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Abstract—Existing approaches and tools for the generation
of approximate circuits often lack generality and are restricted
to certain circuit types, approximation techniques, and quality
assurance methods. Moreover, only few tools are publicly
available. This hinders the development and evaluation of new
techniques for approximating circuits and their comparison
to previous approaches. In this paper, we first analyze and
classify related approaches and then present CIRCA, our
flexible framework for search-based approximate circuit gen-
eration. CIRCA is developed with a focus on modularity and
extensibility. We present the architecture of CIRCA with its
clear separation into stages and functional blocks, report on
the current prototype, and show initial experiments.
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I. INTRODUCTION

Approximate computing subsumes a variety of approaches
that trade-off computational accuracy for improvements in
hardware area, delay, and/or energy consumption. This trade-
off becomes possible since for many applications approxi-
mate results are indeed good enough and often hard to distin-
guish from accurate results. Examples for such applications
can be found in the processing of audio, image, and video
data as well as in data mining and machine learning. While
computer scientists and engineers have been dealing with
limited accuracy and suboptimal quality of results for a long
time, e.g., due to the limited precision of data types or in
developing heuristics, recent research has been focusing on
more aggressive approximation techniques at all levels of
the computing stack, from programming languages down to
semiconductor technology.

Our interest is in methods for the automated approxima-
tion of combinational and sequential circuits and accelera-
tors, respectively. Related approaches presented in literature
employ iterative design processes, typically search-based.
A search space is spanned by iteratively creating different
versions of approximate circuits, selecting one of these
versions by heuristics, and checking whether the version
still satisfies user-provided error bounds. The difficulty in
studying and comparing related approaches is that they are
designed, or at least described, as monolithic blocks with
interwoven phases for search, approximation, and quality
checking. Furthermore, only few frameworks are openly

available for experimentation, which hinders the develop-
ment of new techniques for approximating circuits.

In this paper we present CIRCA, our framework for
approximate circuit generation. CIRCA is developed to be
modular and extensible and will be made publicly available.
We argue that such a framework is of great value for
the approximate computing community, since it facilitates
the rapid implementation and evaluation of new ideas and
also enables fair experimental comparisons of alternative
approximation techniques.

The remainder of this paper is structured as follows: In
Section II we discuss the related work. In Section III we
provide a classification of related work according to several
categories, state requirements for a flexible approximation
framework, and, finally, present the architecture of our own
CIRCA framework. Since CIRCA is work in progress, we
give a short overview over its current state in Section IV and
also show some experiments conducted with the prototype.
Section V concludes the paper and describes future work.

II. RELATED WORK

In the following, we provide a brief overview over related
approaches for the automated generation of approximate
circuits. We focus on the approximation techniques and
how they are iteratively applied to generate one or more
approximated circuit variants.

Venkataramani et al. proposed SASIMI [1] which uses
a substitute-and-simplify approximation technique. Near-
identical signal pairs are identified, i.e., two signals which
show a similar behavior, and one is substituted with the
other. Subsequently, the required logic can be simplified.
SASIMI evaluates and ranks signal pairs with a heuristic
function including area and delay parameters. With a gra-
dient ascent technique, more accurately hill climbing, the
highest ranked pair is selected for substitution. The process
is iterated until the user-defined quality constraints are vio-
lated. For the resulting circuit, power and area are reported.
The quality of the approximate circuits is determined by
testing. Additionally, the authors suggest the concept of
quality configurable circuits, which are circuits that can
operate in either an accurate or approximate version.

Venkataramani et al. also presented SALSA [2] which
forms a so-called quality constraint circuit by providing



the original and the approximated circuit, which initially is
identical to the original circuit, with the same input and
feeding the outputs of the circuits into a quality function
that checks whether the given error bound holds. Forcing the
error bound to hold, SALSA works backwards and applies
standard don’t care logic optimization techniques to reduce
the area of the approximated circuit. Thus, the technique
creates approximated combinational circuits that adhere to
the error bound by construction.

Similar to SALSA, the approach of Chandrasekharan et
al. [3] employs a setup with a quality constraint circuit but
formally verifies the error constraint by combinational equiv-
alence checking using a SAT solver. The approach represents
a circuit’s logic function as AND-Inverter graph (AIG) and
employs AIG re-writing as approximation technique, i.e.,
setting nodes to constant zero. Among all possible cuts on
the critical paths of the circuit, the one with smallest cut size
is selected for re-writing. This heuristic is greedily iterated
until there is no more possibility for re-writing without
violating the error bound. For the resulting circuit, area and
delay estimates gained by ABC [4] are reported.

