
ATE-Accuracy Trade-Offs for Approximate Adders
and Multipliers in Pipelined Processor Datapaths

M. Weißbrich∗, A. Najafi†, A. García-Ortiz† and G. Payá-Vayá∗
∗Institute of Microelectronic Systems, Leibniz Universität Hannover, Appelstraße 4, 30167 Hannover, Germany

Email: {weissbrich, guipava}@ims.uni-hannover.de
†Institute of Electrodynamics and Microelectronics, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany

Abstract—The energy efficiency of application-specific pro-
cessors for high-performance embedded Computer Vision sys-
tems can be increased by applying Approximate Computing
mechanisms. Due to prevalent error resilience in typical feature
extraction or image classification algorithms, the requirement of
precise additions and multiplications can be relaxed to obtain
more area- and energy-efficient ALU architectures for real-
time operation on a limited energy budget. However, state-of-
the-art approximate adder and multiplier architectures do not
consider the influence of pipelining in processor datapaths on the
area-timing-energy (ATE) trade-offs. In this work, a pipelining-
aware synthesis flow and ATE-accuracy trade-off exploration is
presented, showing a reduction of up to 20% in silicon area and
up to 11% in energy consumption when compared to unpipelined
approximate units for the same target performance.

I. Introduction

In the last years, Approximate Computing has become a
promising design approach for the growing field of energy-
efficient, high-performance portable embedded systems. Es-
pecially, in Computer Vision (CV) applications, often pre-
cise computations are not necessary for the functionality of,
e.g., image feature extraction or neural network-based image
classification algorithms [1]. When relaxing the requirement
of fully precise operations, the system design space can be
extended by the use of approximate arithmetic units to trade-
off computational accuracy for improvements in processing
performance, circuit area and energy efficiency [2].
A steadily growing CV application field is video-based

Advanced Driver Assistance Systems (ADAS). Image interpre-
tation and scene understanding techniques under tight real-
time conditions are commonly used in these systems, which
requires specialized processor architectures. Horizontal and
vertical vector architectures, i.e., microSIMD [3] and vector
processors [4], exploit inherent data-level parallelism in CV al-
gorithms to cope with the requirements on high computational
performance at a low energy budget and programming flexi-
bility for future software updates. Due to the error-resilience
of the application, approximate additions and multiplications
can be used in vector ALUs to further optimize area, timing
and energy (ATE) metrics of the processor implementation.
A characteristic of data-parallel processor architectures is

pipelined execution to obtain a high operation throughput.
Therefore, pipelining of arithmetic units can be implemented
without additional control overhead and may be used by the
designer for ATE trade-offs of the specialized architecture.

However, in state-of-the-art approximate adder and multiplier
literature, the presence of pipelined datapaths is not considered
and ATE trade-offs are only explored for single-cycle execu-
tion. The contribution of this work therefore focuses on:
• A generic implementation strategy for approximate adder
and multiplier designs using optimized precise arithmetic
sub-components and a configurable number of pipeline
stages

• A two-phase synthesis flow with adaptive timing con-
straints for area-efficient gate-level implementations of
pipelined arithmetic units

• ATE-Accuracy trade-off profiling for the implemented
pipelined approximate arithmetic units

This paper is organized as follows: Section II presents
an overview on frequently referenced approximate adder and
multiplier designs. In Section III, the HDL implementation
of these units and the synthesis flow for generating pipelined
architecture implementations is described. Trade-off profiling
results are given in Section IV, and Section V concludes the
results and points out future work.

II. Related Work
Several approximate adder and multiplier architectures have

been presented during the last decade [5]–[11]. These imple-
mentations attend to reduce the power consumption and critical
path delay by generating imprecise results. However, no study
comparing approximate units in pipelined processor datapaths
has been presented so far.

