CoGui User Guide

Table des matieres

BaSICS iuitiii e 4
INSEAIlAtION ..eviiee i e 4
Keyboard ShOrCULSceuive i e 4

Knowledge representationc.ovieiiiiiiiniiiiiin i 6
RV oY= o1 =1 PN 6

Concept types hierarChyvceiieiiiiiieiir e s a e 11
Insert NeW CONCEPL tYPE . vuivniiiiii e e 12
Concept type hierarchy CONtrolc.oveiiiiiiiii e 13
FOrbidden tyPeS ...cvuiiiiiiiii e 16
Concept type alterationcveoieiiiiiii 17
Graph layout and COIOFING ...vuveiiieiiie s 17

Relation types hierarchyc.oiiiii i e 20
Insert new relation tyPe v 20
Relation type hierarchy controlccooviiiiiiiii e 22
Relation type alterationcooeiiiiiiii s 23
Graph layout and COIOFING ...vuveiiieiie e 24

INAIVIAUALS .ovrieieeee e e e e er e e e e e nas 26
RUIES et ra e 27
@] 111 =] 30
=0 PSP 32

INSErt NEW CONCEPL .uivnieieiiiir i s s s s s s s s s e s e s anenss 33

Insert NeW relationc..vveiiei i 35

(@0 (< 1= 0T PP 37

(R=Ta [8 oo =T [o o P 38

@ BT TSP 40

(ST 10 1 PPN 41

INSPECtiNg faCLS ..vuieie i 42
Graph measurement, redundanCycccovieiiiiiiiiirei e 42
ClasSIfICAtION 1vuuivriiriese e 44
Check CONSISEENCY ..uivviiiiiieiir e e a s e ar e enns 46

APPIYING FUIES vt e s e s e e e s e e eans 48

Sum, split and NOrmMalizationcooveiiiiei i 52

@ 18T Y o PPN 55

Import, EXport and CONVENTivniiiiii e e a e 60
TO/From COGXML PrOJECES .vuvrienierieriieess s essenssssss e ss s e snnsenssnnsensennsennes 61
To/From RDF(S) @Nd OWLcuuiiiiiiiiiieeei e e e s s e s s e e a e eans 63

Import RDFS/OWL "natural” modecoeoviiiiiiiiiiiiiiee e e e 63

IMport RDFS "raw" MOdEcvuiieiiiiiiiiiee e e s e e e e e e e 67

Import RDFS/OWL With Graalcoeuiiuiiiiiii e 72

Export RDFS "natural” modeccceoiiiiiiiiiiiis e 73

TO/From DatalogE ...ccueeiiiiiii e 74
The factory VIEW ..cuuiiiiii e e 75
Import from Datalogaceeieiiii i 77
EXPOrt to DatalogE ...cuiveii i 79

(2101 Lo [T o s [oTal U4 1=) £ PP 81
Build vocabulary documentationc.ovviiiiiiiiie 81

Build voCabulary VIEWSccuuiiuiiiiii e 87

Extending
Scripts
Plugins

COGUI 1rvniiriiii i

Basics

This new version 3 migrates CoGui from a classic Java application to a completely different architecture
based on the NetBeans Platform

If you discover CoGui, a good way is to follow Getting Started section.

CoGui 2 will always be available for download here: http://www.lirmm.fr/cogui/cogui_2.0b6.jar but it is
recommended to install the new version. All the instructions about the installation are available in Installation
section.

The application CoGui installed will allow you to automatically update CoGui over the corrections and
improvements.

If you have some old CoGui projects from before v3.0 (COGXML format) you can import them to the new
project format, read more about projects import in Import, Export and Convert section.

The user guide is divided as follows:
Knowledge representation
Reasoning

Import, Export and Convert
Building documents

Extending CoGui

Create iPhone web-based documentation
Installation
Pre-Requirements

CoGui 3.1 requires Java 8 or newer installed on your computer (PC, Unix/Linux or MacOS).
All the various distributions can be found in Download CoGui section.

Install CoGui using the windows installer

Once you have downloaded the installer file, double-click the file to start the installation wizard.

Install CoGui on other operating systems

Once you have downloaded the ZIP file, unpack your archive using the utilities appropriate for your system.

To launch CoGui 3.0, navigate to the bin sub-directory of your CoGui installation and execute the launcher
that is appropriate for your system (windows file "cogui*.exe" or script "cogui").

Full-featured multi-format Help generator

Keyboard shortcuts

Finding, Searching, and Replacing

https://netbeans.apache.org/
http://www.lirmm.fr/cogui/getting_started.html
http://www.lirmm.fr/cogui/cogui_2.0b6.jar
https://www.helpndoc.com/feature-tour/iphone-website-generation
http://www.lirmm.fr/cogui#download
https://www.helpndoc.com/help-authoring-tool

Ctrl-F3 Search word at insert point

(=AY allid=¢! Find next/previous in file

Ctrl-F/H Find/Replace in file

W Find/replace in projects

AT slli®El Turn off search result highlights

Ctrl-R Rename

Ctrl-U, Conwert selection to uppercase
then U

Ctrl-U, Convert selection to lowercase
then L

Ctrl-U, Toggle case of selection

then S

Paste formatted

Show Clipboard History

al

trl-1 Jump to quick search field

N[&S] Jii®MW Copy file path

@BESRII=Yy Triggers completion tool (Factory view)

Opening and Toggling between Views

Switch between open documents by order used
(Ctrl-)

Maximize window (toggle)

Escape

EE! Close selected window

Close all windows

Sallif=x{e] Open contextual menu

G igE LBl Switch between open documents by order of tabs
PgDown
C T

trl-Alt- Reopen recently closed file

Editing with graphical editors

CoGui User Guide

Ctrl-C Copy selected vertices and edges
Ctrl-V Pasted vertices and edges
m Delete selected vertices and edges. It also delete pending edges if any

S igE Vi le]¥EY=) To create edges between concept types or relation types into vocabulary graphical editor

Ctrl-Whee | Ay

Create iPhone web-based documentation

Knowledge representation

CoGui works on a model of a knowledge base consisting of:

The ontological part

e Aunique and necessary Vocabulary
e Aset of Indivduals
e Aset of Rules

e Aset of Constraints

Data organized into
e Aset of Eacts
e A set of Queries

Full-featured Kindle eBooks generator

Vocabulary

CoGui is able to create multilingual ontologies designed for Conceptual Graphs (CGs). A CG Ontology is
composed of exact knowledge and contextual knowledge. The vocabulary is one important part of the exact
knowledge and consists of two hierarchies:

1. ahierarchy of concept types (also named concept or class or object type)

2. ahierarchy of relation types (also named relation) with arity greater or equal to 1.

The abowe hierarchies are respectively organized in partially ordered sets (not necessarily a tree or a lattice).
The exact knowledge of the ontology, apart from the vocabulary, consists of:

e 2 collection of individuals
e rules

Editors allow end users to navigate through the ontology and edit graphically its structure and content. The
ontology is controlled and, if necessary, tools are provided to correct it.

Graphically, types are displayed as vertices. An arc connecting vertex A to vertex B means that the type A
is a kind of type B (or A is a specialization of B or B is a generalization of A):

concept types

Animal }—— Dog

6/100

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

In most cases the ordered set looks like this:

Dag

5

Mammalian F— Cat

Animal Whale

Fish (— Shark

.

simple ordered set of concept types

Trout

In this case, the hierarchical structure is a tree. But the model accepts extra connections. Two examples
below illustrate hierarchies that not have a tree structure:

Dag
Mammalian [———1 Cat
Rectangle
Whale
' < sh Rhomb f3+——H 5
Animal [Marine animal ape [<FH— oam quare
Triangle
Sharlk:
Fish <— |
Trout

The edit operation is not heavly constrained by the model, in practice, the only critical error occurs when a
circuit is detected. More details can be found in following chapters.

How to browse through type hierarchies

When a project is opened (or created) a vocabulary panel appears on the right part of the main window.
Concept types, relation types and Individuals are displayed in three separated tabbed panels. An
arborescent representation containing every path between maximal type and others. Types are
alphabetically sorted, relation types are also sorted by arity.

71100

CoGui User Guide

Voc: SampleiCoguiProject | }.l’oc: Sample1CoguiProject |
Concept types (& Relation types (8 Individuals Concept types &> Relation types & Individuals
V: b 4 :la v b 4
=3 Universal 4@ T2
G- Attribute @ locobj |
=W | F-(E) relativeOf (Ferse
- GeomMotion -(R) possess 3l Liniversa
&I 3DNotion (B act (Person ,Liniversal)
Fit [Cube -(B) agt (Linversal, —
[Sphere -(B) attr
G- Action -(RY inst (L
-3 Object % -{R) obj (L
..... @ Painting -{E} hold /1
HE Toy B-(R) T3 1
E}Iﬂ Car G- T1 (Lniverss
----- [RacingCar | e (B} relationType2 /Lin
... Firetruck
= E CuddiyToy
- ----- [TeddyBear
[FluffyRabbit
. T il AimABl e
concept types relation types

The tree representation is useful to create vertices in conceptual graphs by dragging types into the graph
editor (see Graph Edition chapter). Please remember that the type's order is not necessarily a tree. That's
why the same type may be retrieved several times in the tree representation. For the same reasons tree is
not automatically expandable if hierarchy contains at least one circuit.

8/100

CoGui User Guide

Voc: SampleiCoguiProject | “Voc: Sample1CoguiProject |
Concept types (&> Relation types (& Individuals Concept types > Relation types o Individuals
v| 5 3k v| %
. B-@ T2 (Linversal ,Uiniversa
- Universal (B locbj (L
"E Attribute BB relativeOf (Person Person
- MathNotion () possess (Linversal, Linverss
-3 GeomNotion e (B> act (Person Liniversal)
E.E 30Motion --(B) agt (Linversal, Lniversa
[Cu Labels & descriptions... | | — éth’ L5 s s
(B inst (Linversal L
""" & sp MNamespace... @ obj (niverssl, L
o[Action @ hold (Universal Liniversa
= [E Object Copy B-@ T3 (Liniversal Liniversal , Universz
----- @ Fainting Cut B-(® T1 Liverss
EIE Tay .] (B} relatonType2 (Livversa
EH-E Car
' """ [Ra Delete
... [l Fir
- Cuddly Insert concept type
..... o Te
... ru I Graphical editmh
- [BuildingBlock WS‘
-3 PieceOfFurniture
>E Chair
Click right button and choose 'Graphical Editor' The graphical editor is opened

9/100

CoGui User Guide

[Concept types: Sample1CoguiProject > ~ O | voe: Ssample1CoguiProject
7 Runlayout £ fmh |] (e nfl) e Concept types 5> Relation ty
L
I Atvibute
& I mathtioson
Sphere = - GeomMotion
S Em 3ootion
Cube i~ Cube
D sphere
- [El Action
Bt
. i parns
EJIE Toy
S o cer
[RadngCar
[l Firetruck
Gremar] o) W CuddyToy
-E TeddyBear

[FluffyRabbit
- El BuildingBlock
= - PieceOfFurniture

- Ell Chair
- [l Mat
- [l Sofa
- Table
- e N =0 Train_Train
CETE— B Location
e [— o
e [Woman] bud=tbo i
[Eria) I i
< >

two synchronized editors for a same type hierarchy (both concepts and relations)

you can navigate between both representations:

e asimple double click on a \ertex in left panel select and show the (unique) corresponding vertex in the
hierarchy view

e aright click on vertex displays a popup menu: the 'Navigate/Show type in tree' action selects (and
scrolls if necessary) the corresponding node(s) int the left panel.

10/100

CoGui User Guide

¥ O | voc: sample1CoguiProject |
Concept types «E- Relation types ﬂ Individuz

| v 8

= Universal

-l Attribute

-- [MathMotion

L[l Action
- Object
>E Location
[Person

- Male

W Disjoint types

—_—

470:378

Double click will open graphical editor and scroll to make the vertex visible

Two other options show parents or children inside the graph (the scrolling process is automatically
performed).

e Shows parent vertex in the graph representation and select them
e Shows children vertex in the graph representation and selected them

Easily create CHM Help documents

Concept types hierarchy

Insertion

Graph arrangement

Concept type hierarchy control
Forbidden types

Concept type alteration

Free iPhone documentation generator

11/100

|

From
the
grap
hical
edito
rto
the
tree
edito

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/iphone-website-generation

CoGui User Guide

Insert new concept type

A newly created concept type hierarchy contains only one type named "Top' .

[Concept types: Sample 1CoquiProject X
~ Run layout -ﬂ f}h

Insert concept type m

B &paste Ctrl+V

Export image

insert button on the toolbar of the graphical editor can be used

'Insert concept type' into the popup
menu inserts the desired type at the
mouse location.

A concept type can also be created into the tree representation. 'New concept type' option in the type view

popup menu creates a new concept type as a type of selected item:

Voc: Sample1CoguiProject |
(=] Concept types &> Relation types (% Individuals
~| K
=l Universal
G- [Attribut
..E Matho Labels & descriptions...
--|E Aiction Mamespace...
G- Object
- Locatior Copy
=-[@ Person Cut
EJ[E Mal Paste Ctrl+V
[+ Delete
i | Imertcunﬁpt type
G-I Ad [Graphical editor
[+l Female

A concept type can be created directly into the tree

Into the graph editor, the following vertex is displayed:

12 /100

conceptType

I:'E"oc: Sample1CoguiProject |

Concept types (Br Relation type

=0 Universal
= Attribute

: .. conceptTypel
m[ﬂ Mathhrtinn

Newly created type is kind of previously

selected item

. Click twice on the vertex to edit

CoGui User Guide

type name. Concept types can be renamed directly on the concept type tree. Click once on the tree item to
edit type name. Both actions have same effect and are synchronized.