Nepal et al. [5] proposed a methodology called ABA-
CUS which transforms a circuit into an Abstract Synthesis
Tree (AST). In an iterative approach, AST transformations
are applied to create approximated circuit candidates. The
accuracy of the candidates is evaluated by testing, area and
power characteristics via ASIC synthesis using a standard
cell library. The resulting three metrics are then combined
into a fitness function. The candidate with the best fitness is
greedily selected as next current circuit. This heuristic pro-
cess runs for a user-defined number of iterations. Eventually,
a Pareto front of designs is given, trading off accuracy for
power.

The SCALS framework presented by Liu and Zhang [6]
maps an initial gate-level logic network to a target technol-
ogy. In an iterative process, sub-netlists are extracted from
the mapped netlist and are subjected to randomly chosen
approximations or optimizations. The candidates are then
evaluated by a function including the error, gained through
a testing approach, and the area. A Metropolis-Hastings
algorithm steers the candidate selection and search until a
predefined number of iterations is reached. Additionally, the
user can specify a confidence interval for the estimated error.

The ASLAN framework [7] by Ranjan et al. is, to the
best of our knowledge, the only presented framework able
to approximate sequential circuits while guaranteeing error
bounds. In a first step, ASLAN extracts combinational
subcircuits amenable to approximation. Then, a search space
is generated by creating approximated versions for the
subcircuits that vary in their local error constraints and
estimated energy consumption. The applied approximation
techniques are precision scaling and SALSA [2], although
the authors also mention the applicability of other tech-
niques. Finally, ASLAN employs hill climbing to find a

locally optimal combination of approximated subcircuits. In
each iteration, subcircuit versions with larger error bounds
are considered and the combination resulting in the greatest
energy savings is selected if the circuit adheres to the
global error bound. Otherwise, the next-best combination of
subcircuits is picked. Quality assurance relies on a so-called
sequential quality constraint circuit (SQCC) that raises a flag
in case the error bound is violated. Since ASLAN deals with
sequential circuits, time frame expansion is used to unroll
both the original and the approximated circuit until they
finish their computations. The resulting Boolean expression
is then formally verified with a SAT solver.

III. TOWARDS A FRAMEWORK FOR APROXIMATE
CIRCUIT GENERATION

A. Classification of Existing Frameworks

Table I presents our attempt to classify the presented
frameworks. The challenges are two-fold, first to identify
meaningful and orthogonal categories and, second, to re-
trieve the required information from related works. Table I
comprises categories in four groups: the input, the circuit
generation/synthesis step, the output, and whether the frame-
work has been made publicly available.

Regarding the input, the first category is the circuit type.
Most of the frameworks approximate combinational circuits,
while ASLAN was developed for sequential circuits. It has
to be noted that it is not necessarily the characteristic of the
input circuit that determines its type in our classification.
Rather, an approximation technique for sequential circuits
means that at least the approximation technique or the
quality assurance step (as for ASLAN) are considering
the clocked nature of the circuit. For example, several
frameworks use sequential circuits such as FIR filters as
benchmarks, but restrict the approximation to the datapath
and do not report on testing the resulting circuit for a
sequence of clock cycles or formally verifying it. Hence
we classify these approaches as ”combinational” in Table I.
For ABACUS we are somewhat uncertain how to classify
it, since the mentioned approximation techniques are clearly
for sequential behavior, e.g., loop transformations, but a
corresponding quality assurance was not detailed.

As input model, SASIMI, SALSA, and the approach of [3]
rely on gate level netlists. SCALS takes technology-mapped
netlists as input, ASLAN begins with circuits described in
structural HDL, and ABACUS, operating on a more abstract
level, requires behavioral HDL or RTL code. Another issue
is how the user can control the error. Most frameworks
allow for specifying an error bound, often in several error
metrics such as error rate or average error. SALSA and
ASLAN define qualitiy functions and quality evaluation
circuits, respectively, which encode error bounds. Again,
ABACUS is different as it generates a Pareto front showing
reasonable trade-offs between accuracy and power. The
circuit generation process is controlled by a user-specified



Table I
OVERVIEW OVER PRESENTED FRAMEWORKS FOR APPROXIMATE CIRCUIT GENERATION.

