M adison Embedded Systems & Architectures L_aboratory

scorsi (MESA)

Decimal Floating-Point Adder and
Multifunction Unit with Injection-Based
Rounding

Liang-Kai Wang and Michael J. Schulte

University of Wisconsin-Madison
ARITH-18, Montpellier, France

This research is supported by the UW-Madision Graduate 1
School and IBM

 Motivation

 Related Research

* Algorithm for Decimal Floating-Point (DFP)
Adder and Multifunction Unit

 Hardware Design
« Experimental Results and Analysis
« Conclusions

The IEEE P754 floating-point standard

— Three DFP formats: 34-digit decimal128 format,
16-digit decimal64 format (this paper), and 7-
digit decimal32 format

Decimal floating-point software is slow

Decreasing transistor costs

* Previous designs

— Focus on fixed-point addition and subtraction
* For example, [Adiletta89], [Schmookler71]

— [Thompson04] presents the first IEEE P754
compliant DFP adder

 We propose an DFP multifunction unit that
— Supports eight DFP operations

 add, sub, quantize, sameQuantum, roundTolntegral,
minNum, maxNum, and compare

— Optimizes significand alignment
— Applies decimal injection-based rounding
— Uses a decimal flag-tracing mechanism

A B
| ! _ SA = sign of A
Forward format conversion SB = sign of B

A

y

EA = exponent of A

Operand alignment

EB = exponent of B
CA = significand of A

A

y

CB = significand of B

Pre-cor

rection

A

y

Carry propagation network

A 4

Post-correction

v y
Overflow detection Shift and round
v
Backward format conversion
v

S

Decimal operands are not
normalized

Exponents (EA and EB) and
Lengths of Leading Zero (LA and
LB)

b @

NO

Operand alignment calculation Swep CA and CB
Eg.LA=5,EA-EB=9
P digits
A=CAX 10EA= | a4...3,00000 J X 105A5
+—>
LA GRS
B=CB X 10E8B = 0......... 0 |b,bylbsby| | X 10EB+4
—>
LB

Result X 10EB+4

NO
LA, < [EAEB

Left Shift CA, by LA,

Y

Right Shift CB, by
min([EA-EBJ-LA, 19)

Left Shift CA by
(LA,-EA-EB))

» Effective operation = SA®SB®OP

» Place operands based on effective
operations simplifies result shifting

* Inject value into the digit positions, R and
S, based on rounding modes replaces
rounding by truncation.

LGRS
Effective add A O] 0000 XXXX XXXX XX IxIx]5]0]

roundTiesToAway g 9] 0000 XXXX XXXX XX |x|x|/5|1|

result 0 | ’|0|1|

* Injection value

Sign;,, Rounding Mode '"jeC::"S‘)’a'ue

X TowardZero (0, 0)
X TieToAway (5, 0)
X TieToZero (4, 9)
X TieToEven (5, 0)

b (0,0)
M - 9.9)

b (9, 9)
M - (0,0)
X AwayZero (9, 9)

« QOperands are corrected to generate correct carry-out

(CA",) +6 IfEOP = add (CB',). IfEOP = add
(CAB)i = . (CB3)i = ; :
(CA',) Otherwise (cB',), Otherwise

« Kogge-Stone
parallel prefix
network

« Two sets of flags

— Flag F, handles
the digit
iIncrement in the
post-correction
stage.

— Flag F, handles
the carry
propagation from
the injection
correction value.

Digit
Position
Original

KS
Network

carrv-out (C.)

flags (F,)

sum digits (UCR

19 digits

— / —_—

—

—
—t
0 ——F——F——F——F

e

—
e
Lt
_—
—_—
T

| — 1
a9 0000000000000 0 000 s
Post- : o’o’o’o’o’o’o’o’o’o OO0 v v
correction Post-
— 15O o‘otototototototoﬁ. O O O: conection
| e T
CR ONONONONONONORONONOEONONONONO
lw !‘/;;%) CDJ Injectif_Jn
snitand [F71.0.0.0.0.0.0.0 0.0 0.0 0,559 “Ban”
Round Unit * carry Trailing Nine Detection Network !

