
Copyright © 2019 by LIRMM.

CoGui User Guide

CoGui User Guide

2 / 100

Table des matières

Basics ... 4
Installation .. 4
Keyboard shortcuts ... 4

Knowledge representation ... 6
Vocabulary .. 6

Concept types hierarchy .. 11
Insert new concept type .. 12
Concept type hierarchy control ... 13
Forbidden types ... 16
Concept type alteration ... 17
Graph layout and coloring ... 17

Relation types hierarchy .. 20
Insert new relation type .. 20
Relation type hierarchy control ... 22
Relation type alteration ... 23
Graph layout and coloring ... 24

Individuals .. 26
Rules .. 27
Constraints .. 30
Facts ... 32

Insert new concept ... 33
Insert new relation ... 35
Coreference ... 37
Reduced edition ... 38

Queries ... 40
Reasoning ... 41

Inspecting facts .. 42
Graph measurement, redundancy ... 42
Classification .. 44
Check consistency .. 46

Applying rules ... 48
Sum, split and normalization ... 52
Querying ... 55

Import, Export and Convert ... 60
To/From COGXML projects .. 61
To/From RDF(S) and OWL .. 63

Import RDFS/OWL "natural" mode ... 63
Import RDFS "raw" mode .. 67
Import RDFS/OWL with Graal .. 72
Export RDFS "natural" mode .. 73

To/From Datalog± ... 74
The factory view .. 75
Import from Datalog± .. 77
Export to Datalog± ... 79

Building documents .. 81
Build vocabulary documentation ... 81
Build vocabulary views .. 87

CoGui User Guide

3 / 100

Extending CoGui .. 95
Scripts .. 95
Plugins .. 100

CoGui User Guide

4 / 100

Basics

This new version 3 migrates CoGui from a classic Java application to a completely different architecture
based on the NetBeans Platform
If you discover CoGui, a good way is to follow Getting Started section.
CoGui 2 will always be available for download here: http://www.lirmm.fr/cogui/cogui_2.0b6.jar but it is
recommended to install the new version. All the instructions about the installation are available in Installation
section.
The application CoGui installed will allow you to automatically update CoGui over the corrections and
improvements.
If you have some old CoGui projects from before v3.0 (COGXML format) you can import them to the new
project format, read more about projects import in Import, Export and Convert section.

The user guide is divided as follows:

· Knowledge representation

· Reasoning

· Import, Export and Convert

· Building documents

· Extending CoGui

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

Installation

Pre-Requirements

CoGui 3.1 requires Java 8 or newer installed on your computer (PC, Unix/Linux or MacOS).
All the various distributions can be found in Download CoGui section.

Install CoGui using the windows installer

Once you have downloaded the installer file, double-click the file to start the installation wizard.

Install CoGui on other operating systems

Once you have downloaded the ZIP file, unpack your archive using the utilities appropriate for your system.
To launch CoGui 3.0, navigate to the bin sub-directory of your CoGui installation and execute the launcher
that is appropriate for your system (windows file "cogui*.exe" or script "cogui").

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Keyboard shortcuts

Finding, Searching, and Replacing

https://netbeans.apache.org/
http://www.lirmm.fr/cogui/getting_started.html
http://www.lirmm.fr/cogui/cogui_2.0b6.jar
https://www.helpndoc.com/feature-tour/iphone-website-generation
http://www.lirmm.fr/cogui#download
https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

5 / 100

Ctrl-F3 Search word at insert point

F3/Shift-F3 Find next/previous in file

Ctrl-F/H Find/Replace in file

Ctrl-Shift-
F/H

Find/replace in projects

Alt-Shift-H Turn off search result highlights

Ctrl-R Rename

Ctrl-U,
then U

Convert selection to uppercase

Ctrl-U,
then L

Convert selection to lowercase

Ctrl-U,
then S

Toggle case of selection

Ctrl-Shift-V

Paste formatted

Ctrl-Shift-D

Show Clipboard History

Ctrl-I Jump to quick search field

Alt-Shift-L Copy file path

Ctrl-Enter Triggers completion tool (Factory view)

Opening and Toggling between Views

Ctrl-Tab
(Ctrl-`)

Switch between open documents by order used

Shift-
Escape

Maximize window (toggle)

Ctrl-
F4/Ctrl-W

Close selected window

Ctrl-Shift-
F4

Close all windows

Shift-F10 Open contextual menu

Ctrl-PgUp /
PgDown

Switch between open documents by order of tabs

Ctrl-Alt-T Reopen recently closed file

Editing with graphical editors

CoGui User Guide

6 / 100

Ctrl-C Copy selected vertices and edges

Ctrl-V Pasted vertices and edges

Del Delete selected vertices and edges. It also delete pending edges if any

Ctrl-Mouse To create edges between concept types or relation types into vocabulary graphical editor

Ctrl-Wheel Zoom +/-

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

Knowledge representation

CoGui works on a model of a knowledge base consisting of:

The ontological part

· A unique and necessary Vocabulary

· A set of Individuals

· A set of Rules

· A set of Constraints

Data organized into

· A set of Facts

· A set of Queries

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

Vocabulary

CoGui is able to create multilingual ontologies designed for Conceptual Graphs (CGs). A CG Ontology is
composed of exact knowledge and contextual knowledge. The vocabulary is one important part of the exact
knowledge and consists of two hierarchies:
1. a hierarchy of concept types (also named concept or class or object type)
2. a hierarchy of relation types (also named relation) with arity greater or equal to 1.

The above hierarchies are respectively organized in partially ordered sets (not necessarily a tree or a lattice).
The exact knowledge of the ontology, apart from the vocabulary, consists of:

· a collection of individuals

· rules

Editors allow end users to navigate through the ontology and edit graphically its structure and content. The
ontology is controlled and, if necessary, tools are provided to correct it.

Graphically, types are displayed as vertices. An arc connecting vertex A to vertex B means that the type A
is a kind of type B (or A is a specialization of B or B is a generalization of A):

concept types relation types

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

7 / 100

In most cases the ordered set looks like this:

simple ordered set of concept types

In this case, the hierarchical structure is a tree. But the model accepts extra connections. Two examples
below illustrate hierarchies that not have a tree structure:

The edit operation is not heavily constrained by the model, in practice, the only critical error occurs when a
circuit is detected. More details can be found in following chapters.

How to browse through type hierarchies

When a project is opened (or created) a vocabulary panel appears on the right part of the main window.
Concept types, relation types and Individuals are displayed in three separated tabbed panels. An
arborescent representation containing every path between maximal type and others. Types are
alphabetically sorted, relation types are also sorted by arity.

CoGui User Guide

8 / 100

concept types relation types

The tree representation is useful to create vertices in conceptual graphs by dragging types into the graph
editor (see Graph Edition chapter). Please remember that the type's order is not necessarily a tree. That's
why the same type may be retrieved several times in the tree representation. For the same reasons tree is
not automatically expandable if hierarchy contains at least one circuit.

CoGui User Guide

9 / 100

Click right button and choose 'Graphical Editor' The graphical editor is opened

CoGui User Guide

10 / 100

two synchronized editors for a same type hierarchy (both concepts and relations)

you can navigate between both representations:

· a simple double click on a vertex in left panel select and show the (unique) corresponding vertex in the
hierarchy view

· a right click on vertex displays a popup menu: the 'Navigate/Show type in tree' action selects (and
scrolls if necessary) the corresponding node(s) int the left panel.

CoGui User Guide

11 / 100

Double click will open graphical editor and scroll to make the vertex visible From
the

grap
hical
edito
r to
the
tree
edito

r

Two other options show parents or children inside the graph (the scrolling process is automatically
performed).