Category SASIMI [1] SALSA [2] AIG
re-writing [3] ABACUS [5] SCALS [6] ASLAN [7]

Circuit Type Combinational Combinational Combinational Combinational +
sequential (?) Combinational Sequential

Input model Gate netlist Gate netlist Gate netlist/AIG Behavioral HDL Gate/LUT netlist Structural HDL +
annotations

Error control Error bound Quality function Error bound # Iterations Error bound Quality evaluation circuit

Search method Heuristic
(hill climbing) – Heuristic

(greedy)
Heuristic
(greedy)

Heuristic
(Metropolis-Hastings)

Heuristic
(hill climbing)

AC technique Substitute-and-simplify Approx. don’t care AIG re-writing AST transforms Logic transforms Precision scaling
Quality assurance Testing By construction Formal verification Testing Testing Formal verification

Output Approx. circuit Approx. circuit Approx. circuit Pareto front Approx. circuit Approx. circuit
Output model Gate netlist Gate netlist Gate netlist (AIG) Behavioral HDL Gate/LUT netlist Structural HDL
Target technology Standard cell Standard cell Techn. independent Standard cell Std. cell/LUT-based Standard cell

Publicly available – – Yes Yes – –

number of iterations. Generally, more iterations lead to more
approximations and, in turn, can add non-dominated designs
to the Pareto front with larger errors.

The second group of rows in Table I characterizes the cir-
cuit generation step, split into the three categories search, ap-
proximation technique, and quality assurance. All techniques
rely on heuristics for search, the exception being SALSA
that does not apply a search technique but systematically
iterates over the outputs of the approximated circuit to apply
don’t care optimization. Consequently, SALSA creates cir-
cuits that adhere to the error bound by construction, making
a subsequent quality assurance step obsolete. ASLAN and
the framework in [3] formally verify circuit quality, which
is time-consuming but provides a much stronger statement
about quality than the testing approaches used in SASIMI,
ABACUS, and SCALS. It has to be noted that there are error
metrics, e.g., the average-case error [8], for which formal
verification cannot be used.

The next group of categories characterizes the result
produced by the frameworks. Mostly, the tools return one
approximated circuit in form of a gate level netlist or
structural HDL. ABACUS, however, returns a set of designs
in behavioral HDL that form a Pareto front with respect to
accuracy and power. Since the results of all frameworks are
either netlists or synthesizable hardware descriptions they
can potentially target standard cell and FPGA technology.
In contrast, with the category ”target technology” we refer
to the technology used to get estimates for area, delay, and
power during the synthesis process. Here, most frameworks
target standard cell libraries with the exception of [3], where
the AIG representation and ABC functions, respectively, are
employed to retrieve technology-independent estimates for
area and delay.

Finally, only the authors of ABACUS [5] and the work
described in [3] decided to make their frameworks publicly
available.

B. Requirements for a Flexible Framework

Our analysis of related frameworks and the attempt to
categorize them showed that all these approaches have
been developed for specific circuit types and approxima-
tion techniques. In particular, circuit generation is typically
described as a monolithic block with interwoven phases for
approximation, search, and assuring quality. Moreover, only
few frameworks are openly available for experimentation.
This situation severely hampers the development and evalu-
ation of new techniques for approximating circuits, and the
comparison to existing ones.

With our work, we aim at overcoming these shortcomings
and provide a flexible framework for approximate circuit
generation. As a starting point for this development, we
take our classification of Table I. This classification provides
several categories and shows that many of these are largely
orthogonal, giving rise to a reasonable structuring of our
framework. Generally, we envision a framework that is:

• General: The framework should not be restricted to
certain circuit types, error metrics, approximation and
search techniques, or specific target technologies.

• Modular: The framework architecture should enable the
exchange of certain processing steps without affecting
other steps.

• Compatible: The framework, in particular its input and
outputs, should connect to other, widely-used academic
and commercial front-end and back-end tools.

• Extensible: The framework should facilitate the swift
implementation and evaluation of new techniques.

• Open source: The framework should be publicly avail-
able and allow other researchers to use, modify, and
extend it.

C. The CIRCA Framework

We are developing the CIRCA approximation framework
with an architecture shown in Figure 1. We target search-
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Figure 1. Architecture of the CIRCA approximation framework.

based approximation approaches with different approxima-
tion techniques and both formal verification and testing for
circuit validation. The framework is divided into tree stages:
the input stage, the QUAES stage, and the output stage.
The input stage processes user-provided information, which
in any case comprises an annotated Verilog description
of the original, exact circuit and a configuration file. The
configuration file defines the employed functionality in the
QUAES stage and specifies the target metric as well as
the quality constraints for the approximated circuits. The
annotations in the Verilog code identify subcircuits amenable
to approximation. Since our framework supports also testing
as quality assurance technique, the input can include a test
vector set.