&

CR,

Y row7

row 8

row 9

row 10

 Compensate the result from the K-S network

» Rule 1: effective operation is ADD
— Subtract 6 from digit i for which (C,).,,1s O

* Rule 2: effective operation is SUB

— If the result is positive

* Increment the result using F,

« Subtract 6 from digit i for which (C,).,, @ (F),
— If the result is negative

* |nvert all bits of the result
 Subtract 6 from digit i for which (C,),,4 = 1

0

10

» Most significant digit is zero
— No action is needed

* Most significant digit is non-zero
— Requires an injection correction step

. P = 16 digits R
) LGRS
Effective add A (0] | | 45/0]
TieToEven B [0]] J []
Pgigitiiranesult [0 4

Real result

Right shift 1 digit

Exponent increment y

Injection correction value for different rounding modes

Injection Correction Value

Sign;,, Rounding Mode (G.R, S)
X TowardZero (0,0, 0)

X TieToAway (4, 5, 0)

X TieToZero (4, 5, 0)

X TieToEven (4, 5, 0)

- +00 (0, 0, 0)

+ -c0 (9,0, 0)

- +00 (9,0, 0)

+ =00 (0,0, 0)
AwayZero (9, 0, 0)

Injection correction value may trigger carry propagation

Flag F, eliminates carry propagation

12

Thompson’s Design

This Design

Supported DFP
Operations

2: add, subtract

8: add, subtract, minNum,
maxNum, compare, quantize,
sameQuantum, roundTolntegral

Internal format

Excess-3 encoding

BCD encoding

Operand
Alignment

Exponent computation and
LZD in series

Exponent computation and LZD in
parallel

Carry-propagate
network

Kogge-Stone with flag
tracing for post-correction

Two extra flags for rounding

Rounding Random logic and decimal | Injection-based rounding with
incrementer. correction.

Overflow After result is rounded Before the result is rounded

Detection

13

* TolntegralValue(A)
— Round A to an integer value
» TolntegralValue(13545 x 10-3) = 14 with round-ties-to-even
— Design strategy
« Set CB, and EB, to zero
« Enable right shift even if CB,=0
» Set effective operation to ADD

« Quantize (A, B)
— Change EAto EB
* Quantize(12345 x 104, 1 x 10-2) = 123 x 102 with round-down

— Design strategy
« Set CB, to zero
« Enable right shift even if CB,=0
» Set effective operation to ADD

14

SameQuantum(A, B)
— Check if EA=EB

— Generate an extra flag in the operand alignment
stage

minNum, maxNum, and compare use the
original datapath
Many changes are made to exception flag logic

A post-processing unit is added to handle
special operands such as infinity and Not-a-
Number

15

IEEE P754
Result (Z)

—>

Operation CA CA
RSA 2
o L
CB, LSA CB _
OpA Forward SA; O_perand CAg SIizfli[rel 2] g;ee-rz?]rdreslt;zg n?ggt
> romt 55, 7| i [2] ™
OpB Conversion w and Swapping
aning | = R
Rounding
Mode
- I 9!
4 sign P SR,
Overflow " ot overflow P
C
A UéZR — —
K-S Post- Shift and ER2 Backward
CB Fi | correction | CR; Round Format Post-
34 Network E CR2 Conversion Rl processing
2
_l l—

16

* Modeled using RTL Verilog and simulated
using Modelsim

* Synthesized using LS| Logic’s 0.11um
Standard Cell Library and Synopsys
Design Compiler

» Tested using a comprehensive testbench
generator and the decNumber library 3.32

17

« Combinational circuit designs

Metric Thompson’s adder Injection-based adder | Improvement
Delay (comb.) 3.50 ns, 63.6 FO4 2.76 ns, 50.2 FO4 21.0%
Area 22443 NAND eq. gates | 22086 NAND eq. gates | 1.6%

Table 1. Improvement over Thompson’s Design
Metric Injection-based adder Multifunction Unit Overhead
Delay 2.76 ns, 50.2 FO4 2.84ns, 51.6 FO4 2.8%
Area 22086 NAND eq. gates | 24233 NAND eq. gates | 9.7%

Table 2. Overhead of the Multifunction Unit Compared to the Injection-based Adder

18

« Synthesized using the pipeline_design
command from the Synopsys Design Compiler