. M Location
. [#}-[3 Person

)

Rename on graphical editor Rename on tree editor

Naming convention

Homonymous types are not allowed in the same type hierarchy. The case is respected but comparisons are
case unsensitive. For instance user can decide to write 'Dog' or 'dog' but cannot define both words in the
concept type hierarchy. Blank spaces are allowed.

Easily create CHM Help documents

Concept type hierarchy control

Action to control of the concept Debug Team Tools Wine
types hierarchy is provided in : !
Debug menu: @ Checkproject I
1 ‘ Check base |

@ Check script

Only one critical error can occur with the graph structure: the detection of a circuit. Assume that 2 types A
and B on a circuit, i.e. a path exist from A to B and another exist from B to A. It means A is a kind of B and
B is a kind of A

13/100

https://www.helpndoc.com/feature-tour

CoGui User Guide

[l Concept types: Animals > |

Run layout -{g ﬁh I = 3 @

Shark
Whale |

Marine Animal

selected: 0 /9 full view

Qutput | Factory Cogui Debug Cogui *

Modes Source
A1y, Graph is not a hierarchy: 3 vertices belong to 1 strongly connected compenent(s) Concept byvpe hierarchy
o Document is correct Debug project

CoGui control detects circuits: all the animals are not dogs

Howewer, it is possible for a project consisting of several pieces of ontologies to work with seweral
synonymous types from multiple equivalent URIs (owl: SameAs). Despite the warnings CoGui is able to
work with the circuits, all the concept types belonging to the same circuit are considered as equivalent.

Another model constraint is that the concept types hierarchy must have a maximal concept type. By
default CoGui names it "Top', feel free to change its name or to choose another vertex as the maximal. A
warning message occurs if the hierarchy contains more than one maximal element. The tool does not
automatically add a maximal abstract type to the hierarchy but it is recommended to respect this
constraint.

14 /100

CoGui User Guide

Sl Concept types: Animals X |

~ Runlayout 4B fh I u)

Shark

Fish
o]

|

i

selected: 0 /9 full view

Output | Factory Cogui | Debug Cogui X |

Modes Source
/¥ Hierarchy graph contains more than one maximal element (2) Concept type hierarchy
o Document is correct Debug project

A single maximal type is required

Another warning can occur when the user draws redundant arcs. IfAis a kind of B and B a kind of C, by
transitivity CoGui 'knows' that A is a kind of C, hence an arc between A and C is correct but redundant.
These extra arcs can obstruct the graph view but extra entries on the tree representation could be used as
sort of shortcuts for often used types.That is the reason why CoGui accepts and stores redundant arcs.
When a message (error or warning) occurs, it can hold the action to solve it. The Repair box checked
indicates that a repair action is available:

Qutput | Factory Cogui | Debug Cogui X

Modes Source Repair
/1. 1redundant arc(s) detected. Due to transitivity, these arcs can be removed. Concept bype hisrarchy

0 Daocument is correct Debug project

In this case all the redundant edges can be remowved with the message popup menu with the action named
Transitive reduction'.

15/100

CoGui User Guide

Sl Concept types: Animals X | I Concept
~ Run layout -{g ﬁh I 3 E,j A Ran
=

Marine Anirmal

selected: 0 /9 full view
Qutput | Factory Cogui Debug Cogui > selected: 0 /
Modes Source Qutput

/1, 3redundant arc(s) detected. Due to transitivity, these arcs can be removed. r Cancent bvne hisrarche ! Modes

o Document is correct Show it on graph [0 Docume

Apply tramﬂhﬁeductian |

Clear error list

Free EPub and documentation generator

Forbidden types

In a graph, the concept vertices may be associated to a conjunctive types, meaning it has seweral types. As
a result, the model provides a mechanism to prohibit some incongruous associations. For instance,
suppose you hawe defined both "Animal" and "Plant" concept types, you might want to prohibit associations
between these types as well as between sub-types of them. It is possible to express this restriction in your
concept type hierarchy. To this end, you are going to introduce a forbidden type in the concept type View to
express this incompatibility. See below an example of such restriction expressed in the concept type
hierarchy triggers and here it triggers an error in a conceptual graph.

Forbidden types (also named disjoint types) can be added in the view placed below the concept type tree:

16 /100

https://www.helpndoc.com

CoGui User Guide

= Animal
[Marine Animal

[Fish

: ..l Whale
= Mammal

Digjoint types

Edit disjoint types

Add disjoint type
Delete

It is possible to create sets of 3 conjunctive types or more. If the forbidden type (A;B;C) is defined, all
subset will be forbidden (A;B) (B;C) (A;C) and of course (A;B;C). This corresponds to the most frequent
needs of the users. If you want to specify that only the conjunction (A;B;C) is forbidden a negative constraint
can be used.

Disjoint types @ newMConst X

Graphical Source Histar

All subsets of A,B,C with card>1 is forbidden Negative constraint for A;B;C

Easily create EBooks

Concept type alteration

As for relations, adding concept types does not affect the existing ones. The deletion of a concept type can
affect not only the type hierarchies and fact graphs, but also the signatures of relations. All references to
this type must first be remowved from the base.

Removing a link between two concept types does not create inconsistencies in the knowledge base but can
decrease the number of answers to a query, adding a link can increase the number of answers, the
forbidden types may change and some constraints may become unsatisfied.

All consequences of these alterations are detected by the CoGui controller and error messages help the
user to correct inconsistencies.

Easily create Qt Help files

Graph layout and coloring

17 /100

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

CoGui User Guide

Even if the position and color of the vertices of the graph do not matter in the representation model, they can

be very useful for the user.

A vertex is moved by dragging its box with the mouse. Another way to place vertices is to run an automatic

arrangement with the layout algorithms.

[Concept types: DocExamplel X |

¥ O | Concept t

& Run layout -é ﬁ'}l

& Run

Object
ﬁttnbute

Unwersal

horizontal tree layout

A dynamic force directed layout is also provided:

18/100

CoGui User Guide

[Concept types: DocExample 1 Xl S

T

Universal

Sguare

Rectangle

£ >

selected: 0 / 11 full view A7

The default color of the concept types can be changed using Tools/Options/CoGui/Appearance command:
£ options >

%ﬁ E G\ n'a'."%_’; = 'dJ h

General Editor Fonts & Colors Keymap Team Appearance Miscellaneous |Cogui Options

General APPEarance Soipt Solver

Vocabulary Concept Relation Literal

| | Concept type background

| | Relation type background

N

Expaort... Import. .. . Apply . Cancei

A different color can be selected for each concept type. Contextual menu of the vertex propose a submenu

19/100

'Coloring":

Universal

QOhject

Relation types hierarchy

Insert new relation type
Relation type signatures
Graph layout and coloring
Relation type hierarchy control
Relation type alteration

Insert new relation type

CoGui User Guide

e]
M

Rectanale

Labels & descriptions...

MNamespace... :I
By Copay

Delete

MNavigate

Cf.:-lr.'.-l'ingl-\5 3 # Change color...

7 @ Apply

O Propagate to children
O Propagate everywhere
{CE} Settings...

Full-featured multi-format Help generator

Produce Kindle eBooks easily

A newly created relation type hierarchy contains only one type named 'Link' .

20/100

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

(R} Relation types: Animals X |

Concept types | ‘& Relation types | & Individuals

& Runlayout 4B frh

®

R

& Insert relation type

L

[aPpaste Ctrl+V

Export image

Use button or popup menu to add a new relation type

(B link (Amimal Amimall
Labels & descriptions...

Label & signature...
Suggest signature...

MNamespace...

Copy
Cut

Paste Ctrl+V

Delete

&

Insert reEatEn type

Graphical editor

A relation type can be created directly into the tree

The relation type can be updated with ‘Label & signature...' menu action:

() Relation types: Animals X|

&~ Run layout -{g ﬁh

Labels & descriptions...
Label & signature...
Suggest signature...

Mamespace...
Cop&y
Delete

Mavigate

Colering

The menu action

&) Label & signature
Label of relation type
lirk:

Arity: |2 .| |[Apphy

Order
1

Type

v |

Animal

Animal

2

Cancel

The dialog box

Homonym types are not allowed in the same type hierarchy. The case is respected but comparisons are
case insensitive. For instance the user can decide to write '‘Binary_rel' or 'binary_rel' but cannot define both

words in the relation type hierarchy. Blank spaces are

allowed.

A signature must be associated with each relation type. A signature is an ordered list of concept types
(numbered from 1 to arity) where arity denotes the arity of the relation type, i.e. its number of arguments.
The signature dialog box allows to change the arity and to specialize inwlved concept types.

Press the assistant button and choose arity or directly edit arity number and press the 'Apply' button to
confirm. Lines are added or removed from the table. Each concept type can be changed directly or with the

assistance button:

21/100

CoGui User Guide

&) Label & signature e
Label of relation type
relativeOf
Arity: |2 Apply
[ia| | Order Type | Lary

L] 1 Universal . bin§_.r w ﬂ
rm

te

] 9 |Universal u v o

quaternary

quinary
senary

septenary

octal
|CK Cancel -
nonary

R decimal

—

m \ brotherof

Free Kindle producer

Relation type hierarchy control

Similar to concept type hierarchy, circuits are forbidden. The only difference with concept type hierarchy is
due to signatures. The constraints are:

1) relation types are grouped by arity. Each ‘arity family' must have a maximal element. It means that the
relation type hierarchy is decomposed w.r.t. the arity and a uniqgue maximal element is required for each of
these sub-hierarchies.

2) Let A and B be two relation types in the same sub-hierarchy (i.e. A and B have the same arity). IfAis a
kind of B, it means that every concept type in A signature is respectively a kind of concept type in B
signature. For example if graze(herbivore,plant) is kind of eat(animal,food) their signatures respect
compatibility if herbivore is a kind of animal and if plant is a kind of food.

22 /100

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

Concept types ‘& Relation types &% Individuals Concept types | @& Relation types (G IndividL
LV % il %
RS Yirk (7o, Tor) =
=B eat =3 Food
\..(E) Graze -3 Animal
i $J|3 Marine &nimal
. - Mammal
% . [Herbivore
v Plant
graze(herbivore,plant) is kind of eat(animal,food) herbivore is a kind of animal and plant is a kind of
food

Another way to quickly define or pre-define signatures is to use 'Suggest signature...' command on popup
menu. Use the command after a link is established between a new relation type and an immediate greater
relation type: the parent signature is automatically proposed. But this command is designed for more a
complex purpose.ln a complex ontology it becomes difficult to define a new relation type signature. The
command 'Suggest signature...' can help to find the maximal compatible signature.

Labels & descriptions...
Label & signature...

Suggest sfgature...

Mamespatd..,
By Copay
Delete

Mavigate b

Coloring]

Easily create Help documents

Relation type alteration

Relation type labels can be changed. With respect to the signature covariance new relations can also be
added without consequences for existing knowledge.

For obvious reasons of referential integrity, the removal of a relation assumes that all occurrences have
disappeared from all graphs, both in annotations and within ontology.

The consequences of the change of a sighature depends on its nature: if the arity of the signature is
changed, all occurrences of the relation will require user’s intervention; if only the concept types of the
signature are changed, then it will be a different signature.

If a concept type is replaced by a more general type, the content of the knowledge base will not be affected,
and no error will occur. Howevwer, if a term is specialized, it can have an effect on the content of the
knowledge base, and can also trigger errors in the annotations. Removing a link between two relation types
does not create inconsistencies in the database but can decrease the number of answers; adding a link can

https://www.helpndoc.com/feature-tour

CoGui User Guide

increase the number of answers (new rules may be applicable) and some constraints may become
unsatisfied.

Create help files for the Qt Help Framework

Graph layout and coloring

Even if the position and color of the vertices of the graph do not matter in the representation model, they can
be very useful for the user.

A vertex is moved by dragging its box with the mouse. Another way to place vertices is to run an automatic
arrangement with the layout algorithms.

{E» Relation types: DocExamplel X |

&~ Runlayout -{fé

horizontal tree layout verti
cal
tree
layo
ut

A dynamic force directed layout is also provided:

24 /100

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

CoGui User Guide

{R) Relation types: DocExamplel X |

& A Runlayout @ ﬁ-’h

The default color of the concept types can be changed using Tools/Options/CoGui/Appearance command:

d] Options

et

ik @& B&X IS

=

General Editor Fonts & Colors Keymap Team Appearance Miscellaneous |Cogui Options

Q|

General APPEarance Seript Solver

Vocabulary Concept Relation Literal

| | Concept type background

| | Relation type background

[

coort.. || mpor.

A different color can be selected for each concept type. Contextual menu of the vertex propose a sub-menu

‘Coloring":

25/100

et Wit ACEI R,
Labels & descriptions...
layToget] Label & signature...
T Suggest signature...
Marespace...

-l .
\ b-—l—(under Pliie
\ C:E Mavigate

e

4 ¢ childof Coloring ¥ # Change colar...
\ ol T Cdaughterof> |0 Applyd
X / L O Apply
\‘_ P - _____C‘Hfitﬂ?_f) O Propagate to children
@.—@::: O Propagate everywhere
e ____h {e} Settings...

between \ brotherOf
e -
- H"‘"—\-..__

Easily create CHM Help documents

Individuals

An indivdual is an identifier which is a surrogate for a precise entity of the discourse universe. For instance,
if Town is a concept type then Budapest is an individual of type Town. A concept type may hawe subtypes,
e.g. SmallTown could be a sub-type of Town, an individual cannot have ‘sub-individuals’. The ontological
individuals are the individuals about which all the users agree, i.e. for all users an ontological individual must
represent the same entity in the discourse universe. An ontological individual is entered into a COGUI-
ontology with a primitive concept type called its privileged type. For instance, if the COGUI-ontology
concerns Modern Art, and if Picasso is an ontological individual of privileged type Artist representing the
famous artist Pablo Picasso, then it is impossible to use the identifier Picasso for representing a Citroén car
(unless the conjunctive type Car, Painter is not forbidden). COGUI checks that an ontological individual
appearing in an annotation has a type which is compatible (i.e. not forbidden) with the privileged type of the
individual.

