
Olivier Sentieys
INRIA
Univ Rennes olivier.sentieys@inria.fr

2

Energy Cost in a Processor/SoC

28nm
CMOS

500 pJ Efficient
off-chip
link

16 nJ DRAM
Rd/Wr

• 64-bit FPU: 20pJ/op

• 32-bit addition: 0.05pJ

• 16-bit multiply: 0.25pJ

• Wire energy
– 240fJ/bit/mm per ⇵
– 32 bits: 40pJ/word/mm

– 8 bits: 10pJ/word/mm

50 pJ (8 kB SRAM)

• Memory/Register-File
– Depends on word-length

[Adapted from Dally, IPDPS’11]

Energy strongly depends on data representation and size

3

Many Applications are Error Resilient

• Produce outputs of acceptable quality
despite approximate computation
– Perceptual limitations
– Redundancy in data and/or computations
– Noisy inputs

• Digital communications,
media processing, data
mining, machine
learning, web search, …

e.g. Image Segmentation

4

Approximate Computing

• Play with number representations to reduce
energy and increase execution speed while
keeping accuracy in acceptable limits
– Relaxing the need for fully precise operations

• Trade quality against
performance/energy
– Design-time/run-time

• Different levels
– Operators/functions/algorithms

Application quality degradation

En
er

gy

X

X

X
X

X

5

Outline

• Motivations for approximate computing
• Number representations
• Approximate operators or careful

rounding?
• Operator-level support for approximate

computing
• Stochastic computing
• Conclusions

6

Outline

• Motivations for approximate computing
• Number representations
– Fixed-Point
– Floating-Point
– Customizing Arithmetic Operators
– ApxPerf Framework

• Approximate operators or careful rounding?
• Operator-level support for approximate

computing
• Stochastic computing
• Conclusions

7

Number Representation

• Floating-Point (FlP)

s: sign, m: mantissa, e: exponent

– Easy to use
– High dynamic range
– IEEE 754

• Fixed-Point (FxP)

p: integer, K=2-n: fixed scale factor

– Integer arithmetic
– Efficient operators
• Speed, power, cost

– Hard to use...

x = p⇥K

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1 bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Format e m bias
Single Precision 8 23 127

Double Precision 11 52 1023

8

Floating-Point Arithmetic

• Floating-point
hardware is doing the
job for you!

• FlP operators are
therefore more
complex

J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009.

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

Fixed-point addition
equivalent

FlP Adder

9

Customizing Fixed-Point

• Minimize word-length W=m+n
• Determine integer and fractional parts

Integer part
m bits

Fractional part
n bits

S b1 b0 b-1 b-2

Dynamic
Range

Ensures no overflow
(or limit the overflow occurrence)

Accuracy

Provides a minimal
numerical accuracy

10

Customizing Floating-Point

• Minimize word-length W=E+M+1
• Determine exponent and mantissa (and bias)
• Error is relative to number value

Exponent
E bits

Mantissa
M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Range &
Accuracy

Ensures no overflow
Limits accuracy if E is small

Accuracy

Provides a minimal
numerical accuracy

11

ct_float: a Custom-FlP C++ Library

• ct_float: a Custom Floating-Point C++ Library
– Operator simulation and (High-Level) synthesis
– Templated C++ class

• Exponent width ! (int)
• Mantissa width " (int)
• Rounding method # (CT_RD,CT_RU,CT_RND,CT_RNU)

– Many synthetizable overloaded operators
• Comparison, arithmetic, shifting, etc.

11

ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;

12

ct_float, FloPoCo, ac_float

• ct_float provides comparable (or slightly better) results
– 16-bit Floating-Point Addition/Subtraction (200MHz)

– 16-bit Floating-Point Multiplication (200MHz)

CT_FLOAT: a Custom Synthesizable Floating-Point Library 159

subtraction and multiplication were tested on each of these precisions. The results of the com-
parative studies for 16-bit (resp. 32-bit) addition/subtraction (resp. multiplication) are given in
Tables 5.2, 5.4, 5.3 and 5.5. The two last lines of the tables refer to the relative performance
of ct_float towards ac_float (resp. FloPoCo) (e.g., ct_float area is 2.15% higher
than ac_float).

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 312 1.44 1.84E≠1 9.07E≠1
CT_FLOAT 318 1.72 2.13E≠1 1.05
FLOPOCO 361 2.36 1.84E≠1 9.06E≠1

CT_FLOAT/AC_FLOAT +2.15% +19.4% +15.4% +15.7%
CT_FLOAT/FLOPOCO -11.8% -27.0% +15.7% +15.8%

Table 5.2 – Comparative Results for 16-bit Custom Floating-Point Addition/Subtraction with
Fclk = 200MHz

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 488 1.18 2.15E≠1 1.05
CT_FLOAT 389 1.13 1.76E≠1 8.59E≠1
FLOPOCO 361 1.52 1.34E≠1 6.50E≠1

CT_FLOAT/AC_FLOAT -20.4% -4.24% -18.2% -18.2%
CT_FLOAT/FLOPOCO +7.68% -25.6% +31.7% +32.1%

Table 5.3 – Comparative Results for 16-bit Custom Floating-Point Multiplication with Fclk =
200MHz

At first sight, the three custom floating-point libraries give results in the same order of
magnitude. For 16-bit addition/subtraction, ct_float is 15% more energy-costly than both
ac_float and FloPoCo, despite being as large as ac_float and 12% smaller than
FloPoCo. The fastest 16-bit adder/subtracter is ac_float, followed by ct_float, which
is 19% slower but 27% faster than FloPoCo. All performance are slightly in favor of ac_floatfor
16-bit addition/subtraction.

For 16-bit multiplication, ac_float is beaten by both ct_floatand FloPoCo. FloPoCo’s
multiplier is the smallest and with the lowest energy consumption. However, ct_float is
25% faster but consumes 32% more energy. However, it must be kept in mind that there are
registers in the inputs and outputs of ct_float and ac_float which are not present for
FloPoCo, so the real gap should be narrower.