60.00 T 120000 -
50.00 + 100000
Es _
40.00 + g 80000+ =
< © 60000 -
3 3000 + 3
Z
< 40000
2000 + =
$ 20000 |-
<
10.00 .
I
0.00 ‘ ‘ ‘ ‘ ‘ 1 2
1 2 3 4 5 6
of Stages

I
3 4
of Stages

5

6

19

A 16-digit DFP adder and multifunction unit
compliant with the IEEE P754 standard
* Novel features:

— Delay optimization in the operand alignment,
rounding, and overflow detection units

— A modified injection-based rounding method
— Extensions to support multiple DFP operations
 Design analysis

— 21% delay improvement over Thompson'’s
design

— 2.8% delay overhead for DFP multifunction unit

20

Questions?

21

e More on Forward Conversion

* More on Operand Alignment

* More on Post-correction

* More on Carry Propagation Network

 More on Overflow Detection

 More on Sign and Backward Conversion
 More on Extension to Support More DFP Operations
 More on Area Comparison

22

decimal6d width <2ty (w+5) bits = 13 bits > g ZL0IDiS=50

=3J digits=15
Sign Combination Trailing Significand
S G T

operand
Field

« Extract sign bits, biased exponents, and
significands from operands in the IEEE format

— Combination field G contains the classification of a number,
the encoding information, the most significant digit of
significand and a biased exponent.

— Trailing significand field T encodes a significand using
Densely Packed Decimal (DPD) encoding. DPD encoding
represents three digits using ten bits.

« Convert significands in DPD encoding to the BCD
encoding

« (Generate flag signals for special operands
(signaling NaN, quiet NaN, zero, and infinity)

23

» QOperands are shifted
using one 16-digit left-
shift and one 18-digit
right-shift decimal barrel
shifters.

« Guard and round digits,
and sticky bit are
generated. CB becomes
a 18-digit operand with a
sticky bit.

* Operands are placed
based on the effective
operation flag to simplify
the rounding.

19 digits

CA,[63:0]

CA', [0

Addition OR{CB4[3:0], sticky}

CB,[71:4], 18 digits

CA',

Subtraction sticky

24

Vv v d

LzD | LZD IsuB-ABS
|

— Y
Significand , MUX
Swapping il S | S\ Mux
= I | g ﬁ
|8
. MUX o
I IS - m
S &
i A]
| SUB
I
> | 8
B]
';| -\ MUX
i A |
RijhtShift
yrrector SUB
|

UcBS UcAs ¢U RSA U LSA ' ER,

25

e Add:

— At Pre-correction: A, + B, + 6
— Ifdigit carry is 0, A, + B, + C,_,< 10, subtract 6 from
Sum.
» Sub:
— Expect: A + (10...0 - B)
— At Pre-correction: A+ (9...9-B) +6...6

— If carry out of MSD is 1,

» Result is positive. Add the late carry-in from the LSD.

« If the digit sum after incrementing the late carry-in is less
than 10 (A + (9-B) + 6 + C < 10), subtract 6 from Sum

26

— Else

* Result is negative. Invert Sum. Sum, =15 - (A +15-B, + C,_
)= B —A-C,
* IfB—(A +C4) <0
— Need to borrow from the next digit

— 25>=15-[B,- (A, + C_,)]>=16=>9>=Sum>=0. This generates a
carry to the next digit.

— After inverting, F>=Sum,>=6. Need to subtract 6
* Else,
— No borrow from the next digit
— 15>=15-[B,— (A, + C.,)]>6, No carry is generated
— After inverting, 9>=Sum.,>=0. No subtraction is needed.
— E.g135-424 =135 + bdb = d10 with 011 as borrow
signals. After inversion, d10=>2ef. Subtract by six on
two LSDs, 2ef=»289

27

Use Kogge-Stone parallel prefix network
Three sets of flags in addition to the carry bits are generated.