All individuals appearing in a COGUI-ontology (e.g. in rules, constraints or prototypical knowledge) must be
ontological individuals. Thus, the set of ontological individuals can be completed only whenewer all
knowledge representing in a COGUI-ontology have been considered.

The individual view lists all individuals in a sortable table. Needless to complete, the list of individuals
automatically updates when the user references individuals in different graphs. Select individuals in the list
to drop them to the graphs and right click to popup the contextual menu to rename, change the privileged

type.

https://www.helpndoc.com/feature-tour

CoGui User Guide

Voc: Sample1CoguiProject —

Concept types & Relation types (3 Individuals

fo) Mamespace Label Privileged type
'B' <base > albert | Universal

'B' <base > red | Color

lﬂl <base > Paul | Child

lﬂl <base > Small | Size

ﬂ <base > Mary | Girl

Individuals tab in vocabulary view displays the complete list of individuals

Since 3.0 CoGui integrates the notion of namespace. Then a hamespace can be associated the each
individuals. It can be selected directly on the list:

~ [Mary
black and white and yellow and etc
black and white

000«

Produce Kindle eBooks easily

Rules

To create a new rule or edit an existing rule go on the projects view and use the popup menu (right-click).
As other graphs, rules can be organized in folders. It is particularly interesting to classify the rules on
families, especially for testing purposes. Editing rules is very similar to editing Facts. But the split editor is
divided in two parts: hypothesis and conclusion. By default hypothesis is placed on the left part and
conclusions on right part of the editor. The split bar can be oriented with the mouse to horizontal position, in
this case hypothesis is placed on top and bottom is reserved for conclusion.

Create a new rule: If "Rule..." action does not already
J-lgy Sample 1CoguiProject appears in menu choose "Other..."
@[facts and select the type of CoGui object
Er) rules that you want to add in your project:
E-I 'J . =7] &) NewFile X
> ® newR Mew ¥ |j Folder... Steps Choose File Type
~@® riel Find. Ctd+F (@ Rule.. N -
@ rulel) © NConst.. N Bz
- @ rulez Cut Ctrl+ X g
@ ruIE3E C Ctrl+C € Scriptbsh... z,g:‘j:bh
: | opy tri+ A s u
Back Finish Cancel Help

27 /100

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

Rules are used to represent implicit (common sense) knowledge. For instance, let us assume that the fact
that Eve is the mother of Abel is represented in a fact graph. If the ontology contains a rule saying that if x
is the mother of y then y is a child of x then the system can automatically add the information that Abel
is a child of Ewe.

Such a rule is represented by two simple graphs. One represents the hypothesis (e.g. [woman]-1-(mother
of)-2-[humany]) the other represents the conclusion ([human]-1-(child of)-2-{woman]). Furthermore, there is a
link between the first person in the hypothesis and the second person in the conclusion, and a link between
the second person in the hypothesis and the first person in the conclusion. A rule "if A then B" is used as
follows: if an annotation contains A then B can be added to the graph. See below the graphical
representation of this rule:

@ rulei_1 X i @ newRule |® rulel X |

Graphical Script Source History [n ® BF

& Run layout

Hypothesis Conclusion

-} Person: *

Person i ® [h=-mmmmmmrmmmmmmmmmmeees

¥ e
(chiidor)

Frri o | e -) Person: *

A rule example

A bi-colored representation of this rule could be simplest with just a conclusion relation "child of* added to
the hypothesis. The advantage of this representation is that it allow specialization of a concept type in the
conclusion. For instance, from the hypothesis [human]-1-(mother of)-2-[human] it can be deduce that the
first person is a woman. Thus, rule represented below is more powerful than previous example:

CoGui User Guide

@ rulel 1 X |® newRule X | @ rulel X |

Graphical ~ Script Source History) & OF | ¢ Run layout

Hwpothesis Condlusion

T o PEPPPEFFPRITTEEEE TELEE S,] Woman : *

i

(gao)

 E
PErSon : = fOpe-mmmmme) Person: *

rules could generate some specializations. Here Person is eventually specialized in Woman.

But it is better to express each deduction in a separate rule and add a new rule to the first one:

@ rulel_1 X |® rnewRule |® rulel X |

Graphical Script Source History L3 Er W | A" Run layout

Hypothesis Conclusion

x

.........] Woman :

Persoms = |y ---------omne

1

Person : *

a simple rule for each deduction

Do not worry about rule applying order, even if the first rule is not applied in a first step, it can be appliable
after applying another one. All rules are tried until saturation (when no rule is appliable).

Due to saturation, rules must be built carefully when at least one rule can create new concepts: The rules
may loop and cause an infinite production of concepts. Example below is trivial but combinations of rules
can generate loops very difficult to detect.

29/100

CoGui User Guide

@rulel_l X|®rule2 X|®rule3 X|® newRule X|

Graphical Script Source History | B W | & Run layout

Hwpothesis Condlusion

Persen: * [O}----------------q-------- -1 Person: *

'ild'-npl:-theroiﬁ

Worman : *

This rule will cause a loop

Fortunately it is possible to interrupt the saturation running task if it did not end after a "reasonable” time.
And the knowledge base can be queried without using saturation. See Applying rules section and Querying
for more about the use of rules.

Produce electronic books easily

Constraints

Constraints allow to define pieces of information that are forbidden in the facts (negative constraints) or
mandatory in the facts (positive constraints).

To create a new constraint or edit an existing constraint go on the projects view and use the popup menu
(right-click).

You will find all the information about the use of the constraints are in section Inspecting facts

Create a new constraint; Select the type of Constraint that you
Projects * | Services want to add in your project:
Bl - i =

B 1, fd Mew * @ Folder. el *
g E_I |J- .] ® RUIE“I ; Choose File Type
Reasoning 3
_ © NConst.
v Build docurnents b :
- | 4 J €7 Script.bsh...
| mpg E
E] Export §® okl
. ﬁ ' COther...
B2-lgy DocEx Copy... |
B fa Delete Suporimer : —

30/100

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

Negative constraints

A negative constraint is a simple graph expressing a condition that must not appear in checked facts.
Checking a negative constraint is similar to query facts. Facts are validated if no homomorphism of the

constraint graph can be found into them.

@ eet and strong X
Graphical Source History |5 W | & Run layout | I :':‘: rz‘? | El<

___._;:. WineFlavor : Strong

wine : *

A
—"—).‘-'* WineSugar : Sweet

no wine is sweet and strong ?

Positive constraints

A positive constraint is a structured as a rule with a condition part and the obligation part. A fact satisfies a
positive constraint if every homomorphism from the condition part to the fact can be extended to a
homomorphism of the obligation part to the fact. The example below expresses the fact that "a wine is
necessarily associated with a winery". Positive constraints will be triggered each time a wine appears
without a Winery attached to it with hasMaker relation.

x

Graphical Source History || E- W | »~ Run layout

Condition Chligation

wine * D ----------- -D wine ' ¥

oot

Winery : ®

31/100

CoGui User Guide

Generate Kindle eBooks with ease

Facts

A Fact is labeled bipartite graph. One class of nodes (the concept nodes) is used to represent entities of the
discourse universe. A concept node is labeled by a concept type (e.g. Painter, or a conjunctive type such as
Painter,Catalan) and, possibly, by an individual (e.g. Picasso). A concept node which is labeled by a
concept type without an individual is called a generic concept node. Such a node represents an unidentified
element of the type. For instance, contrarily to a node labeled [Painter : Picasso] representing the painter
Picasso, a concept node labeled [Painter] represents “a” painter.The second class of nodes represents the
relationships between the entities (represented by the concept nodes). For instance, if Guernica is an
individual representing the well-known painting realized by Picasso then a relation node labeled (hasPainted)
could relate the concept node [Painter : Picasso] to the concept node [Painting : Guernica]. The edge
between (hasPainted) and [Painter : Picasso] is labeled by 1, and the edge between (hasPainted) and
[Painting : Guernica] is labeled by 2. This edge labeling is used to represent different roles (e.g. to
distinguish the subject from the complement). It is also possible to say that two different concept nodes
represent the same entity by linking them by a coreference link.

Picture below is described by a fact graph:

- conceptual graph
description of the
picture:

32/100

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

Create a new fact: If "Fact..." action does not already appears in
Pt % — |7 menu choose "Other..." and select the type of
- CoGui object that you want to add in your
B Animals G project:
-l DocExamplel = & nerie x
HI Sample 1CoguiProject C e =
Ed"l 'E : Q Filter
- Mew * @0 Folder.. B o o
= : B
Find... Ctrl+F PConst... B o [T
| @ NCDngtI“ Desaription:
Cl..lt I::trl"'x Creates a new CoGui fact.
@ Rule...
Copy Ctrl+C &
* Script.bsh.., | T
Paste Ctrl+V .
[@ Fact... %
Delete Supprimer
COther...
Rename...
History]
Trnle *

More about fact edition:

O Insert new concept
O Insert new relation

O Coreference
O Reduced edition

Easily create PDF Help documents

Insert new concept

There are many ways to create new concepts.
Insert concept button on toolbar Insert concept from editor popup menu Drag a concept from the type

1 X|(P)fact1 X : : hierarchy

er s ‘
i ; Paste Ctrl+V o]) e % Graph Inspector | Voci D
HIStDrY I:E} ?l!" w | B R Graphical ~ Source History & H Concept types | @ Rela
lag
Insert concept |nscuncept S
':E} |r'|; 3 - &-[3 Resource
Insert concept B Ontology
al z %3 G+ PotableLiquid
s Insert literal o [

IE ObjectProperty
[WineDesaiptor
| B[WineTaste
i [WineSugar
[WineBody
[WineFlavo
3 WineColor

The third way (drag and drop) is the most effective since it informs in a single action the position and type of
the new concept.

An alternative is to start by creating a relation and then complete it. The concepts will be created
automatically with the type corresponding to the signature of the relation. See section Insert new relation.

33/100

https://www.helpndoc.com/feature-tour

Click twice on the
concept vertex or use
the popup menu to edit
the newly created
concept:

Edit concept
Select inu:li*.ridl_%...
Delete

Shrw tune in tres

wine

[] Individual

<hase=

: Type {use + button to add a type)

Mame of assocated variable

B

0K Cancel

A concept can be associated to a conjunctive type.

Press L button to add a type field and select the second type:

| wine

Top
[] Individual
<hase =

Mame of assocated variable

[l

OK

: Type (use + button to add a type)

Cancel

v Q@

Clals
& scavel

A concept with a conjunctive
type:

Marine Animal;Mammal : *

CoGui User Guide

An indivdual can also be associated to the concept. If this individual doesn't exist, it is automatically added

to the project

: Type (use + button to add a type)
1 | Marine Animal i ﬂl

Mammal e ﬁ

Individual L\}
'« |Flipper the dolphin

Mame of associated variable

[

QK Cancel

Concept types &> Relation types (@& Individuals

o= Mamespace Label

o <base >

Insert new relation

Flipper the dolphin

Privileged type

| Marine Animal

Single source CHM, PDF, DOC and HTML Help creation

There are many ways to create new relations.

Insert concept button on
toolbar

X|LF)"E:'._. X|(E}-'~E ation ty

History ﬂﬂ. GF | M RL

Insert relation

Insert concept from editor popup

menu
Paste Ctrl+V l

Insert concept |

E+ Insert relatixl.

Insert relation

| Inzert litera

=

Graphical

Source

Drag a relation from the

*x[@fct x| i)

type hierarchy
Graph Inspector Voc: DocExample

History ®"§_.‘,‘W‘HR| 2]

[= Concspt types > Relation types

=@ link
=@ eat
LB Graze (Animal,Food)

The third way (drag and drop) is the most effective since it informs in a single action the position and type of

the new relation.

When the relation is created, double left click triggers a popup dialog to define type associated with

selected relation:

e

Relation type

eat
limk:

Ok Cancel

35/100

https://www.helpndoc.com/help-authoring-tool

The insertion of
the relationship
is not sufficient,
we must also
link the relation
to adjacent
concepts by
holding down
the left mouse
button and
linking the
yellow squares
in the center of
the ertices:

If the adjacent concepts are not already created you can quickly complete the relation by releasing the
mouse button on the location of the future concept:

(al

Animal ; *

5

Because the relation signature is ordered. For binary relations the edges are ordered in a natural way by the
subject has first parameter and the object has second parameter. For a greater arity edges between
concepts and relation are associated with a number from 1 to relation arity.

Animal : * Food ;: *

Top:*

Edge order can be defined with popup menu on the selected edge:

” (B relatio
Graze & w,
Animal : *
Change edge order * 1 Eg
Delete 2
Paste Ctrl+V
Insert concept
Top:* 1 & Insert relation
1

=

relation |5 Insert literal

kN
Top:*

[

You can also use double-click on selected edge, edge label successiwely takes all compatible values
between the relation signature and the type of concept.

Of course, copy/paste mechanism can also be used to duplicate pieces of graphs inside the graph or from
one to another. Pending edges cannot be copied.

Generate EPub eBooks with ease

Coreference

It is also possible to say that two different concept nodes represent the same entity by linking them by a
coreference link.

https://www.helpndoc.com/create-epub-ebooks

Fainter:; *

painting: mona lisa

#

Ll
]
[
=
i
1
1
[
.