32-bit addition/subtraction shows very similar energy for ac_float, ct_float and
FloPoCo. Indeed, ct_float is 9% worse than ac_float and 4% better than FloPoCo.
Again, FloPoCo is the slowest operator, ct_float being 27% faster.

The energy of 32-bit multiplication is strongly in favor of ct_float, which saves more

CT_FLOAT: a Custom Synthesizable Floating-Point Library 159

subtraction and multiplication were tested on each of these precisions. The results of the com-
parative studies for 16-bit (resp. 32-bit) addition/subtraction (resp. multiplication) are given in
Tables 5.2, 5.4, 5.3 and 5.5. The two last lines of the tables refer to the relative performance
of ct_float towards ac_float (resp. FloPoCo) (e.g., ct_float area is 2.15% higher
than ac_float).

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 312 1.44 1.84E≠1 9.07E≠1
CT_FLOAT 318 1.72 2.13E≠1 1.05
FLOPOCO 361 2.36 1.84E≠1 9.06E≠1

CT_FLOAT/AC_FLOAT +2.15% +19.4% +15.4% +15.7%
CT_FLOAT/FLOPOCO -11.8% -27.0% +15.7% +15.8%

Table 5.2 – Comparative Results for 16-bit Custom Floating-Point Addition/Subtraction with
Fclk = 200MHz

Area (µm2) Critical Total Energy per
path (ns) power (mW) operation (pJ)

AC_FLOAT 488 1.18 2.15E≠1 1.05
CT_FLOAT 389 1.13 1.76E≠1 8.59E≠1
FLOPOCO 361 1.52 1.34E≠1 6.50E≠1

CT_FLOAT/AC_FLOAT -20.4% -4.24% -18.2% -18.2%
CT_FLOAT/FLOPOCO +7.68% -25.6% +31.7% +32.1%

Table 5.3 – Comparative Results for 16-bit Custom Floating-Point Multiplication with Fclk =
200MHz

At first sight, the three custom floating-point libraries give results in the same order of
magnitude. For 16-bit addition/subtraction, ct_float is 15% more energy-costly than both
ac_float and FloPoCo, despite being as large as ac_float and 12% smaller than
FloPoCo. The fastest 16-bit adder/subtracter is ac_float, followed by ct_float, which
is 19% slower but 27% faster than FloPoCo. All performance are slightly in favor of ac_floatfor
16-bit addition/subtraction.

For 16-bit multiplication, ac_float is beaten by both ct_floatand FloPoCo. FloPoCo’s
multiplier is the smallest and with the lowest energy consumption. However, ct_float is
25% faster but consumes 32% more energy. However, it must be kept in mind that there are
registers in the inputs and outputs of ct_float and ac_float which are not present for
FloPoCo, so the real gap should be narrower.

32-bit addition/subtraction shows very similar energy for ac_float, ct_float and
FloPoCo. Indeed, ct_float is 9% worse than ac_float and 4% better than FloPoCo.
Again, FloPoCo is the slowest operator, ct_float being 27% faster.

The energy of 32-bit multiplication is strongly in favor of ct_float, which saves more

13

FxP vs. FlP: Adders

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FxP adders are
always smaller,
faster, less
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

14

FxP vs. FlP: Multipliers

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FlP multipliers
are smaller,
faster, but
consume more
energy
28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

15

Energy-Accuracy Trade-offs

• ApxPerf2.0 framework
– Based on C++ templates,

HLS, and Python

– VHDL and C/C++ operator
descriptions
• Approximate, FxP, FlP

operators, especially adder and subtractor, are smaller than for
FlP since they are equivalent to integer operators.

C. Floating-Point and Fixed-Point Direct Comparison

Because of the different nature of FlP and FxP errors, this
section only compares them in terms of area, delay, and energy.
Indeed, FlP error magnitude strongly depends on the amplitude
of the represented data. Low-amplitude data have low error
magnitude, while high amplitude data have much higher error
magnitude. FlP error is only homogeneous considering relative
error. Oppositely, FxP has a very homogeneous error magni-
tude, uniformly distributed with well-known bounds. Thus, its
relative error depends on the amplitude of the represented data.
It is low for high amplitude data and high for low amplitude
data. This duality makes these two paradigms impossible to
be atomically compared using the same error metric. The
only interesting error comparison which can be performed is
applying them on a real-life application, which is done on the
K-means clustering algorithm in Section IV.

In all performance studies in this paper, our open-source
framework ApxPerf2.0, whose flow is described by Figure 3,
is used. HLS is achieved by Catapult from Mentor Graph-
ics, RTL synthesis by Synopsys Design Compiler, gate-level
simulation by Modelsim leveraging SystemC Verify, and time-
based power analysis by Synopsys PrimeTime. A 100 MHz
clock is set for designing and estimating performance, and the
technology used is 28 nm FDSOI. Energy per operation is

High Level
Synthesis

Simulation
+ Verification

Logic Synthesis

Power
Estimation

C
at

ap
ul

tC

C/C++
Source

+
Config.

fileRTL VHDL

gate VHDL SDF file

testbench

VCD file

Area report
Timing report
Power report

Error
Estimation

Error
metrics

Fig. 3: ApxPerf2.0 framework
estimated using detailed power results given by PrimeTime at
gate level. Given the critical path of the design Tc and the
clock period Tclk, only the energy spent before stabilization
is extracted, which allows to have an energy per operation
independent of the clock period.

In this section, 8-, 10-, 12-, 14- and 16-bit fixed-width
operators are compared. For each of these bit-widths, several
versions of the FlP operators are estimated with different
exponent widths. 25.103 uniform couples of input samples are
used for each operator characterization. A tweak ensures that at
least 25% of the FlP adder inputs activate the close path of the
operator, which has the highest energy by nature. Adders and
multipliers are all tested in their fixed-width version, meaning
their number of input and output bits are the same. The output
is obtained using truncation of the result.

