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The IEEE P754 floating-point standard

— Three DFP formats: 34-digit decimal128 format,
16-digit decimal64 format (this paper), and 7-
digit decimal32 format

Decimal floating-point software is slow

Decreasing transistor costs



* Previous designs

— Focus on fixed-point addition and subtraction
* For example, [Adiletta89], [Schmookler71]

— [Thompson04] presents the first IEEE P754
compliant DFP adder

 We propose an DFP multifunction unit that
— Supports eight DFP operations

 add, sub, quantize, sameQuantum, roundTolntegral,
minNum, maxNum, and compare

— Optimizes significand alignment
— Applies decimal injection-based rounding
— Uses a decimal flag-tracing mechanism
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Decimal operands are not
normalized

Exponents (EA and EB) and
Lengths of Leading Zero (LA and
LB)
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Eg.LA=5,EA-EB=9
P digits
A=CAX 10EA= | a4...3,00000 J X 105A5
+—>
LA GRS
B=CB X 10E8B = 0......... 0 |b,bylbsby| | X 10EB+4
—>
LB

Result X 10EB+4

NO
LA, < [EAEB

Left Shift CA, by LA,

Y

Right Shift CB, by
min([EA-EBJ-LA, 19)

Left Shift CA by
(LA,-EA-EB))




» Effective operation = SA®SB®OP

» Place operands based on effective
operations simplifies result shifting

* Inject value into the digit positions, R and
S, based on rounding modes replaces
rounding by truncation.

LGRS
Effective add A O] 0000 XXXX XXXX XX IxIx]5]0]

roundTiesToAway g 9] 0000 XXXX XXXX XX |x|x|/5|1|

result 0 | ’|0|1|




* Injection value

Sign;,, Rounding Mode '"jeC::"S‘)’a'ue

X TowardZero (0, 0)
X TieToAway (5, 0)
X TieToZero (4, 9)
X TieToEven (5, 0)

b (0,0)
M - 9.9)

b (9, 9)
M - (0,0)
X AwayZero (9, 9)

« QOperands are corrected to generate correct carry-out

(CA",) +6 IfEOP = add (CB',). IfEOP = add
(CAB )i = . (CB3 )i = ; :
(CA',) Otherwise (cB',), Otherwise



« Kogge-Stone
parallel prefix
network

« Two sets of flags

— Flag F, handles
the digit
iIncrement in the
post-correction
stage.

— Flag F, handles
the carry
propagation from
the injection
correction value.
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 Compensate the result from the K-S network

» Rule 1: effective operation is ADD
— Subtract 6 from digit i for which (C,).,,1s O

* Rule 2: effective operation is SUB

— If the result is positive

* Increment the result using F,

« Subtract 6 from digit i for which (C,).,, @ (F),
— If the result is negative

* |nvert all bits of the result
 Subtract 6 from digit i for which (C,),,4 = 1

0
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» Most significant digit is zero
— No action is needed

* Most significant digit is non-zero
— Requires an injection correction step

. P = 16 digits R
) LGRS
Effective add A (0] | | 45/0]
TieToEven B [0] ] J [ ]
Pgigitiiranesult [0 4

Real result

Right shift 1 digit

Exponent increment y



Injection correction value for different rounding modes

Injection Correction Value

Sign;,, Rounding Mode (G.R, S)
X TowardZero (0,0, 0)

X TieToAway (4, 5, 0)

X TieToZero (4, 5, 0)

X TieToEven (4, 5, 0)

- +00 (0, 0, 0)

+ -c0 (9,0, 0)

- +00 (9,0, 0)

+ =00 (0,0, 0)
AwayZero (9, 0, 0)

Injection correction value may trigger carry propagation

Flag F, eliminates carry propagation
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Thompson’s Design

This Design

Supported DFP
Operations

2: add, subtract

8: add, subtract, minNum,
maxNum, compare, quantize,
sameQuantum, roundTolntegral

Internal format

Excess-3 encoding

BCD encoding

Operand
Alignment

Exponent computation and
LZD in series

Exponent computation and LZD in
parallel

Carry-propagate
network

Kogge-Stone with flag
tracing for post-correction

Two extra flags for rounding

Rounding Random logic and decimal | Injection-based rounding with
incrementer. correction.