A. Approximate Adders
Approximate adders reduce the critical path delay and power

consumption of traditional accurate adder designs by breaking
the carry propagation chain, thus generating imprecise ad-
dition results. A variety of approximate adders is reviewed
and compared in [12]. The authors propose an architecture
classification based on the applied approximation mechanisms
for the summation, i.e., carry speculation, segmentation or
approximate full adder cells. Table I lists the configuration
parameters and the approximation classification for the imple-
mented adders.

The most common carry speculation adder is the Almost
Correct Adder (ACA) [5]. In this design, the maximum carry
propagation chain for each sum bit is limited to K previous
bits. If the speculation on this maximum carry propagation is



TABLE I
Classification of Approximate Adders [12], [13]

Approximation Class Error Class Adder Name Configuration Parameter
short long Ref.

Carry Speculation ILM ACA Almost Correct Adder [5] Carry propagation chain length K

Segmentation FSM ESA Equal Segmentation Adder [6] Sub-adder block width K
ETA2 Error-Tolerant Adder Type 2 [7] Sub-adder block width K

Approximate Full Adder Cell FSM LOA Lower-Part OR Adder [8] Inaccurate less significant bits K

TABLE II
Classification of Approximate Multipliers [14]

Approximation Class Multiplier Name Configuration Parameter
short long Ref.

Partial Product Generation UDM Underdesigned Multiplier [9] -

Partial Product Addition
BAM Broken-Array Multiplier [8] Horizontal break level HBL, vertical break level VBL
ETM Error-Tolerant Multiplier [10] Inaccurate less significant bits K
AWTM Approximate Wallace Tree Multiplier [11] Accuracy mode

sufficient for specific operands, the sum output will be totally
correct. In less probable cases of longer carry propagation, an
erroneous sum bit may be generated in any position, so the
error behavior of the ACA can also be classified as Infrequent
Large Magnitude (ILM) errors [13]. The ACA implementation
described in [5] consists of a K-bit precise sub-adder for the
LSBs and a look-ahead tree structure to provide the limited
carry propagation chain to each more significant sum bit.
For segmentation-based approximate adders, the design is

split into sub-adders with a fixed length K, allowing no carry
propagation across segment boundaries. Due to this property,
there are distinct bit positions within the operands at which a
carry bit is not propagated. Such adders produce frequent small
magnitude (FSM) errors when segmentation is applied within
the less significant part of the sum output [13]. The Equal
Segmentation Adder (ESA) [6] and Error-Tolerant Adder Type
2 (ETA2) [7] belong to this approximation class. In case of
the ESA, carry propagation is only applied within one adder
segment, whereas the segment carry input in the ETA2 is
coming from exactly one preceding less significant block.
The Lower-Part OR Adder (LOA) [8] approximates K sum

LSBs by using simple OR gates as approximate full adder
cells without any carry propagation. The MSB adder remains
precise, so FSM error behavior is achieved. In addition to a
shorter critical path and less power consumption, the circuit
area of this adder is reduced compared to precise implemen-
tations because OR gates are significantly smaller than full
adder cells.

B. Approximate Multipliers
In [14], approximate multipliers are compared and classified

according to where approximation is applied in the multipli-
cation process, i.e., either in the partial product generation
or in the partial product addition step. The classification and
configuration parameters for the implemented multipliers are

listed in Table II. Because approximation errors accumulate
during partial product addition, the reviewed multiplier designs
produce imprecise results for virtually every operation. There-
fore, a further ILM or FSM classification like for approximate
adders is not reasonable here.

The UnderDesigned Multiplier (UDM) [9] uses approximate
2-by-2-bit basic blocks for partial product generation. By
approximating 112 · 112 = 10012 with 112 · 112 = 1112, the
Karnaugh map of the basic block is simplified and only three
instead of four bits are passed to a precise partial product
addition tree, which reduces the overall power consumption.