=
Inwvenkar: *

[l
]

L
1

Helicopter: *

coref links means that painter and inventor are the same person

painting: mona lisa

Inventor, Painter; *

2 Helicopter: *

resulting normalized graph in knowledge
base

Painter: Leonardo

painking: mona lisa

;

Helicopter: *
Inventor: Leonardo

L@

Painter and Inventor are implicitly coreferent

2 painting: mona lisa

hY
Inventor, Painter: Leonardo

4
@ = Helicopter: *

resulting normalized graph

The editor toolbar propose an action to normalize the edited graph:

T | TR IS el

] Eedre =
I E‘l*ﬁj}

I Concept t
|

| Mormalize current graph |

See section Sum, split and normalization for more about the normalization of the graphs

Full-featured multi-format Help generator

Reduced edition

If a graph is too big it could be very tedious (or impossible) to edit it entirely. In this case, CoGui provide a
reduced edition mode. Just a part of the graph is displayed. Visible relations are always completed, but
displayed concept can have hidden neighbors. Example below shows concepts with hidden neighbors, the
number of hidden neighbors is displayed on the upper right corner of the concept.

https://www.helpndoc.com/help-authoring-tool

Edit concept
Select individual...
Delete

54
WineSugar;Thing : win:Dry

Show type in tree

Cut Ctrl+X
@ Copy Ctrl+C
¥ ‘H“"—-—-.__‘_H Paste Ctrl+V
v Insert concept
> Insert relation
5| Insert literal

Chardonnay;Thing : vin:MountEdenVineyardEdnaValleyChardonnay

/ Showaidweighbors

39
WineBody; Thing : vin:Medium

2
Winery : vin:MountEdenVineyard |

The limits to choose partial edition rather than whole graph edition can be changed in CoGui options:

CoGui User Guide

-Eb Options

%E’ G\ @‘im = 'd] -

Gerneral Editor Fonts & Colors Keymap Team Appearance Miscellaneous (Cogui Options

General Appearance Script Solver

Default language: | == English {=n) “
[] Allows cydes in type hierarchies
Warns when cydes are detected

reduce edition when vertices number exceed: | 300

Export... Import... Apply Cancel

If a big graph is directly edited from the project tree, some \ertices are chosen by default. The user generally
prefers to display and update a precise piece of graph. To correct errors inside the graph, choose the edit
option on the message in the error view and the graph will be automatically opened with the vertices that
generated the error. When another error is selected, the previous edition is replaced by the edition of the

new concerned \ertices.
To edit parts of the graph without any error, we must query the graph (See section Querying) and browse

through projections in the result view.
Full-featured Kindle eBooks generator

Queries

40/100

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

CoGui User Guide

Create a new query: If "Query..." action does not already

Poneets) % [Senares . appears in menu choose "Other..."
E‘d" Animals Y

and select the type of CoGui object

J that you want to add in your project:
2@ Mew ! @O Folder.. y yourproj
IEI H | . J 0 Quewm &) NewFile X
Reascning ; I:} Seps Closse e Type
PCDnstm ; (Choose File Type Project: [[&) Animals >
a-{ W Build documents ; Bt
© NConst..
-.a I |r'|"|F|l:II"t 1 i ! gzjzi:nst
G-iEl DocEy i @ Rule...
i Expl:l-l't 1 . e;::itbsh
- Sampl | €3 Script.bsh...
i@ Wine) Copy.. ® Fact..
E} 'J fE_ Delete Supprimer
= Other...
Close - o Bl o=
E} o m Edit namespaces...
= vl S

. -

Editing queries is very similar to editing Facts. In addition some variables can be added. Read section

Querying for more about the use of variables.

: Type {use + button to add a type) Herbivore : *

Herbivore v | @ Var: ANIMAL1

[] Individual -

<hase >

Mame of assodated variable
] ANIMAL 1

QK Cancel

Free help authoring tool

Reasoning

This section groups the following operations on graphs:

Inspecting facts
e Graph measurement, redundancy
e (Classification

e Check consistency
Applying rules

Sum, split and normalization
Querying

What is a Help Authoring tool?

41/100

https://www.helpndoc.com/help-authoring-tool
https://www.helpauthoringsoftware.com

CoGui User Guide

Inspecting facts

CoGui provide several tools to compute graph properties and compare them:

Graph measurement, redundancy
Classification

Check consistency

Easy EBook and documentation generator

Graph measurement, redundancy

Each kind of graph can be inspected to know:

the number of connected components

the size of the graph individuals/concepts/relations
the degree of the vertices min, max and average

is it normalized ?

is it redundant ?

. ———

“E
Bl facts

@ e ,
{E‘} wine_ql Open

{E‘) wine_g

() wine j! Inspect N

i |
@ NTJj Cuery Wizard

: | 0 newQuery X 2

| @ e 2| e @

A View is opened named Graph Inspector

42 /100

https://www.helpndoc.com

CoGui User Guide

& sapttbsh x|(623 x|@Haw x| a1 x| ¥ O | Graph Inspector X | Voc: DocExampled | Voc: ¢
Graphical =~ Source History G| W | & Run Iaynut| I i Name: fact 1
Path: factsisett
Mature: fact @'
Size: §vertices
Animal ; * '}@ | Food: Concepts: 3
Relations: 2
Conceptdegree: average= 1,33
. Plant: *
_,._F—F""'P (min= 1, max=2)
Normalized: Yes
Connected components: 4
Redundancy: Yes
Show redundandies 7 See Debug window
Redundancy

A redundant graph can trigger a positive constraint violation when irredundant form will not.

Detecting and computing redundancies can be an heaw operation, the wizard doesn't automatically provide
it.

Click on button to run algorithm.

43/100

CoGui User Guide

When the graph is too big, redundancy is not automatically computed. Click on button to compute it: If redundanc
Graph Inspector X | Voc: DocExampled | Voc: @ fact_1 X
Graphical

Mame: wine graph2
Path: import-rdfsfacts
Mature: fact {E}
Size: 1505 verlices

Concepts: 615 E

Felations: 390
Concept degree: average= 2,89
(min="1, max=93)
Mormalized: Yes

Connected components: 1

Redundancy: ' Compute it
selected: 0 /F
and sometime it is a too long term job...
b N " Qutput F
| Computing Modes
' 0% ”
| : = A1 all the re

Searching for a redundancy

Easily create EBooks

Classification

Facts can be analyzed individually, they can also be compared This is the purpose of the classification
wizard.
Tools/Reasoning sub-menu provide a wizard to compute a classification between facts of the project:

Tools Window Help

i BuildDocuments Pl e

! Export >
it i —||® fact_1 x|@v
Reasoning } 0 Query Wizard
Apply Diff Patch... i & Apply rules
Add to Favorites Consistency Wizard
Open in Terminal Sum And Split Wizard
Libraries L ,..E Clmflw facli:} —_—

Select facts to compare:

447100

https://www.helpndoc.com/feature-tour

CoGui User Guide

‘d] Classify facts

Steps

Select facts to classify

1. Select facts to classify
» =

= facts
P setl
5 - @) fact_1
B- import-rdfs

= facts
- [#] (F) wine_graph4
(F) wine_agraph?
E <[] (F) wine_graph5
i [#] (F) wine_graph3
Es (F) wine_graph2

Clear All

€ & facts are selected

< Back Mext =

Finish Cancel Help

Classification graph viewer:

& Run layout |

*% Classification: 5 facts X |

u oK
a
A F

IR
=
N

path: import-rdfs/facts

fact_1
path: facts/zetl

path: import-rdfs/facts

wine_graph?
path: import-rdfsffacts

path: import-rdfsffacts

CoGui builds a graph with where vertices represent fact graphs and arcs represent the subsumption

relations.
example interpretation:

e graph shows that wine_graph2 hawe a least one projection into wine_graph4.
e graph fact_1 is an empty graph that why every graphs subsume it.

45/100

CoGui User Guide

e wine_graph4, wine_graph5 and wine_graph7 belongs to the same strongly connected component, it
means that they are equivalent (but not equals if they are redundant).

Easily create Help documents

Check consistency

Constraints can be defined to control the set of facts. See more about Constraints
The Toolbar and Tools/Reasoning sub-menu provide a wizard to check consistencies.

3 Team Tools Window Hel Jools Window Help

m ”E S ey BuildDocuments H
I:? - - . Export >]
—| Consistency Wizard I_ | — | [=f Classification
mport » e
Reasocning * 0 Cuery Wizard
ot | Apply rules
Libraries
Consistengy Wizard
Servers r@
: Sum And Split Wizard
Cloud Providers il
si2 Classify facts
Templates = ¥
DTDs and XML Schemas | |
The 3 steps of the wizard:
) Consistency wizard >
Steps Select facts to check
1. Selectfacts to check = facts
2. Select negative constraints BD] ki Select Al
3. Select positive constraints g £ -
o £ | 0 [1(E) fact3 Clear Al
i D fact?
...... D factl
/4, Some facts must be selected
< Back Mext = Einish | Cancel | Help

46 /100

https://www.helpndoc.com/feature-tour

CoGui User Guide

ﬂnnstra'u?

ﬂ 1 positive constraint(s) selected and 1 negative constraint(s)

) Consistency wizard =
Steps Select negative constraints
1. Selectfactstocheck | .. :]
5. i E @ Trouts never eat Dogs Select Al |
constrai —
3. Select positive constraints | Clear Al
ﬂ 1 negative constraint(s) selected
|_ < Back _| Mext, = Finish [Cancel _| Help
£ Consistency wizard >
Steps Select positive constraints
Selectfactstocheck | .. Herbivores always eat Plants T EEr e
2. Select negative constraints |_ Select Al _|
3. Select positive e
i Clear All |

| <Back || Mext> || Einisl"\SJi Cancel
| S L |

Help

The wizard triggers messages in the Debug window when some constraints are \iolated.

47/100

CoGui User Guide

Output |Fa-|:rtory Cogui Debug Cogui X |

Modes Source
e negative constraint Trouts never eat Dogs 1/1 inta fact3. [Fact]: Facts/setl/Fact3
@- positive constraint Herbivores always eat Plants 11 into fact2. [Fact]: Facts/set1/fack2

Double click on messages to reach the part of the graph containing inconsistencies:

s [Herbivores always eat Plants X | ® factz X |® facts X |® facti1 X | 4 e e e

Graphical ~ Source History & |n GF | ~ Run Iayuut| I o) ;&‘3 |E|<> @ “/’@\5
selected: 1 /5 full view 4
Output | Factory Cogui | Debug Cogui X |
Modes Source

@ negative constraint Trouts never eat Dogs 1/1 into fact3. [Fact]: Factsfsetl[facts

@ positive constraint H-Eimres always eat Plants 1/1into fact2. [Fact]: facks/set1fact2

a negative constraint is violated a positive
constraint is
violated

Free PDF documentation generator

Applying rules

For now cogui only implements forward chaining technique and applies rules to the facts in order to produce
new facts. The rule assistant helps to apply a selected set of rules to a graph. This operation can be

launched for saturation or followed and visualized step by step. The new resulting graph can be added to the
knowledge base.

48/100

https://www.helpndoc.com

in Debug Team Tools Window

1OV C

CoGui User Guide

m Tools Window Help

BulldDocuments

_ Export
| Import

Reasoning

Apply Diff Patch...
Diff

Add to Favorites

Open in Terminal

— ®wine_c|raph2 XlG

T

Query Wizard

Apphtmls
Consittency Wizard

Surm And Split Wizard
Classify facts

I =

-¢ Applying rules

Steps Select a fact

1. Selecta fact =8

2. Selectrules to apply

iy

| facts

setl

] impart-rdfs

facts

€ Selected fact: fact_1

Finish Cancel Help

Select a unique graph

49/100

CoGui User Guide

'g] Applying rules

Steps Select rules to apply
1. Selecta fact Application options

2. Select rules to apply

(] Limit level |1
3 :

E- import-rdfs
=N transitivity rules [
B R, (I‘-:t} Transitivity_for_locatedIn [Clear Al
=N symmetry rules L
B @ Symmetry_for_adjacentRegion
=[] | inverseOf rules

i [(® tnverse_of_hasMaker
i [] (R) Inverse_of_madeFromGrape

Select Al |

€D 2 rules selected

< Back _ Mext = _ Cancel [Help

Select rules to apply

The wizard opens a windows to command and visualize rules application step by step:

50/100

CoGui User Guide

5 2.5: anply rules X| o=
~ Run layout | I o E

an

I

an
Universal : *

< >

..!l\J kl 1 - [uge left buttons to see rule applications
s 2.5: aooy rules X| v O

~ Run layout | I :u: E

ot]
on
fatherQf lookAt
lookat
on

£ >

5\ M 1 level: 1 1 rule applied: rule1

JL/ LUV

CoGui User Guide

If you want to sawe the resulting graph at any step of the saturation process, you can use the Datalog+
Factory (see section To/From Datalog+)

Qutput | Factory Cogui X | Debug Cogui |

Animals = Wine DocExamplel

ew objets to drag:
(E) graphFrom2_5

Clear Refresh *,

1 [graphFrom2_S]motherOf(X3,X4),0on(X1,X2),0n(X3,X5),near (X5,X2), lookAt(X4,X3), A
lookAt(X1,X3),on(X4,X2),fatherof (X1,X4) ,child0f (X4,X3), <Universal:(X5),<
Universal>(X4),<Universal>(X3),<Universals>(X2),<Universals(X1).

What is a Help Authoring tool?

Sum, split and normalization

Tools/Reasoning sub-menu provide a wizard to sum and normalize facts of the project:
UEUUH 1EdITl TUUs WY ITTL LW l_li.'_'IFJ

Tools Window Help

9 m E E= English (en) [F
l}, BuildDocuments #

—— {Sum And Split Wizard|] Eal >
Import > e |
Reasoning ¥ ﬂ Cuery Wizard
Apply Diff Patch... ﬂa Apply rules
Add to Favorites Consistency Wizard
Open in Terminal Surn And Split Wizard
Libraries 1 (;Ia ssify facts
Servers

Cloud Providers

Templates

Sum
Knowledge base is organized by sets of facts.Sometime it can be interesting to sum these graphs.