The main stage for generating approximate circuits is the
QUAES stage. The split of the corresponding functionality
into the four blocks Quality Assurance, Approximation,
Estimation, and Search Space Exploration (QUAES) is
driven by our classification of related frameworks in Subsec-
tion III-A and is key to achieving a modular and extensible
architecture. We denote the subcircuits annotated in the input
Verilog code as candidates, and the different approximated
versions of these candidates as variants. The overall circuit
with instantiated variants for the candidates is called a circuit
configuration.

The structure of the search space exploration is kept
rather general, and thus, sufficiently flexible to support
a wide range of search algorithms. The search space is
iteratively explored by creating and visiting configurations,
which form the nodes of the search space, by applying the
three steps Select, Expand, and Evaluate. The evaluation
step takes a set of configurations and determines estimated
values for parameters of interest. Typically these parameters
cover metrics related to area, delay, and power but can also

include estimates of the error metrics. The actual estimation
functions are encapsulated in the estimation block to clearly
separate estimation from the search space exploration. The
select step receives a set of configurations, each with an
annotated vector of estimated parameters, and selects the
next configuration to be further considered, i.e., to be
expanded. This selection relies on a search heuristic. The
selected configuration is subsequently validated. To this
end the configuration, now called Circuit-under-Test (CUT),
is sent to the quality assurance block. This block either
employs formal verification or testing to decide if the CUT
satisfies the quality constraints and passes the check or not. If
a CUT fails quality assurance, the select step will, depending
on the configuration file, either abort the search or pick the
next best configuration for validation. In the latter case, the
search terminates if there are no more valid configurations.

If a CUT passes validation, the configuration and thus
the search space is expanded by creating a number of
new configurations. For creating new configurations the ap-
proximation block applies certain approximation techniques.
Depending on the actual configuration of the framework, one
or more candidates of the configuration can be approximated
and one or more approximation techniques can be applied.
The approximation block accesses a library of approximated
subcircuits, which is beneficial for two reasons: First, it is
rather likely that one circuit component will be approximated
for several times. This happens when the overall circuit
contains identical candidates, e.g., multiple occurrences of
an 8-bit unsigned adder. Storing the approximated versions
of such components and retrieving them the next time
can greatly save computations. Second, there are already
libraries available of approximated components [9], [10]
which can then be leveraged by CIRCA.

During the QUAES stage, all validated configurations are
stored. The output stage performs post-processing on these
configurations to return either the best approximated circuit,
e.g., a circuit that respects the error constraints and has
minimal area or energy, or a Pareto-filtered set of circuits.

IV. CIRCA IMPLEMENTATION

The implementation of CIRCA is work in progress. The
framework is mainly being coded in Python and will be
made open-source. In this section, we first present the cur-
rent state of CIRCA including the implemented techniques
for the different phases of the QUAES stage and then
show some experiments that demonstrate CIRCA’s current
functionality.

A. Current State

Our implementation follows the architecture presented in
Subsection III-C and currently supports the approximation
of sequential circuits using hill climbing search, precision
scaling (PS) and approximation-aware AIG re-writing [3] as
approximation techniques, formal verification based quality



assurance, and the worst-case error as well as the bit-flip
error [3] as error metrics.

The search process generates for each candidate a new
variant with a slightly degraded quality, i.e., increased er-
ror bound. For each variant, individual error bounds are
provided by the search step which the new variant has to
adhere to. This ensures that the search space is expanded in
a controlled manner. Then the variants are evaluated using a
heuristic function taking an area estimate into account, based
on ABC’s technology mapper for 4-LUT FPGA logic blocks.
The variant with the biggest area reduction is selected and
installed in the currently selected configuration which is
validated subsequently. If no more variants are left whose
instantiation satisfy the error bound and lead to an area
reduction, the search terminates.

The current implementation of CIRCA differs from
ASLAN [7], which is the only related framework for approx-
imating sequential circuits, in two important aspects. First, in
the search phase we implement a hill climbing version that
expands the search space step-by-step. In contrast, ASLAN
generates an entire search space before starting the actual
search procedure. Our approach of selectively expanding
the search space shows two advantages: We can reduce the
computational effort since only the variants of interest are
being generated, and we do not have to prematurely bound
the search space.