Instead of generating approximate partial products, an
imprecise partial product addition is performed in the
Broken-Array Multiplier (BAM) [8], the Error-Tolerant Mul-
tiplier (ETM) [10] and Approximate Wallace Tree Multiplier
(AWTM) [11]. In the BAM, the partial product array is trun-
cated by some less significant rows or columns, parameterized
by the horizontal break level HBL or the vertical break level
VBL, respectively. The ETM truncates K LSBs from the input
operands and applies precise multiplication on the input MSBs
and simple operand ceiling on the LSBs to reduce the approx-
imation error. In both cases, truncation leads to a significantly
smaller circuit area and reduced power consumption.

In the Approximate Wallace Tree Multiplier (AWTM) [11],
several inner columns of the partial product array are not accu-
mulated, leading to less input bits to the carry-save reduction
tree used for partial product addition. The authors of [11] pro-
pose an accuracy-configurable hierarchical architecture built
out of smaller, either precise or approximate multiplication
blocks. This way, the trade-off between approximation error
and power consumption can be adapted to the application.

C. Approximation Error Metrics
To evaluate the accuracy of approximate circuits, error

metrics have been proposed and applied to both adders and



multipliers in [12], [14], [15]. The Error Rate (ER) considers
the amount of expected imprecise results and is defined as the
probability of generating an inaccurate result. Error distance
metrics like the Relative Error Distance (RED) are used to
evaluate the deviation of the approximate arithmetic result to
the precise one. The RED is defined as

RED =
‖M ′ − M ‖

M
(1)

where M’ and M are the approximate and precise result,
respectively. The RED can be specified for any input operand
combination with a non-zero precise result. When averaged
over all possible input operand combinations, the Mean Rela-
tive Error Distance (MRED) is obtained. Both ER and MRED
are quantified by using either analytical model or Monte Carlo
simulation approaches.

III. Generic Approximate Arithmetic Library
The approximate arithmetic units presented in Tables I

and II are implemented using a generic VHDL description
regarding bitwidth, the number of pipeline stages and the
design-specific configuration parameters. To establish a fair
comparison, precise sub-adder or sub-multiplier components
within the approximate architectures are inferred using VHDL
’+’ and ’*’ operators, allowing the ASIC synthesis tool to
select area- and delay-efficient architectures. Moreover, the
Synopsys Design Compiler is used, which provides a Design-
Ware library including highly optimized arithmetic units. It is
worth mentioning that, in this work, the DWF_sum function,
which implements a carry-save summation tree [16], is applied
in the UDM, BAM and AWTM multipliers for partial product
addition.
In order to obtain a precise reference adder and multiplier,

the VHDL operators ’+’ and ’*’ are also used, since this
is the standard method to infer arithmetic units in processor
architectures. The synthesis tool is parameterized to select
a both area- and speed-aware implementation. For a typical
operand bitwidth of 32 bit in general-purpose processors, this
results in a parallel-prefix adder architecture and a Radix-4
Booth multiplier architecture. Due to this selection, the partial
product array for the truncation-based BAM is implemented
as a Radix-4 Booth-encoded representation [17] to obtain
competitive circuit area and critical path delay results.
In order to efficiently balance the pipeline registers, a two-

phase ASIC synthesis flow is implemented as depicted in
Fig. 1:
1) In the first phase, an area-efficient architecture selection

and mapping is performed by synthesizing the target
arithmetic unit with a relaxed timing constraint tc,initial

2) In the second phase, an incremental synthesis for the
desired timing constraint tc,retime is performed with ac-
tivated retiming/register balancing

This method leads to better area results than directly applying
the desired timing constraint in the first phase, as it is com-
monly done in a standard synthesis flow. For the precise Radix-
4 Booth multiplier, the resulting circuit area is found to be up

D Q D QD QComb. Logic

CLK

tc,initial = tFF + tlogic,total + tsetupa)

N registers

D Q D QD QLogic

CLK

tc,retime = tFF + (tlogic,total / N) + tsetup
b)