· Shows parent vertex in the graph representation and select them

· Shows children vertex in the graph representation and selected them

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Concept types hierarchy

· Insertion

· Graph arrangement

· Concept type hierarchy control

· Forbidden types

· Concept type alteration

Created with the Personal Edition of HelpNDoc: Free iPhone documentation generator

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/iphone-website-generation

CoGui User Guide

12 / 100

Insert new concept type

A newly created concept type hierarchy contains only one type named 'Top' .

insert button on the toolbar of the graphical editor can be used 'Insert concept type' into the popup
menu inserts the desired type at the

mouse location.

A concept type can also be created into the tree representation. 'New concept type' option in the type view
popup menu creates a new concept type as a type of selected item:

A concept type can be created directly into the tree Newly created type is kind of previously
selected item

Into the graph editor, the following vertex is displayed: . Click twice on the vertex to edit

CoGui User Guide

13 / 100

type name. Concept types can be renamed directly on the concept type tree. Click once on the tree item to
edit type name. Both actions have same effect and are synchronized.

Rename on graphical editor Rename on tree editor

Naming convention
Homonymous types are not allowed in the same type hierarchy. The case is respected but comparisons are
case unsensitive. For instance user can decide to write 'Dog' or 'dog' but cannot define both words in the
concept type hierarchy. Blank spaces are allowed.

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Concept type hierarchy control

Action to control of the concept
types hierarchy is provided in
Debug menu:

Only one critical error can occur with the graph structure: the detection of a circuit. Assume that 2 types A
and B on a circuit, i.e. a path exist from A to B and another exist from B to A. It means A is a kind of B and
B is a kind of A

https://www.helpndoc.com/feature-tour

CoGui User Guide

14 / 100

CoGui control detects circuits: all the animals are not dogs

However, it is possible for a project consisting of several pieces of ontologies to work with several
synonymous types from multiple equivalent URIs (owl: SameAs). Despite the warnings CoGui is able to
work with the circuits, all the concept types belonging to the same circuit are considered as equivalent.

Another model constraint is that the concept types hierarchy must have a maximal concept type. By
default CoGui names it 'Top', feel free to change its name or to choose another vertex as the maximal. A
warning message occurs if the hierarchy contains more than one maximal element. The tool does not
automatically add a maximal abstract type to the hierarchy but it is recommended to respect this
constraint.

CoGui User Guide

15 / 100

A single maximal type is required

Another warning can occur when the user draws redundant arcs. If A is a kind of B and B a kind of C, by
transitivity CoGui 'knows' that A is a kind of C, hence an arc between A and C is correct but redundant.
These extra arcs can obstruct the graph view but extra entries on the tree representation could be used as
sort of shortcuts for often used types.That is the reason why CoGui accepts and stores redundant arcs.
When a message (error or warning) occurs, it can hold the action to solve it. The Repair box checked
indicates that a repair action is available:

In this case all the redundant edges can be removed with the message popup menu with the action named
'Transitive reduction'.

CoGui User Guide

16 / 100

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Forbidden types

In a graph, the concept vertices may be associated to a conjunctive types, meaning it has several types. As
a result, the model provides a mechanism to prohibit some incongruous associations. For instance,
suppose you have defined both "Animal" and "Plant" concept types, you might want to prohibit associations
between these types as well as between sub-types of them. It is possible to express this restriction in your
concept type hierarchy. To this end, you are going to introduce a forbidden type in the concept type View to
express this incompatibility. See below an example of such restriction expressed in the concept type
hierarchy triggers and here it triggers an error in a conceptual graph.
Forbidden types (also named disjoint types) can be added in the view placed below the concept type tree:

https://www.helpndoc.com

CoGui User Guide

17 / 100

It is possible to create sets of 3 conjunctive types or more. If the forbidden type (A;B;C) is defined, all
subset will be forbidden (A;B) (B;C) (A;C) and of course (A;B;C). This corresponds to the most frequent
needs of the users. If you want to specify that only the conjunction (A;B;C) is forbidden a negative constraint
can be used.

All subsets of A,B,C with card>1 is forbidden Negative constraint for A;B;C

Created with the Personal Edition of HelpNDoc: Easily create EBooks

Concept type alteration

As for relations, adding concept types does not affect the existing ones. The deletion of a concept type can
affect not only the type hierarchies and fact graphs, but also the signatures of relations. All references to
this type must first be removed from the base.

Removing a link between two concept types does not create inconsistencies in the knowledge base but can
decrease the number of answers to a query, adding a link can increase the number of answers, the
forbidden types may change and some constraints may become unsatisfied.

All consequences of these alterations are detected by the CoGui controller and error messages help the
user to correct inconsistencies.

Created with the Personal Edition of HelpNDoc: Easily create Qt Help files

Graph layout and coloring

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

CoGui User Guide

18 / 100

Even if the position and color of the vertices of the graph do not matter in the representation model, they can
be very useful for the user.

A vertex is moved by dragging its box with the mouse. Another way to place vertices is to run an automatic
arrangement with the layout algorithms.

horizontal tree layout vertical tree layout

A dynamic force directed layout is also provided:

CoGui User Guide

19 / 100

The default color of the concept types can be changed using Tools/Options/CoGui/Appearance command:

A different color can be selected for each concept type. Contextual menu of the vertex propose a submenu

CoGui User Guide

20 / 100

'Coloring':

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Relation types hierarchy

· Insert new relation type

· Relation type signatures

· Graph layout and coloring

· Relation type hierarchy control

· Relation type alteration

Created with the Personal Edition of HelpNDoc: Produce Kindle eBooks easily

Insert new relation type

A newly created relation type hierarchy contains only one type named 'Link' .

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

21 / 100

Use button or popup menu to add a new relation type A relation type can be created directly into the tree

The relation type can be updated with 'Label & signature...' menu action:

The menu action The dialog box

Homonym types are not allowed in the same type hierarchy. The case is respected but comparisons are
case insensitive. For instance the user can decide to write 'Binary_rel' or 'binary_rel' but cannot define both
words in the relation type hierarchy. Blank spaces are allowed.

A signature must be associated with each relation type. A signature is an ordered list of concept types
(numbered from 1 to arity) where arity denotes the arity of the relation type, i.e. its number of arguments.
The signature dialog box allows to change the arity and to specialize involved concept types.

Press the assistant button and choose arity or directly edit arity number and press the 'Apply' button to
confirm. Lines are added or removed from the table. Each concept type can be changed directly or with the
assistance button:

CoGui User Guide

22 / 100

Created with the Personal Edition of HelpNDoc: Free Kindle producer

Relation type hierarchy control

Similar to concept type hierarchy, circuits are forbidden. The only difference with concept type hierarchy is
due to signatures. The constraints are:

1) relation types are grouped by arity. Each 'arity family' must have a maximal element. It means that the
relation type hierarchy is decomposed w.r.t. the arity and a unique maximal element is required for each of
these sub-hierarchies.

2) Let A and B be two relation types in the same sub-hierarchy (i.e. A and B have the same arity). If A is a
kind of B, it means that every concept type in A signature is respectively a kind of concept type in B
signature. For example if graze(herbivore,plant) is kind of eat(animal,food) their signatures respect
compatibility if herbivore is a kind of animal and if plant is a kind of food.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

23 / 100

 graze(herbivore,plant) is kind of eat(animal,food) herbivore is a kind of animal and plant is a kind of
food

Another way to quickly define or pre-define signatures is to use 'Suggest signature...' command on popup
menu. Use the command after a link is established between a new relation type and an immediate greater
relation type: the parent signature is automatically proposed. But this command is designed for more a
complex purpose.In a complex ontology it becomes difficult to define a new relation type signature. The
command 'Suggest signature...' can help to find the maximal compatible signature.