Fig. 4: Relative area, delay and energy per operation compa-
rison between FxP and FlP for different fixed-width adders

Fig. 5: Relative area, delay and energy per operation compari-
son between FxP and FlP for different fixed-width multipliers

Figure 4 (resp. Figure 5) shows the area, delay and energy
of adders (resp. multipliers) for different bit-widths, relative
to the FxP operator. FlPN (k) represents N -bit FlP with k-bit
exponent width. As discussed above, FlP adder has an impor-
tant overhead compared to FxP adder. For any configuration,
results show that area and delay are around 3⇥ higher for FlP.
As a consequence, the higher complexity of the FlP adder
leads to 5⇥ to 12⇥ more energy per operation.

Results for the multiplier are very different. Indeed, FlP
multipliers are 2-3⇥ smaller than for FxP. Indeed, the control
part of FlP multiplier is much less complicated than for the
adder. Moreover, as multiplication is applied only on the
mantissa, the multiplication is always applied on a smaller
number of bits for FlP than for FxP. Timing is also slightly
better for FlP, but not as much as area since an important
number of operand shifts may be needed during computations.

– Fully automated
– Generates delay, area, and power results
– Extract error metrics

• mean square error, mean average error, relative error,
min/max error, bit error rate, etc.

B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation
Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

16

Outline

• Motivations for approximate computing
• Number representations
• Approximate operators or careful

rounding?
• Operator-level support for approximate

computing
• Stochastic computing
• Conclusions

17

Approximate arithmetic

• Comparison of two paradigms

1 June 2018B. Barrois - Univ.
Rennes 1 -
INRIA/IRISA

– Classical fixed-point (FxP)
arithmetic
• Exact integer operators
• Approximation by rounding

the output

– Approximate (Apx) integer
arithmetic
• State-of-the-art approximate

operators

Error
probability

low

high

⋅

⋅

dropped

FxP8(5)

18

Approximate operators

• Adders
– Almost Correct Adder (ACA)
– Error-Tolerant Adder IV (ETAIV)
– Approximate Ripple Carry

Adder (RCAApx)
• 3 possible Full-Adder

approximations

1 June 2018B. Barrois - Univ.
Rennes 1 -
INRIA/IRISA 18

+

!"!#(%)

+

'(!)*#(+)

+

,"!!-.,#(0)

19

Approximate operators

• Fixed-width multipliers
– Approximate Array Multiplier (AAM)
– Approximate modified Booth-

encoded Multiplier (ABM)

1 June 2018B. Barrois - Univ.
Rennes 1 -
INRIA/IRISA 19

ND

x7 x6 x5 x4 x3 x2 x1 x0

y0

y1

y2

y3

y4

y5

y6

y7

1

P15 P14 P13 P12 P11 P10 P9 P8

ND

ND

ND

ND

ND

ND

A

INV

AA

AA

AA

AA

AA

AA

ND-
NDNFA

AFA

AFA AFA

AFA AFA AFA

AFA AFA AFA AFA

AFA AFA AFA AFA AFA

NFA NFA NFA NFA NFA

FA FA FA FA FA FA FA

X[7:0] Y[7:0]

ENCODER

DECODER

Z[15:8]

SUMMAND GRID P0,8 P0,7 P0,6 P0,5 P0,4 P0,2 P0,2 P0,1 P0,0

P1,8 P1,7 P1,6 P1,5 P1,4 P1,3 P1,2 P1,1 P1,0

P2,8 P2,7 P2,6 P2,5 P2,4 P2,3 P2,2 P2,1 P2,0

P3,8 P3,7 P3,6 P3,5 P3,4 P3,3 P3,2 P3,1 P3,0

!"#$(8) !!#$(8)

20

Approximate or Round?

• Results: 16-bit adders

B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation
Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

droppedFxP ApxVS

FxP(8)

RCAApx(14)

ACA(2)ETAIV(8)

ACA(4)

ETAIV(2)

RCAApx(10)
FxP(15)

FxP(2)

FxP(15) FxP(2)

Best

Best

21

Approximate or Round?

• Results: 16-bit adders

B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation
Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

ETAIV(2)

ACA(4)

FxP(15)

FxP(2)

FxP(2)

FxP(15)

Best

Best

22

Approximate or Round?

• Results: 16-bit adders

B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation
Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

FxP(15)

FxP(2)

FxP(15)

FxP(2)

Best

Best

23

Approximate or Round?

• Results: Multipliers 16×16 → 16 bits
–%&'(16,16 is classical exact multiplier with

output truncated to 16 bits

Performance of FxP and AO multipliers

B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation
Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

FxPt,16(16) AAM16(16) ABM16(16)
Power (mW) 0.273 0.359 0.446

Delay (ns) 0.91 1.23 0.57
PDP (pJ) 0.249 0.442 0.446

Area (*+,) 805.2 665.5 879.5
BER (%) 23.4 27.7 27.9

MSE (dB) -89.1 -87.9 -9.63

24

Approximate or Round?

• Results on applications
– JPEG, HEVC, K-Means

Adders – Apx DCT cost in
JPEG encoding

Adders – cost in HEVC filter

Multipliers – cost of distance computation
in K-Means algorithm

25

Approximate or Round?

• Results: DCT in JPEG Encoding – 90% effort

AAM16(16)
MSSIM = 0.9981

PDP = 2.71 pJ

FxPt,16(16)
MSSIM = 0.9981

PDP = 1.73 pJ

ABM16(16)
MSSIM = 0.8579

PDP = 2.72 pJ

FxP(10)

RCAApx(10)

Best

26

Conclusion (Apx. or Round?)

• Datasize reduction gives better results than
operator-level approximation

• High error entropy is not energy efficient

– True for processing datapath
– Should be emphasized when considering data

storage and transportation

• Approximate operators could be suitable for
fixed-width datapath (e.g. CPU)

dropped >
Error
prob.

low

high

27

Outline

• Motivations for approximate computing
• Number representations
• Approximate operators or careful

rounding?
• Operator-level support for approximate

computing
– K-Means Clustering, FFT
– Approximate deep learning

• Stochastic computing
• Conclusions

28

K-Means Clustering

• Data mining, image
classification, etc.