Logic

Retiming / 

Balancing

Fig. 1. Two-phase ASIC synthesis flow with a) the initial architecture selection
and mapping with a relaxed timing constraint and b) the retiming and register
balancing phase with the desired timing constraint.

to 10% smaller. The chosen relaxed timing constraint tc,initial
for the first phase is derived from the idealized equations

tc,initial = tlogic,total + tFF + tsetup (2)

and
tc,retime =

tlogic,total
N

+ tFF + tsetup (3)

for balancing N − 1 register stages in Fig. 1. By combining
Eq. 2 and 3, the relaxed constraint

tc,initial = N · tc,retime − (N − 1) ·
(
tFF + tsetup

)
(4)

is obtained. tlogic,total is the critical path of the total com-
binational logic, tFF is the register output propagation delay
and tsetup is the required register setup time. For a 40 nm low-
power standard cell technology used in this work, tFF + tsetup
is estimated to a worst-case value of 0.35 ns.

IV. Trade-Off Profiling for Pipelined Approximate
Arithmetic Units

In this section, the implemented approximate adders and
multipliers are profiled for a bitwidth of 32 bit commonly
found in general-purpose processor datapaths. The explored
design space includes the different adder and multiplier archi-
tectures shown in Table I and II. More specifically, the impact
on the silicon area requirement and energy consumption per
operation when increasing the number of pipeline registers
or decreasing the desired clock period constraint is evaluated.
Error rate (ER) and mean relative error distance (MRED) are
the considered metrics for the approximation error.

Each adder and multiplier architecture is synthesized using
Synopsys Design Compiler for a 40 nm low-power standard
cell technology. The two-phase flow described in Section III
is applied to generate pipelined designs. Both approximation
error and energy per operation are extracted from netlist
simulations and switching activity evaluation using Mentor
Graphics ModelSim [18] and Synopsys PrimeTime [16] for
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Fig. 3. Error rate (filled bars) and MRED (pattern bars) of 32 bit approximate
adders. The value of an adder-specific configuration parameter is indicated as
a suffix to the adder name.

105 uniformly-distributed pseudo-random operations with the
full numeric range of 32 bit operands. Although the latency
in clock cycles of a single arithmetic operation is increased
by pipelining, the input operands are treated as being data-
independent, like in vector processor architectures. Therefore,
pipeline hazards are not considered and one operation finishes

every clock cycle, resulting in equal time intervals for energy
analysis of pipelined and unpipelined designs. ER and MRED
are also independent from the number of pipeline stages
because the circuit functionality is not influenced by register
balancing.

A. Analysis of Pipelined Approximate Adders
Fig. 2 depicts the silicon area and energy per operation of

the ACA with parameter K = {4, 6, 8}, the ESA with K =
{4, 8, 12, 16}, the ETA2 with K = {4, 6, 8, 10} and the LOA
with K = {12, 16, 20, 24} as functions of the target clock period
constraint (0.5 to 3 ns), the amount of pipelining (zero to one
internal register stages) and the desired MRED. ER and MRED
are illustrated in Fig. 3. The following conclusions can be
drawn:
• Throughout the complete MRED range, full adder ap-
proximation in the LOA is the most area- and energy-
efficient approximation method. With the LOA-24, the
area is reduced by up to 25% and the power is reduced by
up to 20% in the clock period range of 1 to 3 ns without
pipelining compared to the precise adder.

• Without internal pipeline stages, ESA and ETA2 designs
are able to gain significant performance increases of up
to 30% compared to the precise adder due to smaller
possible clock periods down to 0.6 ns without violating
the critical path. However, this is accompanied by errors
larger than 10−5 in MRED.
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Fig. 5. Error rate (filled bars) and MRED (pattern bars) of 32 bit approximate
multipliers. The value of a multiplier-specific configuration parameter is
indicated as a suffix to the multiplier name.