Created with the Personal Edition of HelpNDoc: Easily create Help documents

Relation type alteration

Relation type labels can be changed. With respect to the signature covariance new relations can also be
added without consequences for existing knowledge.
For obvious reasons of referential integrity, the removal of a relation assumes that all occurrences have
disappeared from all graphs, both in annotations and within ontology.
The consequences of the change of a signature depends on its nature: if the arity of the signature is
changed, all occurrences of the relation will require userʼs intervention; if only the concept types of the
signature are changed, then it will be a different signature.
If a concept type is replaced by a more general type, the content of the knowledge base will not be affected,
and no error will occur. However, if a term is specialized, it can have an effect on the content of the
knowledge base, and can also trigger errors in the annotations. Removing a link between two relation types
does not create inconsistencies in the database but can decrease the number of answers; adding a link can

https://www.helpndoc.com/feature-tour

CoGui User Guide

24 / 100

increase the number of answers (new rules may be applicable) and some constraints may become
unsatisfied.

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

Graph layout and coloring

Even if the position and color of the vertices of the graph do not matter in the representation model, they can
be very useful for the user.

A vertex is moved by dragging its box with the mouse. Another way to place vertices is to run an automatic
arrangement with the layout algorithms.

horizontal tree layout verti
cal
tree
layo
ut

A dynamic force directed layout is also provided:

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

CoGui User Guide

25 / 100

The default color of the concept types can be changed using Tools/Options/CoGui/Appearance command:

A different color can be selected for each concept type. Contextual menu of the vertex propose a sub-menu
'Coloring':

CoGui User Guide

26 / 100

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Individuals

An individual is an identifier which is a surrogate for a precise entity of the discourse universe. For instance,
if Town is a concept type then Budapest is an individual of type Town. A concept type may have subtypes,
e.g. SmallTown could be a sub-type of Town, an individual cannot have ‘sub-individualsʼ. The ontological
individuals are the individuals about which all the users agree, i.e. for all users an ontological individual must
represent the same entity in the discourse universe. An ontological individual is entered into a COGUI-
ontology with a primitive concept type called its privileged type. For instance, if the COGUI-ontology
concerns Modern Art, and if Picasso is an ontological individual of privileged type Artist representing the
famous artist Pablo Picasso, then it is impossible to use the identifier Picasso for representing a Citroën car
(unless the conjunctive type Car, Painter is not forbidden). COGUI checks that an ontological individual
appearing in an annotation has a type which is compatible (i.e. not forbidden) with the privileged type of the
individual.
All individuals appearing in a COGUI-ontology (e.g. in rules, constraints or prototypical knowledge) must be
ontological individuals. Thus, the set of ontological individuals can be completed only whenever all
knowledge representing in a COGUI-ontology have been considered.

The individual view lists all individuals in a sortable table. Needless to complete, the list of individuals
automatically updates when the user references individuals in different graphs. Select individuals in the list
to drop them to the graphs and right click to popup the contextual menu to rename, change the privileged
type.

https://www.helpndoc.com/feature-tour

CoGui User Guide

27 / 100

Individuals tab in vocabulary view displays the complete list of individuals

Since 3.0 CoGui integrates the notion of namespace. Then a namespace can be associated the each
individuals. It can be selected directly on the list:

Created with the Personal Edition of HelpNDoc: Produce Kindle eBooks easily

Rules

To create a new rule or edit an existing rule go on the projects view and use the popup menu (right-click).
As other graphs, rules can be organized in folders. It is particularly interesting to classify the rules on
families, especially for testing purposes. Editing rules is very similar to editing Facts. But the split editor is
divided in two parts: hypothesis and conclusion. By default hypothesis is placed on the left part and
conclusions on right part of the editor. The split bar can be oriented with the mouse to horizontal position, in
this case hypothesis is placed on top and bottom is reserved for conclusion.

Create a new rule: If "Rule..." action does not already
appears in menu choose "Other..."
and select the type of CoGui object
that you want to add in your project:

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

28 / 100

Rules are used to represent implicit (common sense) knowledge. For instance, let us assume that the fact
that Eve is the mother of Abel is represented in a fact graph. If the ontology contains a rule saying that if x
is the mother of y then y is a child of x then the system can automatically add the information that Abel
is a child of Eve.
Such a rule is represented by two simple graphs. One represents the hypothesis (e.g. [woman]-1-(mother
of)-2-[human]) the other represents the conclusion ([human]-1-(child of)-2-[woman]). Furthermore, there is a
link between the first person in the hypothesis and the second person in the conclusion, and a link between
the second person in the hypothesis and the first person in the conclusion. A rule "if A then B" is used as
follows: if an annotation contains A then B can be added to the graph. See below the graphical
representation of this rule:

A rule example

A bi-colored representation of this rule could be simplest with just a conclusion relation "child of" added to
the hypothesis. The advantage of this representation is that it allow specialization of a concept type in the
conclusion. For instance, from the hypothesis [human]-1-(mother of)-2-[human] it can be deduce that the
first person is a woman. Thus, rule represented below is more powerful than previous example:

CoGui User Guide

29 / 100

rules could generate some specializations. Here Person is eventually specialized in Woman.

But it is better to express each deduction in a separate rule and add a new rule to the first one:

a simple rule for each deduction

Do not worry about rule applying order, even if the first rule is not applied in a first step, it can be appliable
after applying another one. All rules are tried until saturation (when no rule is appliable).
Due to saturation, rules must be built carefully when at least one rule can create new concepts: The rules
may loop and cause an infinite production of concepts. Example below is trivial but combinations of rules
can generate loops very difficult to detect.

CoGui User Guide

30 / 100

This rule will cause a loop

Fortunately it is possible to interrupt the saturation running task if it did not end after a "reasonable" time.
And the knowledge base can be queried without using saturation. See Applying rules section and Querying
for more about the use of rules.

Created with the Personal Edition of HelpNDoc: Produce electronic books easily

Constraints

Constraints allow to define pieces of information that are forbidden in the facts (negative constraints) or
mandatory in the facts (positive constraints).
To create a new constraint or edit an existing constraint go on the projects view and use the popup menu
(right-click).

You will find all the information about the use of the constraints are in section Inspecting facts

Create a new constraint: Select the type of Constraint that you
want to add in your project:

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

31 / 100

Negative constraints

A negative constraint is a simple graph expressing a condition that must not appear in checked facts.
Checking a negative constraint is similar to query facts. Facts are validated if no homomorphism of the
constraint graph can be found into them.

no wine is sweet and strong ?

Positive constraints

A positive constraint is a structured as a rule with a condition part and the obligation part. A fact satisfies a
positive constraint if every homomorphism from the condition part to the fact can be extended to a
homomorphism of the obligation part to the fact. The example below expresses the fact that "a wine is
necessarily associated with a winery". Positive constraints will be triggered each time a wine appears
without a Winery attached to it with hasMaker relation.

