
Invited talk: Automated synthesis of approximate
circuits
Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: vasicek@fit.vutbr.cz

Abstract—Many fundamentally new and different approaches
have recently been introduced under the term of approximate
computing. The concept of approximate computing investigates
the idea of accepting a certain level of inaccuracy in computations
to reduce complexity and other non-functional properties of
digital systems. Among others, technology-independent functional
approximation can be employed. The idea of functional ap-
proximation is to implement a slightly different function to the
original one provided that the accuracy is kept at desired level
and the power consumption or other design parameters are
reduced adequately. Functional approximation can be performed
manually but the current trend is to develop fully automated
functional approximation methods that can be integrated into
computer aided design tools for digital circuits.

In this talk, we start with an overview of the methods for
functional approximation. Then, we focus on the search-based
functional approximation. The search-based synthesis is based
on a heuristic procedure (e.g. an evolutionary algorithm) that
gradually modifies the original implementation. This procedure
is typically repeated iteratively in order to improve the current
approximate implementation in the subsequent steps. The ad-
vantage of this approach is the ability to produce high-quality
approximate circuits. Unfortunately, the search-based synthesis
is, in general, computationally expensive (hundred thousands
of iterations are typically evaluated). Hence, we will discuss
various approaches for improving the scalability of this method
and reducing the computational requirements. In particular,
advanced methods of formal error analysis using binary decision
diagrams and satisfiability problem solving will be described. Fi-
nally, recent results obtained using the search-based synthesis in
various problem domains (design of power-efficient approximate
arithmetic components and their usage in the area of machine
learning) will be discussed.

I. APPROXIMATE COMPUTING

To address the relentless rise in demand for energy-efficient
systems, many fundamentally new and different approaches
have recently been introduced under the term of approximate
computing. A good survey of existing techniques can be found
for example in [1], [2]. The concept of approximate computing
investigates the idea of accepting a certain level of inaccuracy
in computations to reduce complexity and other non-functional
properties of digital systems. The key motivation behind the
approximate computing is the inherent error resilience of many
real-world applications. For example, Chippa et al. reported
that about more than 83% of runtime is spent in computations
that can be approximated [3]. The inherent error resilience
means that it is not always necessary to implement precise

and usually area expensive circuits. Instead, much simpler,
approximate, circuits may be used to solve a given problem
without any significant degradation in the output quality.

II. FUNCTIONAL APPROXIMATION

Among others, technology-independent functional approxi-
mation can be employed. The idea of functional approximation
is to implement a slightly different function to the original
one provided that the accuracy is kept at desired level and
the power consumption or other electrical parameters are re-
duced adequately. Functional approximation can be performed
manually but the current trend is to develop fully automated
functional approximation methods that can be integrated into
computer aided design tools for digital circuits.

Approximation can be done at various levels. One of the
possibilities how to approximate a given circuit is to make a
change at the level of behavioral description, e.g. in the truth
table. This idea was used, for example, by Kulkarni et al.
who manually designed a small 2-bit approximate multiplier
consisting of five gates [4]. Kulkarni modified a single row
of the truth-table of 2-bit multiplication. He obtained an
approximate multiplier that outputs 7 for 3x3 instead of 3x3=9.
This form of inaccuracy enabled not only to improve area,
but also to reduce the number of output signals and improve
delay when applied in a large multiplier where long carry
chains are typically present. Unfortunately, the approach based
on truth table modification is hardly applicable in practice.
Firstly, it does not scale well since the number of rows
grows exponentially with the number of inputs. Secondly, the
modification needs to be performed in such a way that it leads
to a more efficient implementation compared to the original
implementation. A smaller, faster or power-efficient variant is
typically requested. Unfortunately, we can not easily predict
how a given modification projects to the considered electrical
parameters such as area, delay or power consumption.

To overcome limitations of the truth-based approach, an
analytical approach to approximate design can be employed.
Many analytical approaches have been proposed in the litera-
ture to approximate key arithmetic circuits such as adders and
multipliers [5], [6]. In the case of multipliers, generation of
partial products, the summation tree, counters, or compressors
are approximated. The approximation is typically conducted
either at the level of common gates or at the level of more



complex building blocks such as full adder cells. Among
others, truncation (bit-width reduction) represents a straight-
forward and efficient approach to perform approximation on
the partial product tree. The key idea is to remove k least
significant bits of the inputs operands. It means that a smaller
(n − k)-bit multiplier is utilized instead of an accurate n-bit
multiplier. The 2k least significant bits of the final product
are always zero. Currently, a wide range of more or less
efficient analytical approaches is available in literature. The
advantage of the analytical approach is the possibility to
exactly formulate the error parameters as a function of the
number of data bits. Despite of that, there is no general
approach that could be applicable to arbitrary circuit because
each method is tightly connected with a particular architecture
that is approximated.

