk mults

Ri

Ri+1

qi+1 LUT

DQi

buf

redundant 

format

carry-propagate 

adder (short)

Qi+1 logic

r−(i+1)

carry-save adder
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÷ / √
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“Classic” SRT hardware – 2/2

• Parallelisation of 

CPA/qi+1 logic & 

Fk generation

• Merging CPA & 

qi+1 comparisons 

saves 2 LS 

– Still 33% too slow

Fk mults

Ri

Ri+1

qi+1 logic

DQi

buf

redundant 

format

carry-propagate 

adder (short)

Qi+1 logic

r−(i+1)
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÷ / √
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Mk’s
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What we did
• Kept msb’s of Ri

non-redundant
– no short CPA

• 5-way Ri+1

speculation
– CSA → MUX

• Used Qi+1
+/− to 

generate Fk

multiples

Fk logic

Ri[lsbs]

qi+1

Ri+1[lsbs]

M2

1-hot qi+1 logic

Qi+1
+ & Qni+1

−

Qi
+ & Qni

−D

buf

redundant format

8

cmp cmp

M1 M0 M-1

ck=sgn(trunc(Ri)–Mk) Q*i+1
+/− logic

5:1 muxes

r−(i+1)Ri[msbs]

5:1 muxes

5 54-bit R*i+1 adders

(8 msb’s assimilated)

Ri+1[msbs]

buf

5

R*i+1 = Ri – Fk

÷ / √
cmp cmp

buf



Ri+1 speculative update

• Critical path through Full Adders at lsb end

Ri[3]

Fk[3]

Ri+1[1] Ri+1[0] Ri+1[-1] Ri+1[-2] Ri+1[-3]

Discard these 

bits

54-bit 5:1 multiplexer (only 1 data input shown)

8-bit carry-propagate subtracter (1 of 5)

Ri+1[-4]

(not 

implemented)
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Ri[-2]

Fk[-2]

Ri[-3]

Fk[-3]

Ri[-4]

Fk[-4]

Ri[-5]

Fk[-5]

Ri[-6]

Fk[-6]
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Fk[-7]
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Fk⋅qi update

• Used “on-the-fly” algorithm
– Qi

+ & Qni
− are root estimates, where Qni

− denotes !Qi
−, but 

without the trailing 1’s

• Square root Fk multiples derived as:
– qi = 0: Fk⋅qi = 0

– qi = 1: −Fk⋅qi = !(2Qi
+ ∨ 4−i)

– qi = 2: −Fk⋅qi = !(4Qi
+ ∨ 4−(i-1))

– qi = -1: −Fk⋅qi = !(2(Qni
−) ∨ 4−i)

– qi = -2: −Fk⋅qi = !(4(Qni
−) ∨ 4−(i-1))



Did it accelerate the macrocell?

• Synthesised Macrocell critical path had 18 cells 

(inc. flop) on Mk comparators path

– # CMOS logic stages = 22, exc. flop

• 12 were inverters (some inside bufs)

• Synthesised macrocell logic delay = 23.4 FO4 

– In 180nm CMOS:

• Average inverter cell delay ≈ 0.85 FO4 (synthesis tool characteristic)

– invs lightly loaded; invs in bufs have rfo < 4 

• Average non-inverter cell delay ≈ 1.3 FO4



Evaluation / Comparison

• Proposed design met specification well 

enough to be accepted

• Curious as to how good our design was 

compared to published literature

• Used Logical Effort to assess design and 

provide comparison



Logical Effort Method

• Calculate fan-out loads along critical paths (g⋅b)
– Use unsized gate caps (relative to NOT) & estimate wire caps

• Derive number of CMOS gates needed (N) to 

achieve relative fan-out (α) ≈ 4  along critical path
– N = rnd(log4(Πg⋅b)); α = (Πg⋅b)1/N

– gives number of extra inverters needed & value of α for given N

• Calculate delay as D = (Nα + P)/5 in FO4 delays
– P denotes delay due to internal (output) capacitance of cell



Why Logical Effort?

• Transparent and repeatable analysis

– cf “we synthesised this design using X’s cell library in Yµm

CMOS on Z’s EDA tools (& process corner is a secret)”

• Analysed Knowles’ “Family of Adders” & 

obtained close match to presented delays

– Consistently ≈6% optimistic w.r.t. Knowles’ results [Bur05]

• Good for comparisons of rival designs

• Can use Excel! 



Why Not Logical Effort?

• Too simple a model of CMOS circuit operation
– Implicitly assumes infinite range of cell sizes

– Doesn’t model edge slew effects 

– P parameter is “dodgy”

– Not great at modelling wiring load

→ Consistently optimistic results relative to tools

• Not as accurate in absolute terms as Static 
Timing Analysis (certainly not SPICE!)