CoGui User Guide

32 / 100

Created with the Personal Edition of HelpNDoc: Generate Kindle eBooks with ease

Facts

A Fact is labeled bipartite graph. One class of nodes (the concept nodes) is used to represent entities of the
discourse universe. A concept node is labeled by a concept type (e.g. Painter, or a conjunctive type such as
Painter,Catalan) and, possibly, by an individual (e.g. Picasso). A concept node which is labeled by a
concept type without an individual is called a generic concept node. Such a node represents an unidentified
element of the type. For instance, contrarily to a node labeled [Painter : Picasso] representing the painter
Picasso, a concept node labeled [Painter] represents “a” painter.The second class of nodes represents the
relationships between the entities (represented by the concept nodes). For instance, if Guernica is an
individual representing the well-known painting realized by Picasso then a relation node labeled (hasPainted)
could relate the concept node [Painter : Picasso] to the concept node [Painting : Guernica]. The edge
between (hasPainted) and [Painter : Picasso] is labeled by 1, and the edge between (hasPainted) and
[Painting : Guernica] is labeled by 2. This edge labeling is used to represent different roles (e.g. to
distinguish the subject from the complement). It is also possible to say that two different concept nodes
represent the same entity by linking them by a coreference link.

Picture below is described by a fact graph:

conceptual graph
description of the
picture:

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

33 / 100

Create a new fact: If "Fact..." action does not already appears in
menu choose "Other..." and select the type of

CoGui object that you want to add in your
project:

More about fact edition:
o Insert new concept
o Insert new relation
o Coreference
o Reduced edition

Created with the Personal Edition of HelpNDoc: Easily create PDF Help documents

Insert new concept

There are many ways to create new concepts.

Insert concept button on toolbar Insert concept from editor popup menu Drag a concept from the type
hierarchy

The third way (drag and drop) is the most effective since it informs in a single action the position and type of
the new concept.
An alternative is to start by creating a relation and then complete it. The concepts will be created
automatically with the type corresponding to the signature of the relation. See section Insert new relation.

https://www.helpndoc.com/feature-tour

CoGui User Guide

34 / 100

Click twice on the
concept vertex or use
the popup menu to edit
the newly created
concept:

A concept can be associated to a conjunctive type.

Press button to add a type field and select the second type:
A concept with a conjunctive

type:

CoGui User Guide

35 / 100

An individual can also be associated to the concept. If this individual doesn't exist, it is automatically added
to the project

Created with the Personal Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

Insert new relation

There are many ways to create new relations.

Insert concept button on
toolbar

Insert concept from editor popup
menu

Drag a relation from the type hierarchy

The third way (drag and drop) is the most effective since it informs in a single action the position and type of
the new relation.

When the relation is created, double left click triggers a popup dialog to define type associated with
selected relation:

https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

36 / 100

The insertion of
the relationship
is not sufficient,
we must also
link the relation
to adjacent
concepts by
holding down
the left mouse
button and
linking the
yellow squares
in the center of
the vertices:

If the adjacent concepts are not already created you can quickly complete the relation by releasing the
mouse button on the location of the future concept:

Because the relation signature is ordered. For binary relations the edges are ordered in a natural way by the
subject has first parameter and the object has second parameter. For a greater arity edges between
concepts and relation are associated with a number from 1 to relation arity.

CoGui User Guide

37 / 100

Edge order can be defined with popup menu on the selected edge:

You can also use double-click on selected edge, edge label successively takes all compatible values
between the relation signature and the type of concept.
Of course, copy/paste mechanism can also be used to duplicate pieces of graphs inside the graph or from
one to another. Pending edges cannot be copied.

Created with the Personal Edition of HelpNDoc: Generate EPub eBooks with ease

Coreference

It is also possible to say that two different concept nodes represent the same entity by linking them by a
coreference link.

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

38 / 100

coref links means that painter and inventor are the same person

resulting normalized graph in knowledge
base

Painter and Inventor are implicitly coreferent

resulting normalized graph

The editor toolbar propose an action to normalize the edited graph:

See section Sum, split and normalization for more about the normalization of the graphs

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Reduced edition

If a graph is too big it could be very tedious (or impossible) to edit it entirely. In this case, CoGui provide a
reduced edition mode. Just a part of the graph is displayed. Visible relations are always completed, but
displayed concept can have hidden neighbors. Example below shows concepts with hidden neighbors, the
number of hidden neighbors is displayed on the upper right corner of the concept.

https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

39 / 100

The limits to choose partial edition rather than whole graph edition can be changed in CoGui options:

CoGui User Guide

40 / 100

If a big graph is directly edited from the project tree, some vertices are chosen by default. The user generally
prefers to display and update a precise piece of graph. To correct errors inside the graph, choose the edit
option on the message in the error view and the graph will be automatically opened with the vertices that
generated the error. When another error is selected, the previous edition is replaced by the edition of the
new concerned vertices.
To edit parts of the graph without any error, we must query the graph (See section Querying) and browse
through projections in the result view.

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

Queries

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

41 / 100

Create a new query: If "Query..." action does not already
appears in menu choose "Other..."
and select the type of CoGui object
that you want to add in your project:

Editing queries is very similar to editing Facts. In addition some variables can be added. Read section
Querying for more about the use of variables.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

Reasoning

This section groups the following operations on graphs:

Inspecting facts

· Graph measurement, redundancy

· Classification

· Check consistency
Applying rules
Sum, split and normalization
Querying

Created with the Personal Edition of HelpNDoc: What is a Help Authoring tool?

https://www.helpndoc.com/help-authoring-tool
https://www.helpauthoringsoftware.com

CoGui User Guide

42 / 100

Inspecting facts

CoGui provide several tools to compute graph properties and compare them:

· Graph measurement, redundancy

· Classification

· Check consistency

Created with the Personal Edition of HelpNDoc: Easy EBook and documentation generator

Graph measurement, redundancy

Each kind of graph can be inspected to know:

· the number of connected components

· the size of the graph individuals/concepts/relations

· the degree of the vertices min, max and average

· is it normalized ?

· is it redundant ?

A View is opened named Graph Inspector

https://www.helpndoc.com

CoGui User Guide

43 / 100

Redundancy

A redundant graph can trigger a positive constraint violation when irredundant form will not.
Detecting and computing redundancies can be an heavy operation, the wizard doesn't automatically provide
it.
Click on button to run algorithm.

CoGui User Guide

44 / 100

When the graph is too big, redundancy is not automatically computed. Click on button to compute it:

and sometime it is a too long term job...

 If redundancies exist, they can be edited to eliminate redundant parts of the graph.

Created with the Personal Edition of HelpNDoc: Easily create EBooks

Classification

Facts can be analyzed individually, they can also be compared This is the purpose of the classification
wizard.
Tools/Reasoning sub-menu provide a wizard to compute a classification between facts of the project:

Select facts to compare:

https://www.helpndoc.com/feature-tour

CoGui User Guide

45 / 100

Classification graph viewer:

CoGui builds a graph with where vertices represent fact graphs and arcs represent the subsumption
relations.
example interpretation:

· graph shows that wine_graph2 have a least one projection into wine_graph4.

· graph fact_1 is an empty graph that why every graphs subsume it.

CoGui User Guide

46 / 100

· wine_graph4, wine_graph5 and wine_graph7 belongs to the same strongly connected component, it
means that they are equivalent (but not equals if they are redundant).

Created with the Personal Edition of HelpNDoc: Easily create Help documents

Check consistency

Constraints can be defined to control the set of facts. See more about Constraints
The Toolbar and Tools/Reasoning sub-menu provide a wizard to check consistencies.

The 3 steps of the wizard:

https://www.helpndoc.com/feature-tour

CoGui User Guide

47 / 100

The wizard triggers messages in the Debug window when some constraints are violated.