Example below presents two graphs first contains geographical information,second contains information
about flavor and sweetness.

SauvignonBlanc : vin:CorbamsPrivateBinsauvignonBlanc Q bl

-

~

SauvignonBlanc ! vin: CarbansPrivateBinsauvignonBlanc

i

locatedIn ._;2—}:: Region : vin:NewZealandRegion »

h-d
@ 2w, Winesugan : vin:Dry

neither graphl1 nor graph2 match with this query:

52 /100

https://www.helpauthoringsoftware.com

Region : vim:NeZealandRegion

locatedIn
1 !
@ ! wing ; ¥ ’@

\WineFlavors vin:Strong WineSuga# : vin:Dry

CoGui provides a wizard to sum graphs. It consist in merging graphs into the same sum graph.
the resulting graph is shown below :

SauvignonBlanc ; vin: CorbansPrivateBinSauvignonBlanc SauvignonBlanc ; vin: CorbansPrivateBinSauvignonBlanc

A"

A - -
(hasriavor) 4
@ locatedin

WineFlavar® vin:Strong WineSugar : vin:Dry

Reqgion : vin:NewZealandrR egion

not normalized sum of graphl and graph2

Normalize

We obtain a sum graph which is not a normal simple graph. A normal SG is such that each concept is
uniquely coreferent with itself. Note that an implicit coreference link exists between the two nodes
representing the individual vin: CorbansPrivateBinSauvignonBlanc. Normalization performs the fusion of nodes
associated to the same individual. See below the normalized sum of graphl and graph2. Resulting graph
give an answer to query abowe.

CoGui User Guide

SauvignanBlanc : vin:CorbarsPrivateBinsauvignonBlanc

&
locakedin

WineFlavors vin:Strong WineSugar : vin:Dry Region : vin:NewZealandregion

normalized sum of graphl and graph2

Sum and Split wizard

b sum and Split Wizard X
Steps Select facts to sum
1. Select facts to sum = facts
2. Output options =- setl =
3 —] fact3 | Clear Al
fact2
factl

u

€9 3 facts are selected

< Back Finish Cancel Help

Select facts

After the sum
has been
computed, the
graph will be
normalized and
split when
there is several
connected
components

Easily create Web Help sites

54 /100

https://www.helpndoc.com/feature-tour

CoGui User Guide

Querying
Launch the querying wizard
e .. i Tools Window Help
o Q.u ﬁ &E E BuildDocuments * i
B Export *r
& Import > = || M 2s arhake X
Reasoning > 9 Cluery Wizard E_
Apply Diff Patch... &2 Apply rules
Add to Favorites Consistency Wizard
Open in Terminal Sum And Split Wizard |
Libraries IHE S Isflﬁf Gk -

The four steps of the wizard:

'¢I Cuery wizard

Steps Select a query

L selecta query o

2. Select facts to query
3. Selectrules to apply
4, Solver options

P —

ﬁ selected query: newQuery

< Back Fiish Cancel | Helo

t)

55/100

CoGui User Guide

d] Cuery wizard

Steps

select facts to query

1. Selecta query
2. 5Select facts to query
3. Select rules to apply
4, Solver options
»

Each fact is queried separately

1 selectal]

| Clear Al |

/¥, At least one fact must be selected

|
1
< Back] Next > Finish Cancel] Help
} (e e
) Query wizard x
Steps Select rules to apply
1. Selecta query Application options
2, Select facts to query
3. Select rules to apply i i
4, Solver options [] Limit level [1 |
T G —
= |:| rules | Select Al |
&- [] |} Rule_set1 (st
-] () rule1 | Clearal |
=] rule3 e
- |:| rule2
: &9 0 rule selected
|
|
<Back | [Next> Finish Cancel] Help

56 /100

CoGui User Guide

d] Query wizard

Steps Solver options
1. Selecta query
Sol
2. Select facts to query aver
3. Selectrules to apply (®) Cogui solver: saturation only
4. Solver options :
P i) Graal solver: saturation only

() Graal solver: rewriting only
() Graal solver: saturation first

(") Graal solver: rewriting first

ﬁ cogui

< Back Mext = Cancel Help

If CoGui solver is used, the results are displayed as graph

57 /100

CoGui User Guide

e newQuery: grojecions X|

Graph Table

& Run layout

Universal : *

W

Universal ; *
\- \
Color ; red 1
Universal : *
4 4 » M | 1f4 | Fact factsiset_1/G2.10

Results can also presented as list

ﬂ newQuery: profections X| S
Graph Table
Graph name #Color_1 #Universal_2 #Universal_3 #Universal_4 #Universal_5
facts/set_1/G2.10 Color [red] Universal [*] Universal [*] Universal [*] Universal [*]
facts/set_1/G2.10 Color [red] Universal [*] Universal [¥] Universal [*] Universal [¥]
facts/set_1/H2.10 Color [red] Universal [*] Universal [¥] Universal [*] Universal [Paul]
factsfset_1/H2.10 Color [red] Universal [¥] Universal [¥] Universal [¥] Universal [¥]

The list of projections are also provided in 'List projections view'

58 /100

CoGui User Guide

Output | Factory Cogui Debug Cogui Liste Projections X

Modes
o projection 1/2
0 projection 22
o projection 1/2
o projection 2/2

Source

[Fact]: Facts/
[Fact]: Facts)
[Fact]: Facts/
[Fact]: Facts/

zet_1/G2.10
set_1]G2.10
set_1/H2.10
set_1/H2.10

With messages from projection list it is possible to browse the facts

59/100

CoGui User Guide

©) newQuery: projecions x|(F) G210 x|
Graphical ~ Source History & o OF | A Run layout I

Universal : *

Universal : *

selected: /17 full view

Cutput | Factory Cogui | Debug Cogui | Liste Projections X

Modes Sol
o projection = = [Fan
o prnjen:tinng ot ou graph | [Fan
Oprnjev:tinng__ Clear erfdr list ! [Fa
n [e Xy | M-

Full-featured EBook editor

Import, Export and Convert

Users of previous versions of CoGui have the option of converting old projects to the new format. The
COGXML format is not forgotten as it is also possible to export the projects again in this format. Read this
section for more information To/From COGXML projects

CoGui propose seweral tools to exchange between different knowledge representation models:

e To/From RDFE(S) and OWL
e To/From Datalog+

60/100

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

Free PDF documentation generator

To/From COGXML projects

The menu option "File/Import projects” , in addition to the classic procedure, offers an action to import
COGXML project.

COGXML projects can come from Caogitant project. It is also the form. This is also the format of previous
versions of CoGui.

4 coGuizo

File Edit View Mavigate Source Refactor Run Debug Team Tools

Tl New Project... Ctrl+Maj+MN ;) 9 %

T New File.. Ctrl+N

- i% my_tra

m Open Project... Ctrl+Maj+ O P
Open Recent Project > 1
Close Project 2
Close Other Projects 3
Close All Projects 4
Open File... 2
Open Recent File » -
Edit namespaces... :
Project Groups... 10

: : 11

Project Properties | 53
Import Project > From COGXML...
Export Project ’II From ZIP...
Save Ctrl+5 16
Save As... 1;

select to COGXML file to import:

61/100

https://www.helpndoc.com
https://cogitant.sourceforge.io/

CoGui User Guide

£ select coguml file to import et
Rechercher dans : . Documents w 5 A e
cogxml g al.cogxml g newCogxmliTempl
£ ks =
ﬁiu:-i-}: digp M ALA coguml M newCogxmliTempl
Ducul:'i;ts o HelpMDac Q:f' Bucelic.cogxml Q:f' MewFile.cogxml
index_fichiers g Bucolic.coguml M OntoHilbert.coguxr
Jﬁ Ma rmusique g bug_test.cogxml g SUMO. cogxml

- maiscn Q{ bug_tests.cogxml Q{ test.coguml

Bureau 7= Mes images il childhood.cogeml Qf’ tests.cogrml

ﬁ Mes vidéos Q{' exemple.cogxml
Modeles Office personnalisés g Geometry.cogxml
nadau Q’f’ Geometry2.cogxml
Documents MetBeansProjects Qf’ icodaleogui.cogxml
voyage Q{' import_rdf.cogxml
! g 3dAnalysis.cogxml g IPTC.cogxml
Q{ a.cogxml Q{ newCogemlTernp3.cogxml
CePC Qf’ a_test.cogxml Qf’ newCogxmliTernplate.cogxml
£ >
@ Nom du fichier : | childhood. cogxml |
Ré& ; r
e Type de fichier : cogXML file format v Ann}@
select the target folder:

| £ Select parent folder for project X

& Rechercher dans : tests v | '_?' -

:l;_z . |

Documentsr.., | F- Bucolic
- childhood
- - | DLGP
Bureau
Documents
CePC

@ MNom du fichier : |D:\tests j Select folder

Réseau ' [
Type de fichier : | Tous les fichiers i Annuler

Then the new CoGui project can be opened from the message in Debug window:

62 /100

CoGui User Guide

Output | Factory Cogui Debug Cogui X

Modes

o project childhood. cogxml imported in directop.e: D btactelchildhond
| Open

Clear errurlﬂxﬁst

Create HTML Help, DOC, PDF and print manuals from 1 single
source

To/From RDF(S) and OWL

CoGuii is able to import RDF(S) documents.

e The "natural" translation has the advantage of being natural and fully exploiting the CG features, but, on
the other hand it does not apply to the whole RDF(S).

e The "raw" translation is sound and complete from a reasoning view point but is not visual nor a
representation in the spirit of Conceptual Graphs (CGS).

e The new Graal translation use the Graal convertor from OWL to Datalog+ and then translates produced
Datalog+ to CoGui

A tool to export in "natural" mode is also provided.

Create HTML Help, DOC, PDF and print manuals from 1 single
source

Import RDFS/OWL "natural” mode

This translation is intuitive and doesn't need rules to be applied because most of them are implicitly
expressed in the support. The main idea behind it is to try to exploit as much as possible the separation
between background knowledge and factual knowledge. Sewveral options are available.

The 3 steps of the wizard:

63 /100

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://graphik-team.github.io/graal/downloads/owl2dlgp
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

CoGui User Guide

£ Import RDF(S)

Steps select file to import

;' ﬁp‘:ﬁt:;fnﬁg import File::C:‘n,I_Jsers‘l,aguﬁerr‘l,Documents‘l,wine.rdﬂ. | Browse

3. Output options Input format
(@) Automatically (with file extension)
() RDF/XML

—
® () Motation3 (M3)

() Turtle

'htﬁ:u :.;",.’wu'u.'w.lirrr.lm.ﬁ',ﬁ'mgui#

< Back Finish | Cancel Help

£ Import RDF(S)

Steps Import options

1. Select file to import Matural mode options

2. Import options

3. Qutput options ¥ocabulary completion allowed

(@) Modify relation type signatures

() Generate spedalizing rules

Consider OWL semantics
OWL options
generate disjoint types from 'disjointWith'
[] generate rules from ‘allvaluesFrom'
generate symmetry rules
generate fransitivity rules
generate inverseOf rules

[] keep anonymous dasses

< Back . Einish | Cancel Help

2,

64 /100

CoGui User Guide

&) Import RDF(S)

>
Steps Qutput options
; Isri::?;:tﬁi;;;:pmt [] Bplit graph (several connected component}
3. Output options Graph name (or prefix)
wine_graph

[] Remove isclated concepts

Remove concept referring types

< Back Mext = Fi h Cancel Help

. L . . . | Vocabul tion allowed
If support completion option is checked, support is enriched by the imports acabutary compiction alowe
Uncheck the box to presene current vocabulary and only take factual knowledge into account.

When support completion is allowed two ways exist to express
() P ki e it r df s:range _and rdfs: dqnai n semantic. The default is to define
relation type signatures but it can be expressed by range rules and
domain rules, depending on the purpose. Do the user want to

correct future factual imports or to have a way to verify imports with
signature.

() Generate spedalizing rules

For example a property can be translated as a CG relation type with its signature or with rules:

65/100

Hypothesis Conclusion

Vi Resoufce : * [Dr----1---) win@: *
Hypothesis Conclusion
/ Resource @ *
@ vin:hasColor

no description in English
E hiasBq : :

Translations Signature
— EIE hasColor 1 wine a W

£ | . S S [T e
— 2 WineColor ==l
: range rule
signature ReEaNEE
domain rule

OWL Options

The semantics of RDFS is taken into account almost entirely. This is not the case with OWL. Howeer,
many ontologies are defined with OWL. In practice the processing of anonymous classes and the treatment
of most used properties of OWL allows to recowver a significant part of the semantics of these ontologies.

Fortunately ,a new import tool is provided by Graal extensions. See section Import RDFS/OWL with Graal
CoGui also offers an option that takes into account including anonymous classes, that are used during the
processing of import. Some deductions were made using property restrictions, intersections and unions of
classes and are expressed on the support. By default, after treatment all anonymous classes are removed
from the type hierarchies, check option box to keep these classes.

The owl:disjointWith property is used to defined banned type in the concept type hierarchy.