The second difference is that besides time frame ex-
pansion as used by ASLAN we can additionally employ
inductive verification to assure the quality. Time frame
expansion unrolls both the correct and the approximated
sequential circuit until they reach the end of their com-
putations. Inductive verification is stronger as it provides
general guarantees, not just for a finite time frame. The use
of inductive verification enables us to validate a larger set of
sequential circuits, including run-to-completion circuits that
raise a done signal, streaming circuits that produce results
at regular intervals, and circuits for which we have to check
the error constraint in every single clock cycle.

B. Experiments

We have performed a number of experiments with our
current CIRCA prototype as described in Subsection IV-A.
The target metric is hardware area expressed in the number
of used FPGA 4-LUTs as reported by ABC [4].

Table II
SEQUENTIAL BENCHMARK CIRCUITS

Circuit Name Description #4-LUTs? #Candidates
butterflyq Operation used in FFT 7221 8
fir genq FIR filter 4-tap 5438 7
fir pipe 16† FIR filter 16-tap 8768 23
rgb2ycbcro Color-space transformation 4527 5
ternary sum nineq Adder tree 1483 4
weight calculator Industrial scale 1872 4
? ABC estimation after mapping. q From Meyer-Baese [11].
† From VTR [12]. o OpenCores JPEG Encoder [13].

Table II lists the benchmarks we have used for experimen-
tation. The benchmarks are sequential circuits with areas
ranging from 1483 to 8768 FPGA 4-LUTs. Adders and
multipliers in the data path have been manually annotated
as candidates. We have varied the error bound from 0.25%
to 2.0%, expressed in percentage of the circuit’s maximum
possible output value, and employed ABC’s dprove com-
mand for circuit verification. For each benchmark, we have
run the approximation flow ten times and determined the
median as representative result.
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Figure 2. Normalized area in dependence of the specified error bound.
The labels show the average runtimes of the approximation process in the
format hours:minutes:seconds.

Figure 2 shows the resulting area, normalized to the area
of the original circuit, over the worst-case error bound. We
could achieve area savings for each benchmark by either
applying precision scaling or AIG re-writing while guaran-
teeing the user-specified error bounds. The maximum saving
of ≈ 26% has been achieved for ternary sum nine PS.
Comparing the two approximation techniques leads to the
conclusion that, in general, precision scaling achieves higher
area savings than AIG re-writing.

As can be seen in Figure 2, the area is not strictly
decreasing and even an increase is possible, e.g., for the
weight calculator benchmark with a worst-case error bound
of 0.25%. This is caused by our prototype’s assumption that
a local improvement in the target metric, i.e., area for one
candidate, will result in a globally improved target metric,
i.e., area for the overall circuit. However, for hardware area,
this is not compulsory since the mapping tools can exploit
different optimization opportunities in different circuits. The
approximated weight calculator circuit at 0.25% error is
obviously Pareto-dominated in the area-error space and thus
not a reasonable design choice. This issue could easily be
addressed by accepting further approximated circuits only if
they are not dominated in the area-error space.

The label at each data point in Figure 2 represents the



average runtime of the particular benchmark. The quality
assurance block has been identified as the dominating part
for the runtime and ranges from a couple of minutes to
several days, depending on the complexity of the verifica-
tion problem. Somewhat against intuition, the results reveal
that more relaxed error bounds do not necessarily lead to
longer runtimes, e.g., fir gen AIG. This is caused by the
randomness involved in the search which influences the path
taken through the search space which, in turn, determines the
number of verifications, and thus, influences the runtime.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the CIRCA framework
for approximate circuit generation. CIRCA is developed to
be a modular and extensible framework and will be made
publicly available. We have elaborated on the architecture of
CIRCA, which was driven by analyzing the commonalities
and differences of related frameworks, and then reported on
the current state of the prototype implementation as well as
on initial experiments.

We plan future work along several lines: First, we will
continue with the implementation of alternative techniques
in the QUAES stage, i.e., for approximation, search, quality
assurance, and estimation. Besides covering also delay and
energy as target metrics we are particularly interested in
the trade-offs between more accurate estimations and the
required computational effort. Second, in the output stage
we plan to connect to back-end synthesis tools, such as
FPGA vendor tools or the Synopsys Design Compiler to
be able to get accurate circuit characteristics and actually
run the approximate circuits, at least in FPGA technology.
Third, we will look into approaches to automatically identify
subcircuits amenable to approximation in the input specifi-
cation. This would relieve the user from the tedious process
of marking potential candidates and make such a framework
wider applicable. Finally, we aim at collecting a sufficiently
large suite of benchmark circuits to be bundled with the
framework.
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