CoGui User Guide

48 / 100

Double click on messages to reach the part of the graph containing inconsistencies:

a negative constraint is violated a positive
constraint is

violated

Created with the Personal Edition of HelpNDoc: Free PDF documentation generator

Applying rules

For now cogui only implements forward chaining technique and applies rules to the facts in order to produce
new facts. The rule assistant helps to apply a selected set of rules to a graph. This operation can be
launched for saturation or followed and visualized step by step. The new resulting graph can be added to the
knowledge base.

https://www.helpndoc.com

CoGui User Guide

49 / 100

Select a unique graph

CoGui User Guide

50 / 100

Select rules to apply

The wizard opens a windows to command and visualize rules application step by step:

CoGui User Guide

51 / 100

CoGui User Guide

52 / 100

If you want to save the resulting graph at any step of the saturation process, you can use the Datalog+
Factory (see section To/From Datalog+)

Created with the Personal Edition of HelpNDoc: What is a Help Authoring tool?

Sum, split and normalization

Tools/Reasoning sub-menu provide a wizard to sum and normalize facts of the project:

Sum

Knowledge base is organized by sets of facts.Sometime it can be interesting to sum these graphs.
Example below presents two graphs first contains geographical information,second contains information
about flavor and sweetness.

neither graph1 nor graph2 match with this query:

https://www.helpauthoringsoftware.com

CoGui User Guide

53 / 100

CoGui provides a wizard to sum graphs. It consist in merging graphs into the same sum graph.
the resulting graph is shown below :

not normalized sum of graph1 and graph2

Normalize

We obtain a sum graph which is not a normal simple graph. A normal SG is such that each concept is
uniquely coreferent with itself. Note that an implicit coreference link exists between the two nodes
representing the individual vin:CorbansPrivateBinSauvignonBlanc. Normalization performs the fusion of nodes
associated to the same individual. See below the normalized sum of graph1 and graph2. Resulting graph
give an answer to query above.

CoGui User Guide

54 / 100

normalized sum of graph1 and graph2

Sum and Split wizard

Select facts After the sum
has been

computed, the
graph will be

normalized and
split when

there is several
connected

components

Created with the Personal Edition of HelpNDoc: Easily create Web Help sites

https://www.helpndoc.com/feature-tour

CoGui User Guide

55 / 100

Querying

Launch the querying wizard

The four steps of the wizard:

CoGui User Guide

56 / 100

CoGui User Guide

57 / 100

If CoGui solver is used, the results are displayed as graph

CoGui User Guide

58 / 100

Results can also presented as list

The list of projections are also provided in 'List projections view'

CoGui User Guide

59 / 100

With messages from projection list it is possible to browse the facts

CoGui User Guide

60 / 100

Created with the Personal Edition of HelpNDoc: Full-featured EBook editor

Import, Export and Convert

Users of previous versions of CoGui have the option of converting old projects to the new format. The
COGXML format is not forgotten as it is also possible to export the projects again in this format. Read this
section for more information To/From COGXML projects

CoGui propose several tools to exchange between different knowledge representation models:

· To/From RDF(S) and OWL

· To/From Datalog±

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

61 / 100

Created with the Personal Edition of HelpNDoc: Free PDF documentation generator

To/From COGXML projects

The menu option "File/Import projects" , in addition to the classic procedure, offers an action to import
COGXML project.
COGXML projects can come from Cogitant project. It is also the form. This is also the format of previous
versions of CoGui.

select to COGXML file to import:

https://www.helpndoc.com
https://cogitant.sourceforge.io/

CoGui User Guide

62 / 100

select the target folder:

Then the new CoGui project can be opened from the message in Debug window:

CoGui User Guide

63 / 100

Created with the Personal Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1 single
source

To/From RDF(S) and OWL

CoGui is able to import RDF(S) documents.

· The "natural" translation has the advantage of being natural and fully exploiting the CG features, but, on
the other hand it does not apply to the whole RDF(S).

· The "raw" translation is sound and complete from a reasoning view point but is not visual nor a
representation in the spirit of Conceptual Graphs (CGs).

· The new Graal translation use the Graal convertor from OWL to Datalog+ and then translates produced
Datalog+ to CoGui

A tool to export in "natural" mode is also provided.

Created with the Personal Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1 single
source

Import RDFS/OWL "natural" mode

This translation is intuitive and doesn't need rules to be applied because most of them are implicitly
expressed in the support. The main idea behind it is to try to exploit as much as possible the separation
between background knowledge and factual knowledge. Several options are available.

The 3 steps of the wizard:

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://graphik-team.github.io/graal/downloads/owl2dlgp
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

64 / 100

CoGui User Guide

65 / 100

If support completion option is checked, support is enriched by the imports
Uncheck the box to preserve current vocabulary and only take factual knowledge into account.

When support completion is allowed two ways exist to express
rdfs:range and rdfs:domain semantic. The default is to define
relation type signatures but it can be expressed by range rules and
domain rules, depending on the purpose. Do the user want to
correct future factual imports or to have a way to verify imports with
signature.

For example a property can be translated as a CG relation type with its signature or with rules:

CoGui User Guide

66 / 100

signature

domain rule

range rule

OWL Options

The semantics of RDFS is taken into account almost entirely. This is not the case with OWL. However,
many ontologies are defined with OWL. In practice the processing of anonymous classes and the treatment
of most used properties of OWL allows to recover a significant part of the semantics of these ontologies.

Fortunately ,a new import tool is provided by Graal extensions. See section Import RDFS/OWL with Graal
CoGui also offers an option that takes into account including anonymous classes, that are used during the
processing of import. Some deductions were made using property restrictions, intersections and unions of
classes and are expressed on the support. By default, after treatment all anonymous classes are removed
from the type hierarchies, check option box to keep these classes.
The owl:disjointWith property is used to defined banned type in the concept type hierarchy.
In addition, some OWL properties are also expressed by rules, see below examples from importation of
wine.owl ontology:

owl:SymmetricProperty owl:inverseOf

CoGui User Guide

67 / 100

owl:TransitiveProperty

owl:allValuesFrom

Created with the Personal Edition of HelpNDoc: Free CHM Help documentation generator

Import RDFS "raw" mode

The "raw" translation simply translate each triple RDF in a ternary relation where each of the concept nodes
of the relation will represent the RDF triple elements. It ensures soundness and completeness of
homomorphism. However, this translation is not visual or in the spirit of Conceptual Graphs as such (the
support is flat).

3 steps to import:

https://www.helpndoc.com

CoGui User Guide

68 / 100

CoGui User Guide

69 / 100

The raw translation of a triple:

raw mode use a predefined vocabulary:

CoGui User Guide

70 / 100

This mode is interesting to demonstrate some properties but in practice, it cannot be used with big graphs
because the application of all rules on the sum graphs of imports plus rdf(s) axioms quickly increases the
graph size. To be used to find homomorphisms, this mode requires to add RDF and RDFS axioms as facts
and to apply several RDF and RDFS rules. This facts and rules can be automatically created during
importation. Check corresponding boxes on the wizard option panel:

RDF axioms:

CoGui User Guide

71 / 100

RDFS axioms:

CoGui User Guide

72 / 100

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Import RDFS/OWL with Graal

 Graal Java toolkit. provides a translator from any OWL2 ontologies to Datalog+: OWL2DLGP. CoGui wizard
runs OWL2DLGP then use Datalog+ translation to import ontology to CoGui model.