Overflow After result is rounded Before the result is rounded

Detection
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* TolntegralValue(A)
— Round A to an integer value
» TolntegralValue(13545 x 10-3) = 14 with round-ties-to-even
— Design strategy
« Set CB, and EB, to zero
« Enable right shift even if CB,=0
» Set effective operation to ADD

« Quantize (A, B)
— Change EAto EB
* Quantize(12345 x 104, 1 x 10-2) = 123 x 102 with round-down

— Design strategy
« Set CB, to zero
« Enable right shift even if CB,=0
» Set effective operation to ADD
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SameQuantum(A, B)
— Check if EA=EB

— Generate an extra flag in the operand alignment
stage

minNum, maxNum, and compare use the
original datapath
Many changes are made to exception flag logic

A post-processing unit is added to handle
special operands such as infinity and Not-a-
Number
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* Modeled using RTL Verilog and simulated
using Modelsim

* Synthesized using LS| Logic’s 0.11um
Standard Cell Library and Synopsys
Design Compiler

» Tested using a comprehensive testbench
generator and the decNumber library 3.32
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« Combinational circuit designs

Metric Thompson’s adder Injection-based adder | Improvement
Delay (comb.) 3.50 ns, 63.6 FO4 2.76 ns, 50.2 FO4 21.0%
Area 22443 NAND eq. gates | 22086 NAND eq. gates | 1.6%

Table 1. Improvement over Thompson’s Design
Metric Injection-based adder Multifunction Unit Overhead
Delay 2.76 ns, 50.2 FO4 2.84ns, 51.6 FO4 2.8%
Area 22086 NAND eq. gates | 24233 NAND eq. gates | 9.7%

Table 2. Overhead of the Multifunction Unit Compared to the Injection-based Adder
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« Synthesized using the pipeline_design
command from the Synopsys Design Compiler
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A 16-digit DFP adder and multifunction unit
compliant with the IEEE P754 standard
* Novel features:

— Delay optimization in the operand alignment,
rounding, and overflow detection units

— A modified injection-based rounding method
— Extensions to support multiple DFP operations
 Design analysis

—  21% delay improvement over Thompson'’s
design

— 2.8% delay overhead for DFP multifunction unit
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Questions?

21



e More on Forward Conversion

* More on Operand Alignment

* More on Post-correction

* More on Carry Propagation Network

 More on Overflow Detection

 More on Sign and Backward Conversion
 More on Extension to Support More DFP Operations
 More on Area Comparison
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decimal6d width <2ty (w+5) bits = 13 bits > g ZL0IDiS=50

=3J digits=15
Sign Combination Trailing Significand
S G T

operand
Field

« Extract sign bits, biased exponents, and
significands from operands in the IEEE format

— Combination field G contains the classification of a number,
the encoding information, the most significant digit of
significand and a biased exponent.

— Trailing significand field T encodes a significand using
Densely Packed Decimal (DPD) encoding. DPD encoding
represents three digits using ten bits.

« Convert significands in DPD encoding to the BCD
encoding

« (Generate flag signals for special operands
(signaling NaN, quiet NaN, zero, and infinity)

23



» QOperands are shifted
using one 16-digit left-
shift and one 18-digit
right-shift decimal barrel
shifters.

« Guard and round digits,
and sticky bit are
generated. CB becomes
a 18-digit operand with a
sticky bit.

* Operands are placed
based on the effective
operation flag to simplify
the rounding.

19 digits

CA,[63:0]

CA', [0

Addition OR{CB4[3:0], sticky}

CB,[71:4], 18 digits

CA',

Subtraction sticky
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e Add:

— At Pre-correction: A, + B, + 6
— Ifdigit carry is 0, A, + B, + C,_,< 10, subtract 6 from
Sum.
» Sub:
— Expect: A + (10...0 - B)
— At Pre-correction: A+ (9...9-B) +6...6

— If carry out of MSD is 1,

» Result is positive. Add the late carry-in from the LSD.