III. AUTOMATED SYNTHESIS OF APPROXIMATE CIRCUITS

In contrast to the analytical approaches, various general-
purpose approximation methods have been proposed. The goal
is to obtain an approach performing automatic approximation
of digital circuits independently of their structure. These meth-
ods typically employ various heuristics to identify circuit parts
suitable for approximation. The Systematic methodology for
Automatic Logic Synthesis of Approximate circuits (SALSA)
is one of the first approaches that addresses the problem
of approximate synthesis [7]. In order to be able use the
existing synthesis tools, the authors mapped the problem of
approximate synthesis into an equivalent problem of traditional
logic synthesis – don’t care based optimization. SALSA starts
with a description of the exact version of the circuit and
an error constraint that specifies the type and amount of
error that the approximate implementation can exhibit. The
methodology introduces the so-called Q-function which takes
the outputs from both the original circuit and approximate
circuit and decides if the quality constraints are satisfied.
The Q-function outputs a single Boolean value. The SALSA
algorithm attempts to modify the approximate circuit with the
goal of keeping the output of the Q-function unchanged. The
modification is driven by the concept of the observability don’t
cares. Another systematic approach, Substitute-And-SIMplIfy
(SASIMI), tries to identify signal pairs in the circuit that
exhibit the same value with a high probability, and substitutes
one for the other [8]. These substitutions introduce functional
approximations. Unused logic can be eliminated from the
circuit which results in area and power savings. A different
approach was proposed by Lingamneni et. al that employed
a probabilistic pruning, a design technique that consists of
removing circuit blocks and their associated wires to trade
exactness of computation against power, area, and delay sav-
ing [9].

IV. SEARCH-BASED FUNCTIONAL APPROXIMATION

Compared to the approximate design based on truth-table
modification, the pruning-like techniques are limited consid-
ering the ability to generate novel circuit structures. In fact,
they identify the largest sub-circuit that can be discarded from

the original circuit without violating a user-specified error
constraint. Neither the probabilistic pruning nor probabilistic
substitutions allow to replace a part of the original circuit with
a sub-circuit that does not form a part of the original circuit.

In order to address this issue, a more advanced approaches
have been introduced recently. Various evolutionary algorithms
have been applied to accomplish approximations [10], [11],
[12]. The problem of approximate synthesis is mapped to
a search-based design problem. An automated circuit ap-
proximation procedure is seen as a multi-objective search
process in which a circuit satisfying user-defined constraints
showing desired trade-off between the quality and other elec-
trical parameters is sought within the space of all possible
implementations. A heuristic procedure (e.g. an evolutionary
algorithm) that gradually modifies the original implementation
is typically utilized. The modification procedure can affect
either the node function (e.g. AND node can be modified
to inverter or vice versa), node input connection, or primary
output connection. It is thus able to not only disconnect
gates but also to introduce new gates (by activating redundant
gates). Both can happen by changing either primary output
connection or node input connection or by changing node
function resulting in increasing/decreasing of its arity.

Among others, the following approaches have been pro-
posed. Nepal et al. introduced a technique for automated
behavioral synthesis of approximate computing circuits (ABA-
CUS) [13]. The method first creates an abstract synthesis tree
(AST) from the input behavioral description, and then applies
variant operators to the AST. ABACUS uses a simple greedy
search algorithm to modify AST. In order to approximate
gate-level digital circuits, Sekanina and Vasicek introduced
an evolutionary approach based on Cartesian Genetic Pro-
gramming (GP) [10], [11]. The reasons for using the ad-
vanced evolutionary approach was that the population-based
approach suits well in finding multiple solutions and its niche-
preservation methods can be exploited to discover diverse
solutions. As shown in [14], this approach is able to produce
high-quality approximate circuits that are unreachable by
traditional approximate techniques. In the context of FPGAs,
circuit approximation has been introduced and evaluated by
means of the GRATER tool [12]. GRATER uses a genetic
algorithm to determine the precision of variables within an
OpenCL kernel. By selectively reducing the precision, the
number of parallel approximate kernels that can be mapped
in the fixed area budget of an FPGA can be increased with
respect to the original kernel implementations.

V. CURRENT ISSUES

One of the open problems of search-based approximate
methods is the limited scalability caused by various fac-
tors. The search-based approximate methods are typically
constructed as iterative methods in which several candidate
approximate circuits have to be generated and evaluated in
terms of functional (quality) and non-functional requirements
(electrical parameters). The functionality is expressed using



one or several error metrics such as error probability, average-
case error, or worst-case error. Unfortunately, the search-based
synthesis is, in general, computationally expensive (hundred
thousands of iterations are typically evaluated). Hence, the
evaluation needs to be fast as it has a great impact on the
scalability of the whole design process.