The 2 steps of the import wizard:

https://www.helpndoc.com/feature-tour
https://graphik-team.github.io/graal/
https://graphik-team.github.io/graal/downloads/owl2dlgp

CoGui User Guide

73 / 100

Created with the Personal Edition of HelpNDoc: Free HTML Help documentation generator

Export RDFS "natural" mode

Cogui is able to export projects to RDF with RDF/XML or N3 formats. For now only type hierarchies and
facts can be exported. Rules , constraints and type disjunctions are ignored. But domain and range
constraints induced by relation type signature are translated. All namespaces defined in the project are
declared in output. By default, a multilingual version is produced, a monolingual version is also available with
current selected language.

https://www.helpndoc.com

CoGui User Guide

74 / 100

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

To/From Datalog±

DLGP (for Datalog Plus) is a textual exchange format at once human-friendly, concise and easy to parse.
CoGui provides an editor for this language with syntax highlighting and a navigator.
Switch to graphical and DLGP representation with the factory view is a good way to become familiar with the
language. See section The factory view .
DLGP files can also be imported. See section Import from Datalog±
Finally, you can also export the whole project. See section Export to Datalog±

The format can be seen as an extension of the commonly used format for plain Datalog. Datalog± may
define four kinds of knowledge elements:

· Facts

· Existential rules

· Negative constraints

· Conjunctives queries

As usually in Datalog, variables begin with an upper-case letter and constants with a lower-case letter. We
distinguish between regular constants(called constants hereafter) and literals, which are values belonging to
some datatype. Literals are given as double-quoted strings or numeric values(integers and floats).
The file name has the extension .dlgp or .dlp. Character encoding is assumed to be UTF-8.
Complete syntax is described in this paper: DLGP: An extended Datalog Syntax for Existential Rules and
Datalog±Version 2.0

Some examples of different elements are available here.

Some examples

Datalog± expressions Cogui conversion

https://www.helpndoc.com/feature-tour
https://www.lirmm.fr/cogui/datalog_v2.0_en.pdf
https://www.lirmm.fr/cogui/datalog_v2.0_en.pdf
http://www2.lirmm.fr/~mugnier/graphik/kiabora/downloads/framework_en.pdf

CoGui User Guide

75 / 100

[a_fact]fatherOf(zeus,apollo),
god(zeus), god(apollo). Every kinds of knowledge elements can be named with

simple strings .

fatherOf(<Zeus>,<Apollo>),
god(<Zeus>), god(<Apollo>). Zeus can not be used as a constant name in DLPG

language.

belongsTo(<Zeus>,<Greek+pantheon>). Use + symbol to represent a space in the Datalog constant
name.

?:-fatherOf(X,apollo).
Is there someone father of Apollo ?

distance(athens,marathon,42.195),
town(athens),town(marathon). A ternary predicate with a literal value(float).

distance(athens,marathon,"42km195"),
town(athens),town(marathon). A ternary predicate with a literal value(string).

distance(athens,marathon,42)
,town(athens),town(marathon). A ternary predicate with a literal value(int).

siblingOf(Y,X):-siblingOf(X,Y).
A rule to define a symmetric relation.

parentOf(X,Z):-parentOf(X,Y),parentOf(Y,Z).
A rule to define a transitive relation.

god(Y),human(Z),
parentOf(Y,X),parentOf(Z,X):-demigod(X).

A rule with new variables in conclusion (head of the rule).
Unlike safe clauses in classic Datalog, Datalog± accepts
new variables in the rule heads.

X=Y:-equals(X,Y).

A rule with equality as a conclusion.
Head (conclusion) part of the rule can contains one or more
equality relations between frontier concepts. They are
represented as coreference links on the cogui model.

Created with the Personal Edition of HelpNDoc: Easy CHM and documentation editor

The factory view

Its brevity makes language datalog± an effective tool for the construction of new objects in the knowledge
base, while the graphical representation is preferable to read (visualize) or update these objects. The
"Factory" view is intended to allow concomitant use of both representations. It can immediately translate a
text datalog± in its graphic equivalent and reciprocally translate any object of the knowledge base in its
datalog± translation. Note that the factory view features concern facts, rules, queries and constraints but not
the vocabulary. Classic import/export must be used for this purpose.

Datalog and graphical representations are complementary. With Factory view you can switch back and forth
between the two.
Button on toolbar translates from currently edited object to datalog:

https://www.helpndoc.com

CoGui User Guide

76 / 100

And right panel list all currently objects described in dlgp editor.
Press Ctrl-Enter to trigger the completion tool inside the DLGP editor.

CoGui User Guide

77 / 100

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Import from Datalog±

CoGui is able to import Datalog± documents.
Datalog imports can be placed inside a new project or can populate an existing project.The most common
way is to import rules to define a vocabulary and then add one or more data files based on this vocabulary .
But it is also possible to import several vocabularies and combine them in a same project.
CoGui must have an initial maximal concept type to work correctly. It must be selected before running
import task.

2 steps to import DLGP file:

https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

78 / 100

Vocabulary conversion

If the "support completion allowed" check-box button is checked (for new project or, optionally for an
existing project) then CoGui will convert a part of the Datalog imports into the vocabulary definition.
· Unary predicates are converted into concept types.

· Predicates with an arity > 1 are converted into relation types.

· Some rules are interpreted to order the concept types hierarchy and the relations hierarchies.

· Optionally, some rules are interpreted to define the relation types signatures.

· Optionally, some negative constraints are interpreted to define banned types.

Note that unary predicates are converted into concept types on the CoGui model.

Some examples below:

Datalog± expressions Cogui conversion on the Vocabulary

<Human>(X):-<Man>(X). From this rule, CoGui deduces a specialization relation
between the concept types

!:-<Man>(X),<Woman>(X).
This negative constraint is transformed into a disjoint type.

parentOf(X,Y):-fatherOf(X,Y). From this rule, CoGui deduces a specialization relation
between the relation types.

<Man>(X):-fatherOf(X,Y).
The signature of fatherOf is modified by this rule.

Created with the Personal Edition of HelpNDoc: Free EPub producer

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

79 / 100

Export to Datalog±

CoGui is able to export projects to Datalog± formats. All knowledge elements are converted (except scripts).
Concept types are transformed into unary predicate. Relation signatures are converted into equivalent rules.
Disjoint types are converted into negative constraints.
Individual labels are translated into Datalog constant name.There is no multilingual mechanism in Datalog,
so predicates are built with the labels of the currently selected language.

DLGP files can be edited directly with CoGui editor:

CoGui User Guide

80 / 100

A navigator panel to browse through DLGP objects:

CoGui User Guide

81 / 100

Created with the Personal Edition of HelpNDoc: Free help authoring environment

Building documents

For now CoGui offers two kind of tools to build documents.
o Section Build vocabulary documentation explains how to build an HTML static website to

document your CoGui project.
o Section Build vocabulary views presents a powerful tool for graphical representation of

vocabulary using GraphViz software

Created with the Personal Edition of HelpNDoc: News and information about help authoring tools and
software

Build vocabulary documentation

Select appropriate action in the menu of the project:

and Select the output folder :

https://www.helpndoc.com/help-authoring-tool
https://www.graphviz.org/
https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

CoGui User Guide

82 / 100

Open the index.html file newly created in the output folder:

index.html page:

CoGui User Guide

83 / 100

concept type list of the vocabulary:

CoGui User Guide

84 / 100

relation type list of the vocabulary:

CoGui User Guide

85 / 100

a page for each relation type:

CoGui User Guide

86 / 100

a page for each concept type:

CoGui User Guide

87 / 100

Created with the Personal Edition of HelpNDoc: iPhone web sites made easy

Build vocabulary views

Pre-requirements

The Vocabulary Views produces formatted .DOT files
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
DOT files are treated by the software GraphViz. The wizard doesn't need GraphViz to be installed to build
DOT files. But installing this software on your machine will allow to edit and visualize these files directly
inside CoGui. There are two steps to complete this installation:

1) Install GraphViz from https://www.graphviz.org/download Note the location where the software is
installed, you will need it later.

2) Install Plugin ZGRViewer.

The ZGRViewer plugin allows to edit the files (.DOT) produced by the wizard. To install it open the plugin
manager of CoGui (menu Tools/Plugins).