• Cannot handle special circuits very well



Critical paths in macrocell
• Path 1:

Ri[msbs] → cmp

→ qi+1 logic 

→ 5:1 muxes

D = 15.6 FO4

• Path 2:
Qi

+/− → Fk

→ 8-bit adder 

→ mux

D = 16.0 FO4

Fk logic

Ri[lsbs]

qi+1

Ri+1[lsbs]

M2

1-hot qi+1 logic

Qi+1
+ & Qni+1

−

Qi
+ & Qni

−D

buf

redundant format

8

cmp cmp

M1 M0 M-1

ck=sgn(trunc(Ri)–Mk) Q*i+1
+/− logic

5:1 muxes

r−(i+1)Ri[msbs]

5:1 muxes

5 54-bit R*i+1 adders

(8 msb’s assimilated)

Ri+1[msbs]

buf

5

R*i+1 = Ri – Fk

÷ / √
cmp cmp

buf



Logical Effort vs Synthesis

LogEff Synth Error

Path 1   15.6 FO4 23.4 FO4     50.0%

Path 2 16.0 FO4 22.4 FO4 40.0%

– Logical Effort models “perfect” full custom design; 

Synth’d logic decidedly slower than custom design

– Is Logical Effort actually any good?!



Evaluation of Logical Effort

• LogEff: Path 1 is 2.6% faster than Path 2

• Synth: Path 1 was 4.5% slower than Path 2

• LogEff: N = 12 (Path 1) or 13 (Path 2) 

• Synth: N = 22 (both paths)
– Lots of extra inverters relative to Logical Effort

– Underestimate of wire cap in Logical Effort analysis?

– Relatively poor cell placement by synthesis tool?



Comparison – 1/3

• 1999 paper by Nannarelli & Lang

• Low-power design
– retiming of SRT recurrence so that iteration 

ends with qi+1 selection

– Flops: disabled / minimised quantity

– dual-voltage operation

• Critical path: qi → FGEN → CSA 
→ cmp → qi+1

• Reported synthd delay of 28.7 
FO4 
– assuming 1 FO4 in 0.6um CMOS = 216ps

FGEN

Ri

qi+1

M2

QiD

redundant 

format

M1 M0 M-

1

CSA

cmp cmp cmp cmp

8-bit adder

DSMUX

SEL

qi+1 logic



Comparison – 2/3

• Logical Effort analysis 
gave 24.7 FO4 logic depth

• Reviewer said 8-bit adder 
& 6-bit cmp were merged, 
saving ≈ 4.0 FO4 delay
– 1 XOR instead of 8-b prefix tree 

(4 cells)

• 28.7 vs 20.7 → 38% error
– Consistent with earlier analyses

FGEN

Ri

qi+1

M2

QiD

redundant 

format

M1 M0
M-1

CSA

cmp cmp cmp cmp

8-bit adder

DSMUX

SEL

qi+1 logic



Comparison – 3/3

• ARM VFP-11 macrocell is faster

– 23.4 FO4 logic depth (vs 28.7 FO4)

– Macrocell was not critical path in VFP (phew!)

– Single-precision result in 15 cycles; double in 29  

• ARM VFP-11 macrocell is larger

– 4.5× larger than low-power unit

– Large area due to 5-way speculation of remainders



SRT division retiming

• Ri+1 msb’s only
speculated
– Saves area

• Can delay lsb’s update 
to following cycle

• Nannarelli: “Retiming 
causes a problem for 
square root”

Ri

Ri+1

D

carry-save adder

Ri+1 mux
qi+1

Ri+qi⋅D

qi⋅D mults

qi⋅D mux

qi⋅D mults

msb’s lsb’s

pipeline

Ri+1

Ri D



Square root problem

• Ri+1 update depends on qi+1 and msb’s of Qi

– Qi also depends on qi+1

• qi+1 selection depends on msb’s of Ri

• Have to calculate Qi from qi+1 from Ri

before updating Ri+1

– After first few cycles, msb’s of Qi don’t change and 

lose dependency between Ri+1 and Qi



Future possibilities?

• Big area reduction possible from retiming, but 
requires msb’s of Fk (i.e. Qi) to be constant

• Could predict msb’s of Qi from radicand
– Does recurrence still work??

• Do radix-2 iterations (i.e. take 2 cycles per 
iteration Ri → Qi → Ri → Qi etc) until enough 
msb’s of Ri available to ensure msb’s of Qi are 
constant between iterations 



Summary

• Described design of new high-speed SRT 
radix-4 combined divide/square root unit
– Fast enough & faster than rival publications, but 

rather large

– Patent now published, so able to present this work

• Motivated use of Logical Effort
– Good for comparisons; not a replacement for TA

– Transparent & repeatable analysis