• A multidimensional
space is organized as:
– k clusters Si,
– Si defined by its

centroid µi

• Finding the set of clusters
satisfying
is NP-hard

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {Si}i2[0,k�1] satisfying

argmin
S

kX

i=1

X

x2Si

kx� µik2 , (1)

where µi is the centroid of cluster Si. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size Ndata, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2e.

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {Si}i2[0,k�1] satisfying

argmin
S

kX

i=1

X

x2Si

kx� µik2 , (1)

where µi is the centroid of cluster Si. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size Ndata, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2e.

29

Approximate K-Means Clustering

• W = 16 bits, accuracy = 10−4

• No major (visible) difference with reference

Reference: double Floating-point: ct_float16
5-bit exponent
11-bit mantissa

30

Approximate K-Means Clustering

• W = 16 bits, accuracy = 10−4

• No major (visible) difference with reference

Fixed-Point: ac_fixed16
3-bit integer part

13-bit fractional part

Floating-point: ct_float16
5-bit exponent
11-bit mantissa

31

Approximate K-Means Clustering

• W = 8 bits, accuracy = 10−4

• 8-bit float is still practical

Floating-Point: ct_float8
5-bit exponent
3-bit mantissa

Reference: double

32

Approximate K-Means Clustering

• W = 8 bits, accuracy = 10−4

• 8-bit float is better and still practical

Fixed-Point: ac_fixed8
3-bit integer part

5-bit fractional part

Floating-Point: ct_float8
5-bit exponent
3-bit mantissa

33

Energy versus Mean Sum of Distances

• Average
energy
consumed
by K-means
algorithm

• Stopping
condition:
10−4

B. Barrois, O. Sentieys, Customizing Fixed-Point and Floating-Point
Arithmetic - A Case Study in K-Means Clustering, IEEE SiPS, 2017.

34

Energy vs. Error: FFT

• FxP
performs
always
better (5×)
than FlP

35

Conclusions (FlP vs. FxP)

• Slower increase of errors for floating-point
– Small floating-point (e.g. 8-bit) could provide

better error rate/energy ratio
• 8-bit FlP is still effective for K-means clustering

• Choice FlP vs. FxP is not obvious
– Application-dependent
– Certainly requires static/runtime analysis

• Perspectives
– Custom exponent bias in ct_float
– Towards an automatic optimizing compiler

considering both FxP and FlP representations

36

Deep Convolutional Neural Networks

• General organization

• Layers

[Motamedi et al., 2016]

...

37

Complexity of Deep CNNs

• 10-30 GOPS
– Mainly convolutions

Convolutional Neural Network - Trends

Christos Bouganis 4

[Canziani et al., 2017]

• 10-200 MB
– Fully-connected layers

38

Resilience of ANN

• Our biological neurons are fault tolerant to
computing errors and noisy inputs

• Quantization of parameters and computations
provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and lsat ltteer be at the rghit
pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no!

[O. Temam, ISCA10]

39

Approximate CNNs: Accuracy

• 10k images, MNIST/Lenet5
• Single/Double-Precision Fixed-Point

I = 4 bits

W = 12 bits
W = 8 bits

I = 2 bits

40

Approximate CNNs: Accuracy

• 10k images,
MNIST/Lenet

• Custom Floating-
Point

• 10-bit FxP or FlP
keeps accuracy near
reference

• Better results would
be achieved with
longer training and
fine tuning

M = 4 bits

M = 4 bits
E = 8 bits

E = 6 bits

44

Outline

• Motivations for approximate computing
• Number representations
• Operator-level support for approximate computing
• Approximate operators or careful rounding?
• Stochastic computing
– What is a stochastic number?
– Basic operators
– Stream correlation
– Examples

• Digital filters
• Image processing

• Conclusions

45

A Strange Way to Represent Numbers

• Stochastic numbers are represented as a
Bernoulli random process
– p is coded as a finite sequence of independent

random variables xi ∈ {0, 1}, with P(xi=1) = p

• Unipolar: p ∈ [0, 1]
– stream of N bits X=<x0, x1,…,xN-1>
<00010100> = 1/4
<0010010010000001> = 1/4
– N1 ones, N-N1 zeros: p=N1/N

• Bipolar: p ∈ [-1, 1], 2.P(xi)-1=p
<00010100> = -1/2

46

Stochastic Computing

• Uses Stochastic Number representation
• Uses conventional logic circuits to implement

arithmetic operations with SNs
– Realized by simple logic circuits

• SC provides massive parallelism
• SN is intrinsically error tolerant
• Only suitable for low-precision (~5-6 bits)
• High processing latency (e.g. 128-bit streams)

46

47

Numerical Accuracy of SNs

• Estimation of p out of the N-bit stream X

– Binomial distribution
• Accuracy in estimation of p increases as square

root of N (computation time)
• Example: N=256
– Possible values of p ∈ {0, 1/256, 2/256,…,255/256,1}
– Accuracy

• minimum for p={0,1}, maximum for p=0.5
• p=0.75: σ=0.027 (≈5.2 bits) (1/256=0.0039)

p̂ = N1
N

�(p̂) =
q

p(1�p)
N

E(p̂) = p

48

Numerical Accuracy of SNs

• p=0.75, N=128..8192
• σ of error: simulation and analytical

481000 2000 3000 4000 5000 6000 7000 8000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

N

E
rr
o
r
(σ

)

σ Error (s imulation)

σ Error (Bernoulli)

�(p̂) =
q

p(1�p)
N

49

Numerical Accuracy of SNs

• p=0.75, N=128..8192

491000 2000 3000 4000 5000 6000 7000 8000
4.5

5

5.5

6

6.5

7

7.5

8

N

A
cc
u
ra
cy

(σ
)
[n
u
m
b
er

o
f
b
it
s]

σ Error (s imulation)

σ Error (Bernoulli)

50

Basic Arithmetic Operators

• Unsigned multiplication

• Nice! but for real cases, accuracy is reduced
• and p3 must be longer
• and true only for uncorrelated pi

p1=00010100 (1/4)

p2=01100101 (1/2)
p3 = 00000100 (1/8)

p3 = p1p2
E(p̂3) = E(p̂2).E(p̂1)