The plugin "ZGRViewer Integration" can be found on the tab pane "Available Plugins". Install it:

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://www.graphviz.org/
https://www.graphviz.org/download

CoGui User Guide

88 / 100

After relaunching CoGui, it remains to configure the plugin to use GraphViz previously installed.
Access the options (Tools / Options / Miscellaneous / GraphViz / Directories menu) and specify the location
of the executable files, especially the highlighted one in yellow, it is the DOT program (.exe under windows)
which is used by the wizard .

CoGui User Guide

89 / 100

How to build Graphics
Select the project in the project tree and launch the command from the pop-up menu (fig.ci below) or from
the Tools / BuildDocuments / menu

CoGui User Guide

90 / 100

Definition of the type of document to be produced:

4 types of data are viewable and can be selected simultaneously:
1. Materialization of "isKindOf" links between the types of concepts present in the document
2. Same for the links between the types of relations
3. The display of signatures that link relationship types to the types of concepts. This content introduces

constraints in the selection of types. Indeed, it is necessary that the types of concepts present in the
signature of a relation are also present in the document. To help the user, there are 2 selection
scenarios:

o Either one selects the concepts and the assistant will offer the possibility of automatically

CoGui User Guide

91 / 100

selecting the types of relations whose signatures are compatible with the selected concepts
o Either one selects the relations and the assistant will offer the possibility of automatically

selecting the types of concepts included in the signatures of the selected relationships
Note that we can go back (<Back) and combine the two scenarios to make his selection. In any case,
the wizard will only display the final page if the constraints are respected (see figure below).

CoGui User Guide

92 / 100

Display Data Properties:
The notion of Data Properties does not exist explicitly in CoGui but it can be assimilated to the types of
binary relations whose second argument is a "DataType". There is an uncompleted mechanism in CoGui to
manage the DataTypes (string, integer, float, boolean) but we will prefer, for the moment, to create its own
DataTypes defined in the hierarchy of the concepts. This is the reason why, it is asked to specify the type of
concept that is at the top of the hierarchy of DataTypes:

After choosing the type of document and selecting the types to display, you can complete the last part of
the wizard that presents the output options, file name to produce and display options.

CoGui User Guide

93 / 100

The "Rank" options force the page layout algorithm to align the types that have the same parent in the
ontology.
The "DataProperties" options concern the display of this kind of relation inside the Concept vertex. The
option "Hide inherited DataProperties" can make the schema lighter: DataProperties that appear in a
concept type are not repeated in its sub-types.

CoGui User Guide

94 / 100

Finally, the "Sense of layout" options make it possible to influence the orientation of the document (Only
influence because it must combine several types of edges and relations of opposite directions).

After having activated the "Finish" button of the wizard, it builds the diagram and opens the file in a window:

If the plugin has been correctly installed, the editor has an additional "Visual" pane highlighted in yellow.
Operate the pane to access the graphical representation:

The toolbar offers several navigation and zoom modes. Two export commands are available for conventional
images (.PNG) or vectorized drawings (.SVG) this last format is ideal to display on a web page or to make

CoGui User Guide

95 / 100

changes with software such as InkScape

Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

Extending CoGui

CoGui propose 2 ways to extend its functionalities.

· Extending CoGui with Scripts

· Extending CoGui with Plugins

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Scripts

The scripting language BeanShell (see http://beanshell.org) is embedded into Cogui application. This
language was originally introduced because it is a good way to change the default behavior of the rules (see
Scripted rules below). We finally decided to allow open use of this interpreter by introducing a new kind of
objects in the Cogui projects : executable scripts.
Scripts greatly enhance the user capabilities. For example, by providing a way to chain graph operations
proposed by Cogui or include some new graph algorithms. More generally scripts can compensate the lack
of a plugin architecture. Cogui Java classes and objects are exposed to the script language so that user can
access on public members of existing objects and also instantiate classes to introduce new objects.

Basics

BeanShell can dynamically execute full Java syntax, as well as loosely typed Java and additional scripting
conveniences. Documentation about BeanShell can be found here. Two kinds of commands are available in
cogui scripts.
· Some native BeanShell commands are described further. All BeanShell commands are

documented: BeanShell commands.
· Cogui propose its own commands. See Cogui commands further.

Before script execution, 3 global variables are instantiated. These variables give access to the current
objects loaded in Cogui.

Global variables

Name Description

_PRJ represents the current project (an instance of fr.lirmm.graphik.cogui.edit.project.ICoguiProjectClass).

_KB equivalent to _PRJ.getKnowledgeBase() return, it represents the current Knowledge Base (an instance of fr.lirmm.graphik.cogui.core.model.KnowledgeBase Class)

_VOC equivalent to _PRJ.getVocabulary() return, it represents the current vocabulary (an instance of fr.lirmm.graphik.cogui.core.model.Vocabulary Class)

First use, the most natural, is to use scripts to access project existing objects in order to read, analyze or
modify them. Global variables are pointing to objects containing all methods necessary to obtain such
access. Once the concerned object is obtained, we can use the public methods as described in the API
cogui.core.model. Suppose, for example that we want to visit all the vertices of a graph and count the
individuals that it references.

https://inkscape.org
https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com
http://beanshell.org
http://beanshell.org/manual
http://beanshell.org/manual/bshcommands.html#BeanShell_Commands_Documentation
http://www.lirmm.fr/~gutierre/cogui_new_doc/cogui-scripts.html#9

CoGui User Guide

96 / 100

nbGeneric=0;
g=getFact("set1/fact_1");
it=g.iteratorConcept();
while(it.hasNext())
 if(it.next().isGeneric())
 nbGeneric++;
print("graph "+g.getName()+" contains "+nbGeneric+" generic
concept(s)");

Access to vocabulary elements

Element How to obtain

The concept type
hierarchy

_VOC.getConceptTypeHierarchy() or _VOC.getHierarchy(Voc
abulary.CONCEPT_TYPE)

The relation type
hierarchy

_VOC.getRelationTypeHierarchy() or _VOC.getHierarchy(Vo
cabulary.RELATION_TYPE)

The individuals
_VOC.getIndividuals()

Work with CoGui core package

Exploring graphs

CoGui propose several assistants for querying, applying rules, checking and analyzing graphs. All these
operations are based on an homomorphism search provided by the CoGui solver (Solver5).
CoGui provides a user friendly search command to explore graphs programmatically.
As an example, we will write a script which produce the list of the parents in a person relationship
knowledge base. At first, user write a corresponding query.

listener()
{
 projectionFound(engine,proj)
 {
 print("coucou="+toto);
 } return this;
 };
myListener=listener();
search(getFact("set1/fact_1"), getQuery("set1/query_1"),
myListener);

Work with the vocabulary

Vocabulary is a composite class containing primarily a Hierarchy and some Translator(s)
Code below demonstrates how to define types in current vocabulary

/* create a concept type */
_VOC.addConceptType("ct_1", "top", "the root type", "en");
/* create a binary relation type with the signature (top,top)
_VOC.addRelationType("rt_1","link","the root type for binary
relation types","en");
_VOC.setSignature("rt_1",new String[]{"ct_1","ct_1"});

CoGui User Guide

97 / 100

/* create a nesting type */
_VOC.addNestingType("nt_1","nesting","the root nesting
type","en");

Translator

Translator class is a mapping between the type identifier and a pair (label,language) .
Both labels and descriptions of each kind of types (concept, relation and nesting) are represented by
instances of Translator class.
Translator can be defined to guarantee the uniqueness of labels. Unlike description translators, label
translators use this option. So, for the same language, two different identifiers cannot be associated to the
same label.
With this property the method getId (String label , String language) can be used to search id efficiently on
a double map.