• When applying one internal pipeline stage, high per-
formance with clock periods of 0.6 ns is possible with
the more precise LOA-12 and LOA-16 adders. Area and
power of the pipelined LOA-12 are increased by 12%
compared to the unpipelined ESA-4 at 0.6 ns, but with a
MRED smaller by five orders of magnitude. Moreover,

the pipelined LOA-12 has 30% less silicon area and
energy consumption than the pipelined precise adder at
0.6 ns, including all pipeline register stages.

• Between 0.7 and 0.9 ns, the area of the precise adder,
ETA2 and ACA shows an intersection between the
pipelined and unpipelined designs. Therefore, a clock
period margin exists where the insertion of a pipeline
stage can also lead to a more area-efficient adder when
not optimizing for maximum performance.

B. Analysis of Pipelined Approximate Multipliers
Fig. 4 depicts the silicon area and energy per operation of

the UDM, the AWTM in different accuracy modes, the BAM
with parameters V BL = {16, 24, 32, 40},HBL = 0 and the
ETM with K = {4, 8, 12, 16} as functions of the target clock
period constraint (1 to 10 ns), the amount of pipelining (zero
to two internal register stages) and the desired MRED. ER and
MRED are illustrated in Fig. 5. The following conclusions can
be drawn:
• For all evaluated multipliers, the partial product trunca-
tion of the BAM is the most area- and energy-efficient
approximation method. For the BAM-40, area and power
are reduced by 70% in the clock period range of 3 to
10 ns without pipelining compared to the precise Radix-4
Booth multiplier.

• Without internal pipeline stages, the maximum perfor-
mance increase of 16% compared to the precise multiplier



is achieved with the BAM-40 because of critical path
truncation. However, this is accompanied by a MRED
of 3 · 10−5. Lower clock periods than 2.2 ns at smaller
approximation errors require one or two internal pipeline
stages at the expense of increased circuit area and energy
consumption.

• Between 2.5 and 4 ns, area and energy show intersections
between the same multiplier design with zero and one
internal pipeline stage. When a second internal pipeline
stage is added, BAM and ETM multipliers have further
intersections between 1.5 and 2.5 ns. For example, the
area of the BAM-24 with one internal pipeline stage is
reduced by 20% and the energy requirement is reduced
by 11% compared to the unpipelined multiplier at a clock
period constraint of 2.5 ns. The ETM-12 with two internal
pipeline stages achieves an area reduction of 12% and
energy reduction of 10% when compared to one internal
pipeline stage at 1.5 ns. For these units, early pipelining
leads to more area- and energy-efficient multipliers when
not optimizing for maximum performance.

V. Conclusion and Future Work
In this work, trade-offs between circuit area, energy re-

quirements and accuracy of approximate adder and multiplier
designs are explored for pipelined processor datapaths. A two-
phase architecture mapping and register balancing synthesis
with adaptive timing constraints is used to obtain area-efficient
gate-level implementations for a parameterizable amount of
pipeline stages. The trade-off analysis shows that besides to
more performance, inherent datapath pipelining can also be
used to implement more area- and energy-efficient approxi-
mate arithmetic units when the maximum performance is not
required, obtaining area reductions of up to 20% and energy
reductions of up to 11% for the same target clock period
constraint. Furthermore, when higher performance is desired
for a specific architecture, pipelining can be used instead of
choosing another approximate unit with lower accuracy.
The applied register balancing to implement pipelined de-

signs does not modify the functionality of the arithmetic archi-
tecture, so there is no accuracy variation with the number of
pipeline stages. In general, state-of-the-art approximate adder
and multiplier units are designed for single-cycle execution,
however, pipelined datapaths can be further used to struc-
turally exploit multi-cycle designs. By including the concept
of pipelining directly in the architecture description instead
of using register balancing, more area- and energy-efficient
adder and multiplier implementations at given performance
and accuracy requirements could be developed in future work.
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