51

Correlation further Reduces Accuracy

• Correlation among bit streams implies
reduced accuracy

p1=01010101 (1/2)

p2=00101010 (3/8)
p3 = 00000000

[Alaghi et al., ACM TECS 2013]

52

Basic Arithmetic Operators

• Addition (stochastic weighted summer)

• Stochastic Number Generation
– E.g.

p1=00010100 (1/4)

p2=01100110 (1/2)
p3 = 01000110 (3/8)

0

1

p0=01011010 (1/2)
p3 = p0p1 + (1� p0)p2

Variable
Register

Random Number
Generator

Comparator 0,0,1,1,1,0
Random Bit

Stream

Fig.3 Randomizer unit

An implicit assumption in stochastic computing is the

availability of random bit streams encoding real values in the
unit interval. The success of the approach therefore relies on
the efficient generation of random bit streams with different
probability values. Any stochastic computing module requires
two types of random bit streams: variables and constants.

The variable random bit streams are efficiently generated
by the Randomizer unit [7] depicted in Fig.3. An 𝑀-bit integer
variable 𝑋 is loaded into the variable register and compared
with 𝑀-bit uniformly distributed random integers every clock
cycle. The comparator output is logic 1 if the variable register
value exceeds the random integer or logic 0 otherwise. The
probability of the output random bit stream is then given by,

𝑃௢௨௧ =
𝑋

2ெ − 1
 (3)

By loading the variable register with different integer values,
we can modulate the probability of the output random bit
stream. Constant random bit streams, on the other hand, have a
fixed probability value. Although we may use the Randomizer
unit for constant random bit streams, it is inefficient due to the
need for a uniform random integer generator and a binary
comparator.

Constant random bit streams are more effectively generated
using the probability transformation [8]. The proposed method
transforms an input probability set 𝑆 = {𝑝ଵ, 𝑝ଶ … 𝑝௡} into the
required probability 𝑞 using combinational logic. An example
combinational circuit to generate a constant random bit stream
with probability 0.119 using the set 𝑆 = {0.4,0.5} is illustrated
in Fig.4. The authors in [8] considered three different scenarios
with regard to the input set 𝑆.

Scenario 1: The probabilities in set 𝑆 are not specified and
may be selected appropriately. Secondly, multiple independent
copies of the probability values are available.

Scenario 2: The probabilities in set 𝑆 are specified and may
not be duplicated.

Scenario 3: The probabilities in set 𝑆 are not specified and
may be selected appropriately, but the selected probabilities
may not be duplicated.

The authors presented a synthesis algorithm for Scenario 1 to
generate arbitrary decimal probability values using the set
𝑆 = {0.4,0.5}. The authors provided approximate solutions for
the remaining scenarios as probability values cannot be exactly
generated unlike Scenario 1.

 We propose sequential circuits to transform probabilities.
Our work is motivated by two concerns with combinational
logic. First, probability values for scenarios 2 and 3 can only
be approximated as the input probabilities are not duplicable.

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.119

0.6
0.3

0.7

0.2
0.14

0.3

0.15
0.85

0.6

Fig.4 A combinational circuit to generate the probability value 0.119

More importantly, for Scenario 1 where the probabilities
are duplicable, the number of independent copies required to
generate a probability value may become prohibitively large.
For the example circuit in Fig.4, we require seven independent
input random bit streams to generate the desired probability.

Each input random bit stream requires a random source
such as a linear feedback shift register, which incurs an area
cost. The efficacy of combinational circuits to transform
probabilities is thus limited by the cost of the input random
sources. The area of a hardware realization of the circuit in
Fig.4 would be dominated by the random sources, offsetting
the gains of a smaller combinational circuit.

 We implement the probability transformation using finite
state machines. Our approach is capable of generating any
probability value expressed as a rational fraction exactly.
Moreover, the number of random sources required to generate
the probability is a design parameter. We thus offer control
over the cost of random sources while generating any rational
probability value without approximation.

We begin our presentation with a discussion on Markov
chains and introduce a special class of Reversible Markov
chains. We next describe a systematic procedure to design a
Reversible Markov chain for generating a probability value
using a given number of input random sources. The designed
Reversible Markov chain is then mapped to a finite state
machine. We conclude with a presentation of the results and a
discussion on our method.

II. REVERSIBLE MARKOV CHAINS
A stochastic process is a mathematical model of evolution

of a stochastic system in time. Unlike deterministic systems
that evolve according to a fixed criterion from a set of initial
conditions, stochastic systems evolve randomly.

The state space of a stochastic system is the allowable set
of states in which the system may exist, which may be finite
or infinite. In addition, the system may evolve continuously or
at discrete time instants. Consider a discrete-time finite state
stochastic system with 𝑀 states and let 𝑆 denote the state
space of the system.

𝑆 = {0,1, … ,𝑀 − 1} (4)
Let 𝑋௡ denote the state of the system at time instant 𝑛. We
need to describe the evolution of the system represented by the
sequence of states 𝑋଴, 𝑋ଵ, … , 𝑋௡ by a stochastic process.

733

53

Error Tolerance

• Conventional
computing

• Stochastic
computing

54

Digital Filters

• Sum of product

54

x0 0

2
1

3

b0

x3
b3

ŹŜůŞ Ŕŏň

ŹŜůĮĲŞ
ōĮŅ

ŹŜůĮĳŞ ōĮŅ

ŹŜůĮŎŞ ōĮŅ

ŹŜůŞ

Ŕŏň

ŹŜůĮĲŞ

Ņ

ŹŜůĮĳŞ

Ņ

ŹŜůĮŎŞ

Ņ

Ŕŏň

Ŕŏň

Ŕŏň

ŔŪŨůĩţŎĪ

ŊůůŦųġűųŰťŶŤŵġ
ŴŪŨůĩţĳĪ

ŴŪŨůĩţĲĪ

ŴŪŨůĩţıĪ

ŊůůŦųġűųŰťŶŤŵġ

ŴŪŨůĩţŎĪ

ŴŪŨůĩţĳĪ

ŴŪŨůĩţĲĪ

ŴŪŨůĩţıĪ

ĩŢĪ ĩţĪ

Ĳ

ŘŘ

Fig. 3. The circuit diagram of the FIR filter for (a) delay-
ing the stochastic sequence and (b) delaying the binary input
sequence.

tation of the filter should also take into account how the cor-
relation of different stochastic sequences in the circuit can be
reduced. In Fig. 3(b), each SNG used to convert each delayed
input signal should adopt a different seed for its initial LFSR
value to generate the random sequence. The principle is the
same for Fig. 3(a) but it is realized by changing the seeds for
different incoming signals.