To improve scalability, many authors simplify the problem
and evaluate the functionality of approximate circuits by
applying a set of input vectors. Monte Carlo simulation is typ-
ically utilized to measure the error of the output vectors with
respect to the original solution [8], [13], [6]. Unfortunately,
this approach provides no guarantee on the error and make
it difficult to predict the behavior of an approximate circuit
under different conditions. For example, a completely different
output value may be produced when a nasty approximate
multiplier is employed in a neural network. There is currently
a clear need to come up with a new approach to the problem of
evaluating the quality of approximate complex digital systems.
If the exact error of the approximation has to be determined,
formal relaxed equivalence checking is requested, stressing the
fact that the considered systems will be checked to be equal
up to some bound with respect to a suitably chosen error
metric [15]. This research area is rather unexplored because
almost all formal approaches have been developed for exact
equivalence checking.

Currently, the SAT solver based equivalence checking rep-
resents a method of the first choice. The SAT solvers can be
used also for the quality analysis of approximate circuits. A
common approach is to construct an auxiliary circuit referred
to as approximation miter. This circuit instantiates both the
candidate approximate circuit and the accurate (reference) cir-
cuit and compares their outputs to quantify the error. The com-
parison is typically ensured by means of an error computation
block (e.g. subtracter followed by a circuit which determines
absolute value is used for arithmetic quality metrics). For
computing the worst-case error, the approximation miter is
converted to a CNF formula and the resulting formula is used
together with an objective function as input of the SAT solver.
Usually a variant of binary search is applied to determine the
wost-case error. A much simpler task is to check whether
a predefined worst-case error is violated by the candidate
approximate circuit. In this case, the error computation block
is followed by a comparator that has a binary output. Unfor-
tunately, no practically useful method capable of establishing
the average-case error, error rate and total Hamming distance
using a SAT-based solver has been proposed up to now. In
addition to that, there are some pathological cases of circuits
for which SAT does not scale well. Sadly, not only multipliers
but also integer division, remainder, square root and reciprocal
exhibit in general exponential run-time. Despite of that, Ceska
et. al. was able to approximate various 32-bit multipliers
and 128-bit adders using a conflict-driven SAT solver [16].
Similarly to Sekanina and Vasicek, an evolutionary approach
based on GP was used. In order to avoid calculation of the
exact value of WCE, the predefined error level is used as
constrain. To compute whether the chosen level is violated,

the concept of approximation miter was utilized. The SAT
solver is given a predefined amount of time that can be used
to decide whether the resulting CNF is satisfiable or not. When
the runtime exceeds this limit, the SAT solver is terminated
and the corresponding candidate solution is discarded. This
strategy drives the search towards promptly verifiable candi-
date solutions and thus provides scalable approximation of
complex circuits.

ACKNOWLEDGMENT

This work was supported by the Czech Science Foundation
project 16-17538S (Relaxed equivalence checking for approx-
imate computing).

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[3] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in The 50th Annual Design Automation Conference 2013,
DAC’13. ACM, 2013, pp. 1–9.

[4] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[5] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proc. of GLVLSI’15. ACM, 2015, pp. 343–
348.

[6] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A compara-
tive evaluation of approximate multipliers,” in IEEE/ACM International
Symposium on Nanoscale Architectures, NANOARCH 2016, Beijing,
China, July 18-20, 2016, 2016, pp. 191–196.

[7] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC ’12. ACM,
2012, pp. 796–801.

[8] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1–6.

[9] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy
parsimonious circuit design through probabilistic pruning,” in 2011
Design, Automation Test in Europe, March 2011, pp. 1–6.

[10] Z. Vasicek and L. Sekanina, “Evolutionary design of approximate mul-
tipliers under different error metrics,” in IEEE International Symposium
on Design and Diagnostics of Electronic Circuits and Systems 2013.
IEEE, 2014, pp. 135–140.

[11] ——, “Evolutionary approach to approximate digital circuits design,”
IEEE Trans. Evol. Comput., vol. 19, no. 3, pp. 432–444, 2015.

[12] A. Lotfi, A. Rahimi et al., “Grater: An approximation workflow for
exploiting data-level parallelism in FPGA acceleration,” in 2016 Design,
Automation Test in Europe Conf. Exhibition, ser. DATE ’16. EDA
Consortium, March 2016, pp. 1279–1284.

[13] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’14. EDA Consortium, 2014, pp. 1–6.

[14] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Proc. of DATE’17, 2017, pp. 258–261.

[15] Z. Vasicek, “Relaxed equivalence checking: a new challenge in logic
synthesis,” in 2017 IEEE 20th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), April 2017, pp.
1–6.

[16] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Approximating complex arithmetic circuits with formal error guaran-
tees: 32-bit multipliers accomplished,” in Proc. of 36th IEEE/ACM Int.
Conf. On Computer Aided Design. IEEE, 2017, pp. 416–423.