Flag F, handles the digit increment in the post-correction stage to

increment results and is generated from the propagate bits.
(P)i = (Px—l)i N (Px—l)i—zx where x=4...0

X

F = (P4)i

Flags F, traces the trailing nine of the result before the post-

correction stage.
1=19..4

(flagADDy). (UCR =15)v ((UCR), 59) (C):.s)
UCR =15)a(P; =0)v ((UCR), =14)A(P; =1)
(UcRr), _15)| 19..5
(flagADD,). (flagADDX 1); A(flagADDy_1). ,x1 where X = 1~4
(flagSUB,)I (flagSUBy_1). A(flagSUBy_1)i _,x-1
{flagADD4 EOP = ADD
Fp = 28
flagsUB, EOP = SUB

(flagSUBy). =

* |Injection-based rounding simplifies the
overflow detection

— The result is overflow before rounding (carry-
out is generated from the most significant digit
of the result)

* Not influenced by the injection correction value

— The result is overflow after rounding
« Handle by the injected value

— Overflow detection can examine the result
before the rounding unit

29

 Sign bit is determined by the signs of
operands, the rounding mode, and if either
of the operands is normal numbers.
— Sign = ('IEOP n SignA) U (EOP n ((EA>EB) @

SignA @ carryout)

« Backward conversion combines the sign
bit, the exponent, and the significand to
form the P754 compliant result.

30

Quantize (A, B)

— Change the unit of A to EB

— Set CB to zero

— Enable right shift even if CB=0

— Set effective operation to ADD to avoid wrong rounding operations
SameQuantum(A, B)

— Check if EA=EB

— Generate an extra flag in the operand alignment stage.
MinNum, MaxNum, and Compare

— Set the operator to SUB and observe the sign
TolntegralValue(A)

— Round A to an integer value

— Set CB and EB to zero

— Enable right shift even if CB=0

— Set effective operation to ADD to avoid wrong rounding operations
Many changes to the conditions of exception flags are added. The post-

processing unit is added to handle special operands such as infinity and
Not-a-Number.

31

=16000.0 - O Thompson's Adder [14]

514000.0 - @ Adder w ith Inj-based Rounding
"%‘12000.0 1 O Multifunction w ith Inj-based Rounding
‘_§1oooo.o n

®

o

o)

o

o
|

Area (NAND Equi
A)}
-
o o

2000.0 -
o w0 - o mn [
ST & S N o 2 '
Qfé& Q@{\ 5 B (5\\0 5 &° @o« c?\) é)&\oo (;'\\OQ %}@ K\ e\é\ @"“oo &\e &
‘&é %'ék OOG\ OQQ’ 03& Q}& o 00¢ & <2,\o& é\b Oé" 00‘2@ "6@«\/
OIS P K & & X A QS o
6&\ &\% <<o§ &8 g & 09‘?’% «\8» € & & ¥ &
o &)
¢ Q\éé ’b@} I OQé Q;o@
& & *

32

decNumber library using the SimpleScalar simulator with PISA
architecture

DFP Hardware Improvement
Operations Software Fast | Slow | Fast Slow
ADD 499.4 124.9 83.2
SUB 496.2 4 6 124 .1 82.7
Quantize 265.4 66.4 44 .2
SameQuantum 89.4 1 1 89.4 89.4
TolntegralValue 364.6 91.2 60.8
MaxNum 405.4 101.4 67.6
MinNum 643.1) ° 160.8 107.2
Compare 282.8 70.7 47 .1

33

* Intel’s BID library and EM64t Xeon 5100 3.0GHz
« Results taken from their paper

DFP Software Hardware Improvement
Operations Fast | Slow | Fast | Slow Max Min
ADD 71 133 33.3 11.8
SUB 71 133 4 6 33.3 11.8
Quantize 27 45 11.3 4.5
TolntegralValue 27 45 11.3 4.5
MaxNum* 75 113 4 6 28.3 12.5
MinNum* 69 108 27 11.5

34

« Other DFP operations that can reuse our
DFP adders include:

— nextUp
— nextDown

« Other DFP operations that can use our
DFP with little extra gate

— ABS
— Negate
— copysSign

35

O Thompson's Adder [14]
@ Adder with Inj-based Rounding

/

14 /
1.2 — /
— 1
z y
> 038
©
e 06
04
0.2
0 ,i
\)& 0%0 ‘\5\\ 0&\
& o &)
&° &9 Y
\\Q} o_)‘o\ QQJO Q
& & 2 N
\C) (b{\ QQ; \OQ
& Q N S
o S N
O<< L 009
& R ©
o
&
N

36