Several simulations were performed to test the accuracy
of the stochastic FIR filters. An input test signal consisting of
a mixture of five sinusoidal waves of different frequencies and
random noise is used. Table 2 shows the error-to-signal power
ratio for low-pass and high-pass filters with four different cut-
off frequency settings and three different filter orders. In our
simulation, the length of the stochastic sequence is 1024. A
total of 256 input samples are used for simulation. It can be
found in general the error will increase with the filter order be-
cause the data correlation is more likely to increase for larger
circuit size. The result of the last column of Table 2 is for
the filter where we do not vary the seed for the input signal.
Fig. 4 further shows the spectrum of input and output signals
obtained from stochastic and ideal filters for a high-pass and
a low-pass filter. The frequency responses of these two filters
are also shown in this figure. It can be found that the spectrum
of the stochastic filter is very close to that of the ideal filter.

4. INFINITE IMPULSE RESPONSE FILTER DESIGN

The other category of digital filters is the infinite-impulse
response (IIR) filter. Different from FIR filters, IIR filters
contain recursive loops that impose strict constraints on
its implementation. The transfer function of an N th-order
IIR can be represented in Z-domain as H(z) = Y (z)

X(z) =
b0+b1z

−1+b2z
−2+···bMzM

1−a1z−1−a2z−2−···−aNzN . In order to implement the IIR fil-
ter, its time-domain representation is preferred, where output
y[n] equals (b0x[n] + b1x[n − 1] + · · · + bMx[n − M]) +
(a1y[n−1]+a2y[n−2]+ · · ·+aNy[n−N]). This equation

Table 2. Accuracy test results of stochastic FIR filters of dif-
ferent orders. (* use the constant seed)

Filter Low-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8 0.8*
2 0.0037 0.0025 0.0013 0.0004 0.0032
4 0.0597 0.0465 0.0314 0.0145 0.0291
6 0.0648 0.0462 0.0637 0.0626 0.0943
Filter High-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8 0.8*
2 0.0008 0.0015 0.0023 0.0028 0.1742
4 0.0097 0.0127 0.0137 0.0161 0.0803
6 0.0491 0.0316 0.0114 0.0137 0.0609

(a) (b)

Fig. 4. The filtering results of (a) a high-pass 4th-order FIR
filter with cutoff-frequency 0.6 π, and (b) a low-pass 6th-
order FIR filter with cutoff-frequency 0.4 π.

can be divided into two parts. This first part involves the input
signals x[.], while the other one involves the previous output
signals y[.]. Both parts can be realized by the inner-product
module as shown in Fig. 5. The summation of each part will
be scaled by a factor. The terms scaleA and scaleB, which
equal 1/

∑N−1
i=1 |ai| and 1/

∑M
i=0 |bi|, respectively, repre-

sent the scaling factors of the corresponding inner-product
modules. The summation results of both parts are added to-
gether by another multiplexor with the selection signal whose
probability is set to scaleB

scaleA+scaleB .
The design flow of IIR so far is similar to FIR. However, it

should be noted that in FIR, the relative frequency content is
not changed by scaling the output by a constant factor. How-
ever, in IIR design, the filter output y[n] will be fed-back for
further computation of the following outputs. If the output is
scaled, it will affect the result of the next output sample, and
eventually alter the filter function. If we take into account the
scale factors, the filter transfer function will now be changed
to H ′(z) =

1
scaleB (b0+b1z

−1+b2z
−2+···bMzM)

1− 1
scaleA (a1z−1+a2z−2+···aNzN)

. The zeros of
this new transfer function are the same as the original, but the
poles are not the same. Therefore, the final summation result
shown in the middle of Fig. 5 has to be multiplied by a scale
factor. Since the scale factor can be greater than one while
the multiplication of factor larger than one cannot be imple-

����

55

Taking Advantage of Correlation in
Stochastic Computing
• Correlated inputs reduces complexity of SNG
• Correlation can be exploited wisely

56

Taking Advantage of Correlation in
Stochastic Computing
• Correlated inputs reduces complexity of SNG
• Correlation can be exploited wisely

57

Results

• Image processing
– median filter,
– contrast stretching
– frame difference based

image segmentation
– edge detection

• 256-bit stochastic
streams

• Implementation on
Xilinx ZYNQ 706 board

57R.K. Bhudhwani, R. Ragavan, O. Sentieys. Taking advantage
of correlation in stochastic computing, IEEE ISCAS, 2017.