In addition, some OWL properties are also expressed by rules, see below examples from importation of
wine.owl ontology:

Hywpothesis Conclusion Hypothesis Conclusion

Resource ; * Resoupce ; * Resource ; * Resoumce ; *

A
— —]
i, e e
adjacenitR eqgion £ =|‘|]=|-_-=|'|tF‘-'- ;||_||'| hasMalml (E_rl:-du-:ea'-.-'-.-'iré)]

-y

Resource : *

Resoumce ; *

Resource ; *

ow : Symmetri cProperty

ow :

kil T

i nver seCf

Resoumce ; *

Hypokhesis Conclusion

Tomnsanns
Resouice : * [d-------- ----) Resouwce : * :
! | Hypiokhesis Conclusion

)

wing ; *

¥ —

locakedIn
(ocatedn) ¥
G
1¥i
Resource ; * \ "
I:

i HEmmeey i
| Resoumce : ™ |
locatedIn | _?_SD_ _ci_ N :
,_-*"G = '
| e Resoupce 1 * [Or---------- {:.‘II Wingky ; * f
o

& ow : al | Val uesFrom
Resource ;

ow : TransitiveProperty

Free CHM Help documentation generator

Import RDFS "raw" mode

The "raw” translation simply translate each triple RDF in a ternary relation where each of the concept nodes
of the relation will represent the RDF triple elements. It ensures soundness and completeness of
homomorphism. Howeer, this translation is not visual or in the spirit of Conceptual Graphs as such (the
support is flat).

3 steps to import:

https://www.helpndoc.com

CoGui User Guide

£l Import RDF(S)

Steps

Select file to import

1. Select file to import
2. Import options
3. Qutput options

File::C:‘l,leers‘l,aguﬁerr‘l,Dncuments‘l,lnline.rdf

Inpuf format

(@) Automatically (with file extension)

() RDF /XML

() Notation3 (M3)

() Turtle
;_htu:n:ﬂwww.lirmm.ﬁfmgui#

Browse

< Back Finish Cancel Help
1 &) Import RDF(S) X
| Steps Import options
1. Select file to impart Matural mode options
{ 2. Import options
3. Output options izenerate transformation rules
! »— Add RDF axioms
! Add RDFS axioms
{
L
b
L
L
§
L
L
< Back Finish Cancel Help

68 /100

CoGui User Guide

<) Import RDF(S) bt
Steps Qutput options
i Isrﬁ:f;ttﬁ;;?;ri;npmt [] 5plit graph (several connected component}
3. Output options Grapf name (or prefix)
wine_graph
~—
e [] Remaove isclated concepts
Remove concept referring types
< Back Mext = _ish Cancel Help
The raw translation of a triple:
I the URI® eat
Shapk: * predicate i
._.___}_____3} LRI wFish
the subject
| the object

LRI wShark:

raw mode use a predefined vocabulary:

69 /100

I"} HML likeral

Literal p——— Typediliteral pf—-/ Il typed literal

Resaurce h— URI Plaintiteral Well bypad literal
triple
ternary relation type used to represent RDF
triple.

Translations Signature
5= triple 1 Resource
2 Resource

3 Resource

This mode is interesting to demonstrate some properties but in practice, it cannot be used with big graphs
because the application of all rules on the sum graphs of imports plus rdf(s) axioms quickly increases the
graph size. To be used to find homomorphisms, this mode requires to add RDF and RDFS axioms as facts
and to apply several RDF and RDFS rules. This facts and rules can be automatically created during
importation. Check corresponding boxes on the wizard option panel:

Import options

Matural mode options

izenerate transformation rules

Add RDF axioms

Add ROFS axioms

RDF axioms:

CoGui User Guide

URI : rdfirest -—-—-3.____
URI : rdf: Property 7

URI : rdf:predicate

URI : rdf: value

URI : rdf:frst i/

URE ¢ rdfinil \

URI : rdf:List

RDFS axioms:

71/100

CoGui User Guide

Easily create CHM Help documents

Import RDFS/OWL with Graal

Graal Java toolkit. provides a translator from any OWL2 ontologies to Datalog+: OWL2DLGP. CoGui wizard
runs OWL2DLGP then use Datalog+ translation to import ontology to CoGui model.

The 2 steps of the import wizard:

) Import oWL X

Steps Select file to import

1. Select file to import

2. Import Options FiIE:EC:.‘.lll_.lsers‘.n,a_lguﬁerr.‘l,Dnmment.s‘l,wine.rdf [Browse

< Back Finish Cancel _ Help

72 /100

https://www.helpndoc.com/feature-tour
https://graphik-team.github.io/graal/
https://graphik-team.github.io/graal/downloads/owl2dlgp

CoGui User Guide

) Import OWL ot

Steps Import Options

1. Select file to import
2. Import Options Vocabulary completion allowed

Define relation type signature from rules

T T—
Remaove rules already defined in a relation type signature

Replace negative constraint by equivalent banned type

Import in current project

Select Max. concept type: | Top -

Fesource

< Back Mext = Cancel Help

Free HTML Help documentation generator

Export RDFS "natural” mode

Cogui is able to export projects to RDF with RDF/XML or N3 formats. For now only type hierarchies and
facts can be exported. Rules , constraints and type disjunctions are ignored. But domain and range
constraints induced by relation type signature are translated. All namespaces defined in the project are
declared in output. By default, a multilingual version is produced, a monolingual version is also available with
current selected language.

73/100

https://www.helpndoc.com

&) Enregistrer ot

Enregistrer dans : test «| ¥
- 3dAnalysis180313 Output format
e ErnptyProject
~= ptyPro) (@) RDF/XML
Docment=r .. ErnptyProject2
EmptyProject3 () N3 (pretty)
SamplelCoguiProject
Val g (0) N3-TRIPLES (by statement)
T, i
Bureau %{ Jdanalysis.dlgp () N3-PLAIN (by subject)
M 3danalysis.rdfs
Language
Dm:u:'nents (®) Multilingual
i) Monolingual [en]
Ce PC
WV Nomdufchier: [my_projectrd
HEas Type de fichier : | Toug les fichiers i Annuler

Easily create CHM Help documents

To/From Datalog+

DLGP (for Datalog Plus) is a textual exchange format at once human-friendly, concise and easy to parse.
CoGui provides an editor for this language with syntax highlighting and a navigator.

Switch to graphical and DLGP representation with the factory view is a good way to become familiar with the
language. See section The factory view .

DLGP files can also be imported. See section Import from Datalog+

Finally, you can also export the whole project. See section Export to Datalog+

The format can be seen as an extension of the commonly used format for plain Datalog. Datalog+ may
define four kinds of knowledge elements:

e Facts

e Existential rules

¢ Negative constraints
e Conjunctives queries

As usually in Datalog, variables begin with an upper-case letter and constants with a lower-case letter. We
distinguish between regular constants(called constants hereafter) and literals, which are values belonging to
some datatype. Literals are given as double-quoted strings or numeric values(integers and floats).

The file name has the extension .digp or .dIp. Character encoding is assumed to be UTF-8.

Complete syntax is described in this paper: DLGP: An extended Datalog Syntax for Existential Rules and
Datalog+Version 2.0

Some examples of different elements are available here.

Some examples

Datalog+ expressions Cogui conversion

https://www.helpndoc.com/feature-tour
https://www.lirmm.fr/cogui/datalog_v2.0_en.pdf
https://www.lirmm.fr/cogui/datalog_v2.0_en.pdf
http://www2.lirmm.fr/~mugnier/graphik/kiabora/downloads/framework_en.pdf

[a_fact]fatherOf (zeus, apoll o),
god(zeus), god(apoll o).

father Of (<Zeus>, <Apol |l 0>),
god(<Zeus>), god(<Apollo>).

bel ongsTo(<Zeus>, <Greek+pant heon>) .

?:-father Of (X, apoll o).

di stance(at hens, mar at hon, 42. 195) ,
town(at hens), town(marathon).

di stance(at hens, mar at hon, "42km195") ,
town(at hens), town(marat hon) .

di stance(at hens, mar at hon, 42)
,town(athens),town(marathon).

siblingOf (Y, X):-siblingOf (X,Y).

parent Of (X, Z): - parent Of (X, Y), parent Of (Y, Z) .

god(Y), human(Z2),
parent Of (Y, X), parent Of (Z, X): -demi god(X) .

X=Y:-equal s(X,Y).

The factory view

Every kinds of knowledge elements can be named with
simple strings .

Zeus can not be used as a constant name in DLPG
language.

Use + symbol to represent a space in the Datalog constant
name.

Is there someone father of Apollo ?

A ternary predicate with a literal value(float).
Aternary predicate with a literal value(string).
A ternary predicate with a literal value(int).

A rule to define a symmetric relation.

A rule to define a transitive relation.

A rule with new variables in conclusion (head of the rule).
Unlike safe clauses in classic Datalog, Datalog+ accepts
new variables in the rule heads.

A rule with equality as a conclusion.

Head (conclusion) part of the rule can contains one or more
equality relations between frontier concepts. They are
represented as coreference links on the cogui model.

Easy CHM and documentation editor

Its brevity makes language datalog+ an effective tool for the construction of new objects in the knowledge
base, while the graphical representation is preferable to read (Msualize) or update these objects. The
"Factory" view is intended to allow concomitant use of both representations. It can immediately translate a
text datalogt in its graphic equivalent and reciprocally translate any object of the knowledge base in its
datalog+ translation. Note that the factory view features concern facts, rules, queries and constraints but not
the vocabulary. Classic import/export must be used for this purpose.

Datalog and graphical representations are complementary. With Factory view you can switch back and forth

between the two.

Button on toolbar translates from currently edited object to datalog:

https://www.helpndoc.com

CoGui User Guide

(F) factz X >

Graphical Source History & |n [F | ~ Run Iayuut| I et EH(} &

Herbivare : *

selected: /5 full view 310:

Qutput | Factory Cogui x | Debug Cogui |

Animals

Clear Refresh _ [New objets to drag:

o - | @ fact?
1 [fact2]<Gra = :]
i Translate currently edited graph in Datalog+/- language

r

And right panel list all currently objects described in digp editor.
Press [G({E=II(I@ to trigger the completion tool inside the DLGP editor.

Qutput | Factory Cogui > | Debug Cogui

Animals

Clear Refresh # Mew objets to drag:

. § . ® fact2

[fact2]<Graze>(X1,X2),<Herbivore:(X1),<Food>(X2). ~

1
2
3

@ Hiammal(X) * | | eat{Animal X,Food ¥)

@ Animal(X)
@ Cat(x)

@ Dog(X)
ottnmpXrood) |
@ Fizh(x)

@ Food(X) ¥

@ Graze(Animal X,Food Y)
@ Herbivore(x)

@ link(Top X, Top Y) v
< b

Defined in; Animalk

76 /100

CoGui User Guide

Full-featured multi-format Help generator

Import from Datalog+

2 steps to import DLGP file:

) Import Datalog+ >

Steps Select file to import

1. Select file to import

R Flle::C:‘n,l.Jsers‘l,aguherr‘l,Dncuments‘l,sudnqual.dlgp

< Back Finish Cancel Help

77/100

https://www.helpndoc.com/help-authoring-tool

&) Import Datalog+ >

Steps Import Options

1. Select file to impart
2. Import Options Vocabulary completion allowed

Define relation type signature from rules
Remove rules already defined in a relation type signature

Replace negative constraint by equivalent banned type

Import in current project

< Back Mext = Cancel Hel

L=

Vocabulary conversion

If the "support completion allowed" check-box button is checked (for new project or, optionally for an
existing project) then CoGui will convert a part of the Datalog imports into the vocabulary definition.
e Unary predicates are conwerted into concept types.
e Predicates with an arity > 1 are conwerted into relation types.
e Some rules are interpreted to order the concept types hierarchy and the relations hierarchies.
e Optionally, some rules are interpreted to define the relation types signatures.
e Optionally, some negative constraints are interpreted to define banned types.

Note that unary predicates are converted into concept types on the CoGui model.

Some examples below:

Datalog+ expressions Cogui conversion on the Vocabulary
<Human>(X) : - <Man>(X) . From this rule, CoGui deduces a specialization relation
between the concept types

1:-<M X) , <Wb X) . : . o . N
<Man>(X), <Woman>(x) This negative constraint is transformed into a disjoint type.

parent Of (X, Y):-father Of (X, Y). From this rule, CoGui deduces a specialization relation
between the relation types.

<Man>(X):-fatherof(X,v). The signature of fatherOf is modified by this rule.

Free EPub producer

https://www.helpndoc.com/create-epub-ebooks

CoGui User Guide

Export to Datalog+

CoGui is able to export projects to Datalog+ formats. All knowledge elements are converted (except scripts).
Concept types are transformed into unary predicate. Relation signatures are converted into equivalent rules.
Disjoint types are converted into negative constraints.

Individual labels are translated into Datalog constant name.There is no multilingual mechanism in Datalog,
so predicates are built with the labels of the currently selected language.

Projects X | Services —_—
Eld? s

- A Mew ¥ 2=
@) =
i (E}' Reasoning » * =
_____ (E}E Build docurnents] S)
i 1
i (E)I Import » Ll
- fag Export * B Export RDF(S) "natural” mode...
B '
l Copy... % EupurtrQatalngh..
!I Delete Supprimer] gt T
>i Close
HE: EAdit mamarnarar
Export to Datalog+/-... >
f | File D:\coguidhcogui_projects\Animalsimy_translation.dlgp has been created in Datalog+/- Format.

DLGP files can be edited directly with CoGui editor:

79/100

CoGui User Guide

Source

(% my_franslation.dlgp * |

Visual History | @v@v|ﬁ%.§'%

LV T R B = T 1 < L R L R

T e e T el el e e i e T
e T~ T = B T A R S =]

%]
%]

Bbase <http://vww.lirmm.fr/cogui#>
@prefix cogui: <http://vvw.lirmm.fr/c
@top <«Top>

BErules=s

% Concept type hierarchy rules
<+Mammal> (X)) : —<Cat>(X) .
«Marine+adnimal> (¥) :—<Fish>(X) .
w+Mammal>(X) i —<Dog>(X) .
<+Mammal>(X) i —<Fhale>(X) .
<Animal>(¥) :-<+Mammal>(X) .
<Marine+dAnimal>(¥) :—-<Fhale> ().
<“Food>»(X) : —<Plant>(X) .
<Animal>(¥) :-<Marine+aAnimal>(¥) .
<Fish>(¥) :-<Shark>(¥) .
<Top>(X) : —<Food> (X} .
<Animal>(X) : —<Herbivore>(X) .
<Food>(X) :—-<dnimal>(X) .
<Fish>(X) :—-<Trovt>(¥) .