/* code below is equivalent to this Vocabulary call:
** voc.addConceptType("ct_1", "top", "the root type", "en");
*/
Translator
labelTranslator=voc.getTranslator(Vocabulary.CONCEPT_TYPE);
Translator
descrTranslator=voc.getDescriptionTranslator(Vocabulary.CONCE
PT_TYPE);
labelTranslator.addLabel("ct_1", "top","en");
descrTranslator.addLabel("ct_1","the root type", "en");
/* id of types can be found with label */
System.out.println("id="+voc.getTranslator(Vocabulary.CONCEPT
_TYPE).getId("top","en")+
"
label="+voc.getTranslator(Vocabulary.CONCEPT_TYPE).getLabel("
ct_1","en"));

Use getDefaultLabel(String id) for monolingual vocabulary. Cogui also use monolingual Tranlator
to store individuals.
Code below print labels of a type. Method getLanguage(String id) search every translations for a
type.

for(String lang:labelTranslator.getLanguages("ct_1"))
System.out.println("label="+labelTranslator.getLabel("ct_1",l
ang)+" lang="+lang);

Hierarchy

When Translator(s) store labels and other informations about types, Hierarchy complete the model with a
directed graph representation of the kindOf relationShip between types.
Vocabulary give accessors for each Hierarchy instance:
· getConceptTypeHierarchy() equivalent to getHierarchy(Vocabulary.CONCEPT_TYPE)
· getRelationTypeHierarchy() equivalent

to getHierarchy(Vocabulary.RELATION_TYPE)

Example below show how to access the hierarchy and add two concept types ct_1 and ct_2 where ct_2 is a
kind of ct_1:

CoGui User Guide

98 / 100

Hierarchy ctH=voc.getConceptTypeHierarchy();
ctH.addVertex("ct_1");
ctH.addVertex("ct_2");
ctH.addEdge("ct_2","ct_1");
System.out.println("ct_2 is kind of ct_1 ?
"+ctH.isKindOf("ct_2","ct1"));

Hierarchy give efficient access to the graph to iterate vertices or incoming and outgoing edges.

· edgeSet() and iteratorEdge() to explore all edges

· edgeSet(String) and iteratorEdge(String) to access edges of a given vertex

· incomingEdgeSet(String) and iteratorIncomingEdge(String) to access incoming
edges of a given vertex

· outgoingEdgeSet(String) and iteratorOutgoingEdge(String) to access outgoing
edges of a given vertex

· vertexSet() and iteratorVertex() to explore all vertices

This is useful to write your own algorithm. But some graph algorithm are already implemented by Hierarchy
class
most of them are wrapped from JGraphT library Hierarchy can be overloaded to access other algorithm not
already used by Cogui.
Following tools are proposed by Hierarchy class:

· about transitivity: a closure and a transitive reduction

· a cycle detector and a method to iterate all connected components

· several methods to compare (isKindOf) and normalize sets of types
(normalize(String[]) and isRedundant(String[]))

Build a fact graph

After defining a Vocabulary instance, we will programmatically build facts based on this
vocabulary. For this purpose the KnowledgeBase class was designed to associate a vocabulary
with a set of facts and possibly with rules, constraints, prototypics etc.

KnowledgeBase

KnowledgeBase is a composite class designed to associate a vocabulary with:
· facts graphs
· queries
· rules
· positive constraints
· negative constraints
·
A Knowledge instance is used to store and give access to the graphs directly or throw access to
GraphSet instances

KnowledgeBase kb=new KnowledgeBase(voc);
/* this two instructions below are equivalent */
kb.getFactGraph("g_1");

Now we will create and populate a fact graph to store it inside the knowledge base.

CoGui User Guide

99 / 100

CGraph

CGraph is composed by a set of Concept and a set of Relation mapped with their keys and a
Multigraph instance represent the graph itself. Code below shows how to create and populate a
CGraph instance.

/* create the graph */
CGraph graph=new CGraph("g_1", "my graph name", "my_facts",
"fact");
/* create the concepts and a relation */
Concept c1=new Concept("c_1");
Concept c2=new Concept("c_2");
c1.setType("ct_1");
c2.setType("ct_2");
Relation r1=new Relation("r_1");
r1.setType("rt_1");
/* populate the graph with vertices */
graph.addVertex(c1);
graph.addVertex(c2);
graph.addVertex(r1);
/* add edges */
graph.addEdge(c1.getId(),r1.getId(),1);
graph.addEdge(c2.getId(),r1.getId(),2);
/* add the fact graph to the knowledge base */
kb.addGraph(graph);

CoGui commands

Name Description

applyRule(CGraph graph,Rule rule)
applyRule(CGraph graph,Rule
rule,int limit)
applyRules(CGraph graph,ArrayList
rules,int limit)
applyRules(CGraph graph,ArrayList
rules,int limit,boolean scripted)

Apply the rule(s) on the graph until limit level and
until saturation if limit==-1 (default).
Note: the graph is directly modified by the action of
rules. Use cloning to preserve the original graph
with CGraph.clone() function.
If scripted is set to true then the scripts contained
in scripted rules are called. See scripted rules for
details.

CGraph getFact(String name)
CGraph getFact(String name,String
set)

Return corresponding fact graph.
Equivalent to
_KB.getFactGraphSet().getByLabel(name,set)
Example: getFact("set1/fact_1") or
getFact("fact_1","set1").

CGraph getPConstraint(String
name)
CGraph getPConstraint(String
name,String set)

Return corresponding positive constraint.
Equivalent to
_KB.getPConstraintGraphSet().getByLabel(name,s
et)
Example: getPConstraint("set1/pconstraint_1") or
getPConstraint("pconstraint_1","set1").

CGraph getPrototypic(String name)
CGraph getPrototypic(String
name,String set)

Return corresponding prototypic graph.
Equivalent to
_KB.getPrototypicGraphSet().getByLabel(name,set

CoGui User Guide

100 / 100

)
Example: getPrototypic("set1/proto_1") or
getPrototypic("proto_1","set1").

CGraph getQuery(String name)
CGraph getQuery(String
name,String set)

Return corresponding query graph.
Equivalent to
_KB.getQueryGraphSet().getByLabel(name,set)
Example: getQuery("set1/query_1") or
getQuery("query_1","set1").

search(CGraph graph, CGraph
query, bsh.This pListener)

pListener is scripted object containing a callback
method: projectionFound(Solver solver,Projection
proj).

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Plugins

Created with the Personal Edition of HelpNDoc: Free EPub producer

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

	Basics
	Installation
	Keyboard shortcuts

	Knowledge representation
	Vocabulary
	Concept types hierarchy
	Insert new concept type
	Concept type hierarchy control
	Forbidden types
	Concept type alteration
	Graph layout and coloring

	Relation types hierarchy
	Insert new relation type
	Relation type hierarchy control
	Relation type alteration
	Graph layout and coloring

	Individuals
	Rules
	Constraints
	Facts
	Insert new concept
	Insert new relation
	Coreference
	Reduced edition

	Queries

	Reasoning
	Inspecting facts
	Graph measurement, redundancy
	Classification
	Check consistency

	Applying rules
	Sum, split and normalization
	Querying

	Import, Export and Convert
	To/From COGXML projects
	To/From RDF(S) and OWL
	Import RDFS/OWL "natural" mode
	Import RDFS "raw" mode
	Import RDFS/OWL with Graal
	Export RDFS "natural" mode

	To/From Datalog±
	The factory view
	Import from Datalog±
	Export to Datalog±

	Building documents
	Build vocabulary documentation
	Build vocabulary views

	Extending CoGui
	Scripts
	Plugins