58

Results

• Conventional, existing, and proposed SC
• Accuracy, area, and delay
– Mean output accuracy reduction per pixelTABLE I. COMPARISON OF CONVENTIONAL, EXISTING, AND PROPOSED STOCHASTIC IMPLEMENTATIONS IN TERMS OF ACCURACY, AREA, AND DELAY

Benchmarks

Conventional Implementation Existing Stochastic Implementation Proposed Stochastic Implementation
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)reduction reduction reduction
per pixel (%) per pixel (%) per pixel (%)

Median Filter 0.00 234 15.98 1.82 478 5921.5 0.00 50 903.42
Contrast Stretching 0.00 291 24.04 4.96 42 921.08 3.11 22 573.44

Frame Segmentation 0.00 16 3.88 0.82 43 1062.91 0.52 21 860.16
Edge Detection 0.00 116 4.39 6.8 98 2361.6 4.25 45 767.23

Fig. 9. (a), (b), (c) and (d) show simulation results of conventional and
proposed stochastic implementation of median filter, contrast stretching, frame
based image segmentation, and edge detection algorithm respectively

by simpler logic blocks like AND/OR/MUX gates with corre-
lated bitstreams. In the proposed SC design of median filter, 38
Markov-based FSM blocks consuming higher area and latency
are replaced by 38 AND/OR gate which results in reduction
of 90% and 85% in area and delay respectively. Similarly,
proposed SC design for other algorithms also shows reduction
in area and delay compared to the existing SC designs. On
average, the proposed stochastic designs for the algorithms
show 37% improvement in accuracy, with significant reduction
of 50-90% in area and 20-85% in delay as compared to existing
stochastic designs in [4].

We have also studied the effect of soft error injection in
both proposed stochastic and conventional implementations.
We have used the methodology for soft error injection as stated
in [4]. Table II shows the effect of 0%,10%, and 20% soft error
injection in proposed stochastic and conventional implementa-
tions. Mean accuracy reduction per pixel due to effect of soft
errors injection is 50-90% lesser in the proposed stochastic
implementation as compared to conventional implementation.

TABLE II. COMPARISON OF FAULT TOLERANCE BETWEEN
CONVENTIONAL AND PROPOSED STOCHASTIC IMPLEMENTATIONS

Mean Accuracy reduction per pixel (%)
Conventional Proposed Stochastic

Implementation Implementation
Soft Error 0% 10% 20% 0% 10% 20%

Median Filter 0.00 2.39 4.21 0.00 1.12 1.24
Contrast Stretching 0.00 10.42 18.69 3.11 6.81 9.69

Frame Segmentation 0.00 11.57 20.57 0.52 1.52 2.26
Edge Detection 0.00 8.76 18.48 4.25 5.12 7.26

V. CONCLUSION

Stochastic Computing is an intriguing alternative to con-
ventional computing which requires less hardware resources
and provides high tolerance towards soft errors. Existing
stochastic designs are consuming more hardware resources for
converting binary number to stochastic stream. In this paper,
we have proposed stochastic designs with reduced hardware
cost and delay by introducing correlation in the input streams.
Correlation improves accuracy by 37% on average compared
to the existing stochastic designs. Also significant reduction
of 50-90% in area and 20-85% in delay are achieved in the
proposed method. Correlation can therefore be used wisely to
implement more efficient stochastic designs.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proc. of the spring joint
computer conference. ACM, 1967, pp. 149–156.

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[3] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[4] P. Li, D. J. Lilja et al., “Computation on stochastic bit streams digital
image processing case studies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2014.

[5] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in IEEE 31st International Conference on Computer Design
(ICCD), 2013, pp. 39–46.

[6] T.-H. Chen and J. P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” in Computer Design (ICCD), 2014 32nd IEEE
International Conference on. IEEE, 2014, pp. 367–373.

[7] M. Parhi, M. D. Riedel, and K. K. Parhi, “Effect of bit-level correlation
in stochastic computing,” in Digital Signal Processing (DSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 463–467.

[8] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. of the 50th Design Automation
Conference, 2013.

[9] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on. IEEE, 2016, pp. 116–121.

TABLE I. COMPARISON OF CONVENTIONAL, EXISTING, AND PROPOSED STOCHASTIC IMPLEMENTATIONS IN TERMS OF ACCURACY, AREA, AND DELAY

Benchmarks

Conventional Implementation Existing Stochastic Implementation Proposed Stochastic Implementation
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)reduction reduction reduction
per pixel (%) per pixel (%) per pixel (%)

Median Filter 0.00 234 15.98 1.82 478 5921.5 0.00 50 903.42
Contrast Stretching 0.00 291 24.04 4.96 42 921.08 3.11 22 573.44

Frame Segmentation 0.00 16 3.88 0.82 43 1062.91 0.52 21 860.16
Edge Detection 0.00 116 4.39 6.8 98 2361.6 4.25 45 767.23

Fig. 9. (a), (b), (c) and (d) show simulation results of conventional and
proposed stochastic implementation of median filter, contrast stretching, frame
based image segmentation, and edge detection algorithm respectively

by simpler logic blocks like AND/OR/MUX gates with corre-
lated bitstreams. In the proposed SC design of median filter, 38
Markov-based FSM blocks consuming higher area and latency
are replaced by 38 AND/OR gate which results in reduction
of 90% and 85% in area and delay respectively. Similarly,
proposed SC design for other algorithms also shows reduction
in area and delay compared to the existing SC designs. On
average, the proposed stochastic designs for the algorithms
show 37% improvement in accuracy, with significant reduction
of 50-90% in area and 20-85% in delay as compared to existing
stochastic designs in [4].

We have also studied the effect of soft error injection in
both proposed stochastic and conventional implementations.
We have used the methodology for soft error injection as stated
in [4]. Table II shows the effect of 0%,10%, and 20% soft error
injection in proposed stochastic and conventional implementa-
tions. Mean accuracy reduction per pixel due to effect of soft
errors injection is 50-90% lesser in the proposed stochastic
implementation as compared to conventional implementation.

TABLE II. COMPARISON OF FAULT TOLERANCE BETWEEN
CONVENTIONAL AND PROPOSED STOCHASTIC IMPLEMENTATIONS

Mean Accuracy reduction per pixel (%)
Conventional Proposed Stochastic

Implementation Implementation
Soft Error 0% 10% 20% 0% 10% 20%

Median Filter 0.00 2.39 4.21 0.00 1.12 1.24
Contrast Stretching 0.00 10.42 18.69 3.11 6.81 9.69

Frame Segmentation 0.00 11.57 20.57 0.52 1.52 2.26
Edge Detection 0.00 8.76 18.48 4.25 5.12 7.26

V. CONCLUSION

Stochastic Computing is an intriguing alternative to con-
ventional computing which requires less hardware resources
and provides high tolerance towards soft errors. Existing
stochastic designs are consuming more hardware resources for
converting binary number to stochastic stream. In this paper,
we have proposed stochastic designs with reduced hardware
cost and delay by introducing correlation in the input streams.
Correlation improves accuracy by 37% on average compared
to the existing stochastic designs. Also significant reduction
of 50-90% in area and 20-85% in delay are achieved in the
proposed method. Correlation can therefore be used wisely to
implement more efficient stochastic designs.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proc. of the spring joint
computer conference. ACM, 1967, pp. 149–156.