% Relation type hierarchy les=

eat (X, Y) :-<Graze>(H,¥Y) .

A navigator panel to browse through DLGP objects:

Navigator = |

@ base: http: ffwww.lirmm. fr fcogui
@ prefix: hitps/fwwew.lirmm, frfcogui#
@ top: Top

@ Rule: <unnamed=

@ Rule: <unnamed:=

@ Rule: <unnamed=

@ Rule: =<unnamed:=

@ Rule: <unnamed:=

@ Rule: <unnamed >

@ Rule: <unnamed=

@ Rule: <unnamed=

@ Rule: <unnamed=

@ Rule: <unnamed:=

@ Rule: <unnamed=

@ Rule: =<unnamed:=

@ Rule: <unnamed:=

@ Rule: <unnamed >

{Et} Rule: <unnamed=

@ Rule: <unnamed=

@ Rule: <unnamed=

@ Meg.Constraint: Trouts_never_eat_Dogs
@ Meq.Constraint: bannedTyped
(El Fact: wine_graph2

(E} Fact: wine_graph3
ey o~ 2 ! 1 a

80/100

CoGui User Guide

Free help authoring environment

Building documents

For now CoGui offers two kind of tools to build documents.
0 Section Build wocabulary documentation explains how to build an HTML static website to
document your CoGui project.
O Section Build vocabulary views presents a powerful tool for graphical representation of

vocabulary using GraphViz software
News and information about help authoring tools and
software

Build vocabulary documentation

Select appropriate action in the menu of the project:

e =S LICoLuall

- v

Navigator New ¢ —
Reascning »
Build documents » @ Yocabulary dncun‘rentaﬁmh[html}
Import i n Yocabulary views (dot)
Export »
Coov...

and Select the output folder :

81/100

https://www.helpndoc.com/help-authoring-tool
https://www.graphviz.org/
https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

CoGui User Guide

&) Select Website folder X
Enregistrer dans ; | tests w | 5 el e

" Bucolic

% childhood

Documentsr... e
DLGP
. my_voc_website
Bureau

é Mom du fichier : |my_'uuc_website | | Eqregistrer
|_lq'l_,"'_.

Enregistre |e fi

Type de fichier : Iwebsite folder w |

Open the index.html file newly created in the output folder:
CePC » DATADRIVED (D) » tests » my_voc_website »

Mom
css
B cthtml
B ctohtml
4@ gb.gif
B indexhtml
B indiv.html Type: Firefox HTML Docum

ﬂﬁ navbar-bg.pn| Taille: 3,91 Ko
n rt.html Madifié le; 11/08/2019 11:57

% %%

B t1.html

index.html page:

82/100

Wine

Concept types

Relation types

Individuals

CoGui User Guide

Wine

Vocabulary consist of:

= 89 concept types
= 33 relation types

COGUI SUPPORT .

« Scienfific Contact:

Marie-Laure

Mugnier
L]

technical support: .

Alain Gutierrez

= About us:

Graphik

concept type list of the vocabulary:

168 individuals

Used languages:

[en] English
[fr] French

Namespaces:

- http- /W, w3.org/TR/2003/PR-owl-guide-20031209/wine#
cogui : http:Aww lirmim. fricogui#

food : hittp/www w3.0rg/TR/2003/PR-owi-guide-20031209/food#
owl : Htip/WWW.W3.0rg/2002/0 /oWl

rdf - httpAWWw.w3.org/1 999/02/22-raf-syntax-ns#

rdfs - httpAWwWw.w3.0rg/2000/01/rdf-schemat

vin : hitp /. w3.org/TR/2003/PR-owi-guide-20031209/wines
xsd : http/Amw w3.0rg/2001/XML Schema#

83/100

CoGui User Guide

Relation types

Individuals

AllDifferent
AlsatianWine
AmericanWine
A"Eﬂl

Alain Gutierrez Beaujolais
Bordeaux

Bu rgund[
CabernetFranc
CabernetSauvignon
CaliforniaWine
(“ﬁ”ﬂﬂ""a!
CheninBlanc

relation type list of the vocabulary:

84 /100

CoGui User Guide

Wine

Lonceptiypes

Relation types

individuals Roots)

link
o]

Property

adjacentReqion
allValuesFrom
cardinality

differentFrom

Alain Gutierrez disjointWWith
distinctiMembers
first

hasBody
hasColor
hasFlavor

hachialkar
a page for each relation type:

85/100

Relation types

Individuals

Alain Gutierrez

a page for each concept type:

CoGui User Guide

&5 English hasWineDescriptor

hasBody
hasCaolor

hasFlavor
h qar

)

none

86/100

Wine

Concept type: Bordeaux

Concept types

Relation types Bordeaux

Individuals
Translations

£1= English

COGUI SUPPORT

Supertypes:
+ Scientific Contact:
Marie-Laure
Mugnier wine
+ technical support:
Alain Gutierrez Subtypes:
+ About us:
Graphik Medoc
RedBordeaux
Sauternes
StEmilion
WhiteBordeaux
Synonyms:

iPhone web sites made easy

Build vocabulary views

Pre-requirements

The Vocabulary Vlews produces formatted . DOT ﬁles

DOT ﬁles are treated by the software GraphV| The wizard doesn't need GraphViz to be installed to build
DOT files. But installing this software on your machine will allow to edit and visualize these files directly
inside CoGui. There are two steps to complete this installation:
1) Install GraphViz from https://www.graphviz.org/download Note the location where the software is
installed, you will need it later.
2) Install Plugin ZGRViewer.

The ZGRViewer plugin allows to edit the files (.DOT) produced by the wizard. To install it open the plugin
manager of CoGui (menu Tools/Plugins).

The plugin "ZGRViewer Integration" can be found on the tab pane "Available Plugins". Install it:

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://www.graphviz.org/
https://www.graphviz.org/download

CoGui User Guide

& Plugins >

Updates Available Plugins (1) Downloaded Instaled (46) Settings

Chedk for Mewest Search:

Irstall Mame Category = TR
B zGAViewer Integration

ZGRViewer Integration

{5 Community Contributed Plugin

Versionz 1.3

Author: Sam Harwel

Dates 03/03/19

Source: Reasoning Suite Lipdate Cenfter
Homepage: hiip:| funnetvisionlabs, com

Mugin Description

This module adds & “Viewer" tab to GraphViz documents
opened in the editor (=.dat, *.gv)

Trestall

After relaunching CoGui, it remains to configure the plugin to use GraphViz previously installed.
Access the options (Tools / Options / Miscellaneous / GraphViz / Directories menu) and specify the location

of the executable files, especially the highlighted one in yellow, it is the DOT program (.exe under windows)
which is used by the wizard .

88/100

CoGui User Guide

& Options

%E@ :ﬁi’u Ja ﬁ ¢

General Edtor Fonts & Colors Keymap Team Appearance Mscelanecus Cogu Options

Diff Fles GraphViz OQutput Terminal

Visualzer Directories

GraphViz/dot executable

IC:\Program Fles\graphviz-2. By elease bin\dot.exe
Graphviz/neats execLtable

C: Program Fies'\graphviz-2. 38\release \bin \neato. exe
GraphViz/oroo executable

C: Program Fies'\graphviz-2. 38 \release \bin \drco.exe
GraphViz/twopl exeastable

C:\Program Files\graphviz-2. 38 release \bin thwopi. exe

Graphiz font directory (optional)

How to build Graphics

Q|

Browse.., .

Browse.. .

Browse.. .

Browss., .

Browse...

Select the project in the project tree and launch the command from the pop-up menu (fig.ci below) or from

the Tools / BuildDocuments / menu

89/100

CoGui User Guide

Edit View MNavigate Source Refactor Runm Debug Team Tools Window Help
-~ .)
S DE ‘Qeﬁ {8 ESengish (en)

jects 3 |Files | Services -]
5

£ [\ negative ¢ Mew +
+ | positive_cx
5B rules Reasoning ’
7 [0 voc_websi Build documents @ Vocabulary documentation (htmi)
[H Prototypic Impart N 5 1 Veocabulary views (dot)
i) vocabuiary Export }
() newFact1
(F) newract Copy.
©® newract2 Delete Supprimer [}
(F) newFact3
@ newract_: Close
© newFact_: Edit namespaces...
[H newProtot s
Q) rewQuery
0 newQuery _1
[:E] riewf

Definition of the type of document to be produced:

‘il Vocabulary View

Steps ‘What kind of view ?

® What kind of view ?

® Select concepts Show hierarchy edges between concept types
® Select relations

® Output options Show hierarchy edges between relation types

Show relation signatures
How to select the types ?
(®) Select concepts first and wizard will helps you to select the corresponding relations

(") Select relations first and the wizard helps you select the required concepts involved in signatures
Show Data Properties (j.e. binary relation types with a DataType as second parameter)

How to recognize a DataType ?
() CoGui builtin DataType

(®) Select the concept type at the top of the DataType hierarchy

DataType P

this wizard produces .dot files for GraphViz an open source graph visuslization software.

« Back Finish Cancel Help

4

1.
2.
3.

types of data are viewable and can be selected simultaneously:
Materialization of "isKindOf' links between the types of concepts present in the document
Same for the links between the types of relations
The display of signatures that link relationship types to the types of concepts. This content introduces
constraints in the selection of types. Indeed, it is necessary that the types of concepts present in the
signature of a relation are also present in the document. To help the user, there are 2 selection
scenarios:

O Either one selects the concepts and the assistant will offer the possibility of automatically

90/100

CoGui User Guide

selecting the types of relations whose signatures are compatible with the selected concepts
O Either one selects the relations and the assistant will offer the possibility of automatically
selecting the types of concepts included in the signatures of the selected relationships
Note that we can go back (<Back) and combine the two scenarios to make his selection. In any case,
the wizard will only display the final page if the constraints are respected (see figure below).

-ﬁ] Vocabulary View

Select concepts

What kind of view ?
Select concepts
Select relations
QOutput options

L

= = Man
.. [] Il Father
..... [Boy
=[] [Female
= [7] I Woman

..... = Girl
= (v [Adult
|_:_| = Man
‘... [7] [Father
= [w] 3l Woman
... [] Il Mother
= [3 Child
; [Boy
i = Girl
=[] [Action
[] [Play
=[] [Attribute
- [] [Color

‘... [] I Mother

€Y concepts selected: 11

Select All

Clear all

Finish

Cancel

Help

91/100

CoGui User Guide

-Eb Vocabulary View

>
Steps Select relations
®* What kind of view ? P [EwEe 7
® Select concepts =[] (B lecobi Select Al
® sSelect relations P[] @ e
L i — Clear all
Qutput options - [(B wrdar
=
E_l\ . p— Select relation types
9 S=— = [@ relativeof

matching with selected concepts

E- [(B parentOf

b (E) fatherOf
oo {E» motherDf
-] (B3 brotherDf

- [] (B} sisterof

& relations selected: 10

< Back Finish Cancel Help

Display Data Properties:

The notion of Data Properties does not exist explicitly in CoGui but it can be assimilated to the types of
binary relations whose second argument is a "DataType". There is an uncompleted mechanism in CoGui to
manage the DataTypes (string, integer, float, boolean) but we will prefer, for the moment, to create its own

DataTypes defined in the hierarchy of the concepts. This is the reason why, it is asked to specify the type of
concept that is at the top of the hierarchy of DataTypes:

Show Data Properties (i.e. binary relation types with a DataType as second parameter)
How to recognize a DataType ?

() CoGui builtin DataType

(@) Select the concept type at the top of the DataType hierarchy

DataType

After choosing the type of document and selecting the types to display, you can complete the last part of
the wizard that presents the output options, file name to produce and display options.

92/100

CoGui User Guide

-Eb Vocabulary View

Steps Qutput options
- > e
- :;T::tkclgdn::pgu ? File: my_wvoc_view.dot Browse
®* Select relations Open DOT file
- i
Output options Rank options Senze of layout
Align sibling relations (®) Left to Right
Right to Left
[] align sibling concepts ORig =

i) Top to Bottom

DataProperties options
P P i) Bottom to Top
Hide inherited DataProperties

& relations selected: 49

< Back Mext =

Cancel Help

The "Rank" options force the page layout algorithm to align the types that have the same parent in the
ontology.

The "DataProperties" options concern the display of this kind of relation inside the Concept vertex. The

option "Hide inherited DataProperties" can make the schema lighter: DataProperties that appear in a
concept type are not repeated in its sub-types.

DataProperties options
[] Hide inherited DataProperties

Display datatype

Lieu
aPourBudget DataType

B! aPourEffectif Integer
_’j aPourSuperficie Float

Personne

Top
r aPourValeur DataType
aPourBudget DataType aPourBudget DataType
aPourEffectif infeger aPourEffectit Integer
aPourValeur DataType aFourValeur Data Type

DataProperties options

Hide inherited DataProperties

_ 2 Lieu
1 aPourSuperficie Top
Personne aPourBudget
aPourEffectif
aPourValeur

93/100

Finally, the "Sense of layout" options make it possible to influence the orientation of the document (Only
influence because it must combine seweral types of edges and relations of opposite directions).