« If the digit sum after incrementing the late carry-in is less
than 10 (A + (9-B) + 6 + C < 10), subtract 6 from Sum
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— Else

* Result is negative. Invert Sum. Sum, =15 - (A +15-B, + C,_
)= B —A-C,
* IfB—(A +C4) <0
— Need to borrow from the next digit

— 25>=15-[B,- (A, + C_,)]>=16=>9>=Sum>=0. This generates a
carry to the next digit.

— After inverting, F>=Sum,>=6. Need to subtract 6
* Else,
— No borrow from the next digit
— 15>=15-[B,— (A, + C.,)]>6, No carry is generated
— After inverting, 9>=Sum.,>=0. No subtraction is needed.
— E.g135-424 =135 + bdb = d10 with 011 as borrow
signals. After inversion, d10=>2ef. Subtract by six on
two LSDs, 2ef=»289
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Use Kogge-Stone parallel prefix network
Three sets of flags in addition to the carry bits are generated.

Flag F, handles the digit increment in the post-correction stage to

increment results and is generated from the propagate bits.
(P )i = (Px—l)i N (Px—l)i—zx where x=4...0

X

F = (P4 )i

Flags F, traces the trailing nine of the result before the post-

correction stage.
1=19..4

(flagADDy ). (UCR =15)v ((UCR), 59) (C):.s)
UCR =15)a(P; =0)v ((UCR), =14)A(P; =1)
(UcRr), _15)| 19..5
(flagADD, ). (flagADDX 1); A(flagADDy_1 ). ,x1  where X = 1~4
(flagSUB, )I (flagSUBy_1 ). A(flagSUBy_1 )i _,x-1
{flagADD4 EOP = ADD
Fp = 28
flagsUB, EOP = SUB

(flagSUBy ). =



* |Injection-based rounding simplifies the
overflow detection

— The result is overflow before rounding (carry-
out is generated from the most significant digit
of the result)

* Not influenced by the injection correction value

— The result is overflow after rounding
« Handle by the injected value

— Overflow detection can examine the result
before the rounding unit
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 Sign bit is determined by the signs of
operands, the rounding mode, and if either
of the operands is normal numbers.
— Sign = ('IEOP n SignA) U (EOP n ((EA>EB) @

SignA @ carryout)

« Backward conversion combines the sign
bit, the exponent, and the significand to
form the P754 compliant result.
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Quantize (A, B)

— Change the unit of A to EB

— Set CB to zero

— Enable right shift even if CB=0

— Set effective operation to ADD to avoid wrong rounding operations
SameQuantum(A, B)

— Check if EA=EB

— Generate an extra flag in the operand alignment stage.
MinNum, MaxNum, and Compare

— Set the operator to SUB and observe the sign
TolntegralValue(A)

— Round A to an integer value

— Set CB and EB to zero

— Enable right shift even if CB=0

— Set effective operation to ADD to avoid wrong rounding operations
Many changes to the conditions of exception flags are added. The post-

processing unit is added to handle special operands such as infinity and
Not-a-Number.
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decNumber library using the SimpleScalar simulator with PISA
architecture

DFP Hardware Improvement
Operations Software Fast | Slow | Fast Slow
ADD 499.4 124.9 83.2
SUB 496.2 4 6 124 .1 82.7
Quantize 265.4 66.4 44 .2
SameQuantum 89.4 1 1 89.4 89.4
TolntegralValue 364.6 91.2 60.8
MaxNum 405.4 101.4 67.6
MinNum 643.1 ) ° 160.8 107.2
Compare 282.8 70.7 47 .1

33



* Intel’s BID library and EM64t Xeon 5100 3.0GHz
« Results taken from their paper

DFP Software Hardware Improvement
Operations Fast | Slow | Fast | Slow Max Min
ADD 71 133 33.3 11.8
SUB 71 133 4 6 33.3 11.8
Quantize 27 45 11.3 4.5
TolntegralValue 27 45 11.3 4.5
MaxNum* 75 113 4 6 28.3 12.5
MinNum* 69 108 27 11.5
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« Other DFP operations that can reuse our
DFP adders include:

— nextUp
— nextDown

« Other DFP operations that can use our
DFP with little extra gate

— ABS
— Negate
— copysSign
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