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[3] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[4] P. Li, D. J. Lilja et al., “Computation on stochastic bit streams digital
image processing case studies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2014.

[5] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in IEEE 31st International Conference on Computer Design
(ICCD), 2013, pp. 39–46.

[6] T.-H. Chen and J. P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” in Computer Design (ICCD), 2014 32nd IEEE
International Conference on. IEEE, 2014, pp. 367–373.

[7] M. Parhi, M. D. Riedel, and K. K. Parhi, “Effect of bit-level correlation
in stochastic computing,” in Digital Signal Processing (DSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 463–467.

[8] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. of the 50th Design Automation
Conference, 2013.

[9] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on. IEEE, 2016, pp. 116–121.

59

Soft Error Injection

• SC is more tolerant to fault injection

TABLE I. COMPARISON OF CONVENTIONAL, EXISTING, AND PROPOSED STOCHASTIC IMPLEMENTATIONS IN TERMS OF ACCURACY, AREA, AND DELAY

Benchmarks

Conventional Implementation Existing Stochastic Implementation Proposed Stochastic Implementation
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)
Mean Accuracy

Area (LUTs) Delay (ns)reduction reduction reduction
per pixel (%) per pixel (%) per pixel (%)

Median Filter 0.00 234 15.98 1.82 478 5921.5 0.00 50 903.42
Contrast Stretching 0.00 291 24.04 4.96 42 921.08 3.11 22 573.44

Frame Segmentation 0.00 16 3.88 0.82 43 1062.91 0.52 21 860.16
Edge Detection 0.00 116 4.39 6.8 98 2361.6 4.25 45 767.23

Fig. 9. (a), (b), (c) and (d) show simulation results of conventional and
proposed stochastic implementation of median filter, contrast stretching, frame
based image segmentation, and edge detection algorithm respectively

by simpler logic blocks like AND/OR/MUX gates with corre-
lated bitstreams. In the proposed SC design of median filter, 38
Markov-based FSM blocks consuming higher area and latency
are replaced by 38 AND/OR gate which results in reduction
of 90% and 85% in area and delay respectively. Similarly,
proposed SC design for other algorithms also shows reduction
in area and delay compared to the existing SC designs. On
average, the proposed stochastic designs for the algorithms
show 37% improvement in accuracy, with significant reduction
of 50-90% in area and 20-85% in delay as compared to existing
stochastic designs in [4].

We have also studied the effect of soft error injection in
both proposed stochastic and conventional implementations.
We have used the methodology for soft error injection as stated
in [4]. Table II shows the effect of 0%,10%, and 20% soft error
injection in proposed stochastic and conventional implementa-
tions. Mean accuracy reduction per pixel due to effect of soft
errors injection is 50-90% lesser in the proposed stochastic
implementation as compared to conventional implementation.

TABLE II. COMPARISON OF FAULT TOLERANCE BETWEEN
CONVENTIONAL AND PROPOSED STOCHASTIC IMPLEMENTATIONS

Mean Accuracy reduction per pixel (%)
Conventional Proposed Stochastic

Implementation Implementation
Soft Error 0% 10% 20% 0% 10% 20%

Median Filter 0.00 2.39 4.21 0.00 1.12 1.24
Contrast Stretching 0.00 10.42 18.69 3.11 6.81 9.69

Frame Segmentation 0.00 11.57 20.57 0.52 1.52 2.26
Edge Detection 0.00 8.76 18.48 4.25 5.12 7.26

V. CONCLUSION

Stochastic Computing is an intriguing alternative to con-
ventional computing which requires less hardware resources
and provides high tolerance towards soft errors. Existing
stochastic designs are consuming more hardware resources for
converting binary number to stochastic stream. In this paper,
we have proposed stochastic designs with reduced hardware
cost and delay by introducing correlation in the input streams.
Correlation improves accuracy by 37% on average compared
to the existing stochastic designs. Also significant reduction
of 50-90% in area and 20-85% in delay are achieved in the
proposed method. Correlation can therefore be used wisely to
implement more efficient stochastic designs.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proc. of the spring joint
computer conference. ACM, 1967, pp. 149–156.

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[3] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[4] P. Li, D. J. Lilja et al., “Computation on stochastic bit streams digital
image processing case studies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2014.

[5] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in IEEE 31st International Conference on Computer Design
(ICCD), 2013, pp. 39–46.

[6] T.-H. Chen and J. P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” in Computer Design (ICCD), 2014 32nd IEEE
International Conference on. IEEE, 2014, pp. 367–373.

[7] M. Parhi, M. D. Riedel, and K. K. Parhi, “Effect of bit-level correlation
in stochastic computing,” in Digital Signal Processing (DSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 463–467.

[8] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. of the 50th Design Automation
Conference, 2013.

[9] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on. IEEE, 2016, pp. 116–121.

R.K. Bhudhwani, R. Ragavan, O. Sentieys. Taking advantage
of correlation in stochastic computing, IEEE ISCAS, 2017.

Conclusion (SC)

• SC provides massive low area, parallelism, error
tolerance

• Only suitable for low-precision
• High processing latency

• Exploiting correlation
– improves accuracy by 37% on average
– Reduction of 50-90% in area and 20-85% in delay

60

61

Conclusions

• Most applications tolerate imprecision
• Playing with accuracy is an effective way to save

energy consumption
– Word-length
– Number representations, including exotic ones

• Not only computation, but also memory and
transfers

• Run-time accuracy adaptation would increase
energy efficiency even further

• Analytical accuracy models are key to scalability
of exploration techniques