After having activated the "Finish" button of the wizard, it builds the diagram and opens the file in a window:

ﬂmy_\-'oc_vieu\'.dot X| -
Source | Visual Hisb]ryl RN v|ﬂ%5‘%p|°ﬂﬁ?{'ﬁ>[§|=§=§|uﬂ |
1 ~
2
3 digraph G {
4 rankdir=Lg}
o
[=21 [label="maireDe™, shape="ellipse", fontname=Helwvetica, fontcolor="0.0,0.0,0.0", col
b
g
g 82 [label=<<table border="0" cellborder="0" cellspacing="0" port="p"><tr><td>Top</b
10
11 23 [label=<<table border="0" cellborder="0" cellspacing="0" port="p"><tr><td>Licu</.
12
13 =24 [label="Per=onne", shape="box", fontname=Helwvetica, fontcolor="0.0,0.0,0.0", color=
14
15 23 -» =2[color="0.0,0.0,0.7529412"];
16
17 24 ->» =z2[color="0.0,0.0,0.7529412"];
18
19 54 -» sl[label="1",arrowhead=none,color="0.0,0.0,0.2509804"];
20
21 2l -» 33[label="2",arrowhead=none,color="0.0,0.0,0.2509804"];
22
23
W
< >

If the plugin has been correctly installed, the editor has an additional "Visual" pane highlighted in yellow.
Operate the pane to access the graphical representation:

22 my_voc_view.dot X | -
Source | Visual | History | £ O E'@ S T {5% Em Export to PNG Export to SVG
Lieu
1 maireDe aPourSuperficie Top
ERTT aPourBudget
aPourEffectif
aPourValeur

The toolbar offers sewveral navigation and zoom modes. Two export commands are available for conventional
images (.PNG) or vectorized drawings (.SVG) this last format is ideal to display on a web page or to make

changes with software such as InkScape

Write EPub books for the iPad

Extending CoGui

CoGui propose 2 ways to extend its functionalities.
e Extending CoGui with Scripts
e Extending CoGui with Plugins

Free EPub and documentation generator

Scripts

The scripting language BeanShell (see http://beanshell.org) is embedded into Cogui application. This
language was originally introduced because it is a good way to change the default behavior of the rules (see
Scripted rules below). We finally decided to allow open use of this interpreter by introducing a new kind of
objects in the Cogui projects : executable scripts.

Scripts greatly enhance the user capabilities. For example, by providing a way to chain graph operations
proposed by Cogui or include some new graph algorithms. More generally scripts can compensate the lack
of a plugin architecture. Cogui Java classes and objects are exposed to the script language so that user can
access on public members of existing objects and also instantiate classes to introduce new objects.

Basics

BeanShell can dynamically execute full Java syntax, as well as loosely typed Java and additional scripting
conveniences. Documentation about BeanShell can be found here. Two kinds of commands are available in
cogui scripts.
e Some native BeanShell commands are described further. All BeanShell commands are
documented: BeanShell commands.
e Cogui propose its own commands. See Cogui commands further.

Before script execution, 3 global variables are instantiated. These variables give access to the current
objects loaded in Cogui.

Global variables

Name Description

_PRJ represents the current project (an instance offr. | i rmm. graphi k. cogui . edi t .|
_KB equivalent to _PRJ. get Knowl edgeBase() return, it represents the current Knowle
_vocC equivalent to _PRJ. get Vocabul ary() return, it represents the current vocabulary |

First use, the most natural, is to use scripts to access project existing objects in order to read, analyze or
modify them. Global variables are pointing to objects containing all methods necessary to obtain such
access. Once the concerned object is obtained, we can use the public methods as described in the API
cogui.core.model. Suppose, for example that we want to vsit all the vertices of a graph and count the
individuals that it references.

https://inkscape.org
https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com
http://beanshell.org
http://beanshell.org/manual
http://beanshell.org/manual/bshcommands.html#BeanShell_Commands_Documentation
http://www.lirmm.fr/~gutierre/cogui_new_doc/cogui-scripts.html#9

nbCGeneri c=0;
g=get Fact ("set 1/ fact_1");
it=g.iteratorConcept();
while(it.hasNext())
if(it.next().isCeneric())
nbGeneri c++;
print("graph "+g.get Nane()+" contains "+nbGeneric+" generic

concept(s)");

Access to wcabulary elements

|Element ||How to obtain

The concepttype _VOC. get Concept TypeHi erarchy() OF _VOC. get Hi erarchy(Voc
hierarchy abul ary. CONCEPT_TYPE)

The relation type _VOC. get Rel ationTypeHi erarchy() O _VOC. get Hi erarchy(Vo
hierarchy cabul ary. RELATI ON_TYPE)

[The individuals [
| [_voc. get 1 ndividual s()

Work with CoGui core package

Exploring graphs

CoGui propose several assistants for querying, applying rules, checking and analyzing graphs. All these
operations are based on an homomorphism search provided by the CoGui solver (Solver5).

CoGui provides a user friendly search command to explore graphs programmatically.

As an example, we will write a script which produce the list of the parents in a person relationship

knowledge base. At first, user write a corresponding query.

listener()
{
proj ecti onFound(engi ne, proj)
{
print ("coucou="+t ot o);
} return this;
} .

nyListener:Iistener();
search(getFact("setl/fact_1"), getQuery("setl/query_1"),

myLi st ener) ;

Work with the vocabulary

Vocabulary is a composite class containing primarily a Hierarchy and some Translator(s)
Code below demonstrates how to define types in current vocabulary

/* create a concept type */

_VOC. addConcept Type("ct_1", "top", "the root type", "en");

/* create a binary relation type with the signature (top,top)
_VOC. addRel ationType("rt_1","link","the root type for binary

relation types","en");
_VOC. setSignature("rt_1",new String[]{"ct_1","ct_1"});

/* create a nesting type */
_VOC. addNest i ngType("nt _1","nesting","the root nesting
type", "en");

Translator

Translator class is a mapping between the type identifier and a pair (label,language) .

Both labels and descriptions of each kind of types (concept, relation and nesting) are represented by
instances of Translator class.

Translator can be defined to guarantee the uniqueness of labels. Unlike description translators, label
translators use this option. So, for the same language, two different identifiers cannot be associated to the
same label.

With this property the method getld (String label , String language) can be used to search id efficiently on
a double map.

/* code below is equivalent to this Vocabul ary call

** voc. addConcept Type("ct _1", "top", "the root type", "en");
*/

Tr ansl at or

| abel Tr ansl at or =voc. get Tr ansl at or (Vocabul ary. CONCEPT_TYPE) ;

Tr ansl at or

descr Transl at or =voc. get Descri pti onTransl at or (Vocabul ary. CONCE

PT_TYPE) ;
| abel Transl at or. addLabel ("ct_1", "top","en");
descr Transl at or. addLabel ("ct _1","the root type", "en");

/* id of types can be found with | abel */

System out. println("id="+voc. get Transl at or (Vocabul ary. CONCEPT
_TYPE).getld("top", "en") +

| abel =" +voc. get Tr ansl| at or (Vocabul ary. CONCEPT_TYPE) . get Label ("
ct_1","en"));

Useget Def aul t Label (String id) for monolingual vocabulary. Cogui also use monolingual Tranlator
to store individuals.
Code below print labels of a type. Method get Language(String id) search ewvery translations for a

type.

for(String |lang: | abel Transl ator. get Languages("ct_1"))
System out. println("l abel ="+l abel Transl at or. get Label ("ct _1", |
ang) +" | ang="+l ang);

Hierarchy

When Translator(s) store labels and other informations about types, Hierarchy complete the model with a
directed graph representation of the kindOf relationShip between types.
Vocabulary give accessors for each Hierarchy instance:

e getConceptTypeHi erarchy() equivalenttoget Hi erarchy(Vocabul ary. CONCEPT_TYPE)
® getRelationTypeHierarchy() equivalent
toget Hi erarchy(Vocabul ary. RELATI ON_TYPE)

Example below show how to access the hierarchy and add two concept types ct_1 and ct_2 where ct 2 is a
kind of ct_1:

Hi er archy ct H=voc. get Concept TypeHi erarchy();
ctH addVertex("ct _1");

ct H. addVertex("ct_2");

ct H. addEdge("ct_2","ct _1");
Systemout.println("ct_2 is kind of ct_1 ?
"+ctH. i sKindOf ("ct_2","ct1"));

Hierarchy give efficient access to the graph to iterate vertices or incoming and outgoing edges.

e edgeSet() anditeratorEdge() toexplore all edges

e edgeSet(String) anditeratorEdge(String) toaccess edges of a given vertex

® incomingEdgeSet(String) anditeratorlincomi ngEdge(String) toaccess incoming
edges of a given vertex

® outgoingEdgeSet(String) anditeratorQutgoi ngEdge(String) toaccess outgoing
edges of a given vertex

e vertexSet() anditeratorVertex() toexplore all vertices

This is useful to write your own algorithm. But some graph algorithm are already implemented by Hierarchy
class

most of them are wrapped from JGraphT library Hierarchy can be owerloaded to access other algorithm not
already used by Cogui.

Following tools are proposed by Hierarchy class:

e about transitivity: a closure and a transitive reduction

e acycle detector and a method to iterate all connected components

e seweral methods to compare (i sKi ndof) and normalize sets of types
(normalize(String[]) andi sRedundant (String[]))

Build a fact graph

After defining a Vocabulary instance, we will programmatically build facts based on this
vocabulary. For this purpose the KnowledgeBase class was designed to associate a vocabulary
with a set of facts and possibly with rules, constraints, prototypics etc.

KnowledgeBase

KnowledgeBase is a composite class designed to associate a vocabulary with:
e facts graphs

e (ueries

e rules

e positive constraints

e negative constraints

AKnowledge instance is used to store and give access to the graphs directly or throw access to
GraphSet instances

Know edgeBase kb=new Know edgeBase(voc);
/[* this two instructions bel ow are equi val ent */
kb. get Fact Graph("g_1");

Now we will create and populate a fact graph to store it inside the knowledge base.

CGraph

CGraph is composed by a set of Concept and a set of Relation mapped with their keys and a
Multigraph instance represent the graph itself. Code below shows how to create and populate a

CGraph instance.

/* create the graph */
CGraph graph=new CGraph("g_1",
"fact");

Concept cl=new Concept("c_1");
Concept c2=new Concept("c_2");
cl.setType("ct_1");
c2.setType("ct_2");

ri.setType("rt_1");
graph. addVertex(cl);
graph. addVertex(c2);

graph. addVertex(r1);
/* add edges */

kb. addGr aph(gr aph);

“my graph name",

"my_facts",

/* create the concepts and a relation */

Rel ati on rl1=new Relation("r_1");

/* popul ate the graph with vertices */

graph. addeEdge(cl.getld(),rl1.getld(),1);
graph. addedge(c2.getld(),rl1.getld(), 2);
/* add the fact graph to the know edge base */

CoGui commands

Name

appl yRul e(CGraph graph, Rul e rul e)
appl yRul e(CGraph graph, Rul e
rule,int limt)

appl yRul es(CGraph graph, ArraylLi st
rules,int limt)

appl yRul es(CGraph graph, ArraylLi st
rules,int limt,boolean scripted)

CG aph getFact(String nane)

Description

Apply the rule(s) on the graph until limit level and
until saturation if limit==-1 (default).

Note: the graph is directly modified by the action of
rules. Use cloning to presene the original graph
with CGraph.clone() function.

If scripted is set to true then the scripts contained
in scripted rules are called. See scripted rules for
details.

Return corresponding fact graph.
Equivalent to

CGraph getFact (String nanme, String _KB.getFactGraphSet().getByLabel(name,set)

set)

CG aph get PConstraint (String
name)

CGraph getPConstraint(String
name, String set)

CGraph getPrototypic(String nane)
CGraph getPrototypic(String
name, String set)

Example: getFact("setl/fact_1") or
getFact("fact_1","setl1").

Return corresponding positive constraint.
Equivalent to
_KB.getPConstraintGraphSet().getByLabel(name,s
et)

Example: getPConstraint("setl/pconstraint_1") or
getPConstraint("pconstraint_1","set1").

Return corresponding prototypic graph.
Equivalent to
_KB.getPrototypicGraphSet().getByLabel(name,set

)
Example: getPrototypic('set1/proto_1") or

getPrototypic("proto_1","set1").

Return corresponding query graph.

CGraph get Query(String nane) Equivalent to
CG aph getQuery(String _KB.getQueryGraphSet().getByLabel(name,set)
name, String set) Example: getQuery('setl/query_1") or

getQuery("query_1","set1").

pListener is scripted object containing a callback
method: projectionFound(Solver solver,Projection

proj).

search(CG aph graph, CGraph
query, bsh. This pLi stener)

Free EPub and documentation generator

Plugins

Free EPub producer

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

	Basics
	Installation
	Keyboard shortcuts

	Knowledge representation
	Vocabulary
	Concept types hierarchy
	Insert new concept type
	Concept type hierarchy control
	Forbidden types
	Concept type alteration
	Graph layout and coloring

	Relation types hierarchy
	Insert new relation type
	Relation type hierarchy control
	Relation type alteration
	Graph layout and coloring

	Individuals
	Rules
	Constraints
	Facts
	Insert new concept
	Insert new relation
	Coreference
	Reduced edition

	Queries

	Reasoning
	Inspecting facts
	Graph measurement, redundancy
	Classification
	Check consistency

	Applying rules
	Sum, split and normalization
	Querying

	Import, Export and Convert
	To/From COGXML projects
	To/From RDF(S) and OWL
	Import RDFS/OWL "natural" mode
	Import RDFS "raw" mode
	Import RDFS/OWL with Graal
	Export RDFS "natural" mode

	To/From Datalog±
	The factory view
	Import from Datalog±
	Export to Datalog±

	Building documents
	Build vocabulary documentation
	Build vocabulary views

	Extending CoGui
	Scripts
	Plugins

