DLGP: An extended Datalog Syntax
for Existential Rules and Datalog4
Version 2.0

GraphlK Team? LIRMM / Inria, Montpellier

June 9, 2015

Abstract

This document specifies the version 2.0 of dlgp, a textual format
for the existential rule / Datalog+ framework. This format is meant
to be an exchange format at once human-friendly, concise and easy to
parse. It can be seen as an extension of the commonly used format for
plain Datalog. It is called “dlgp” for “Datalog Plus”. A file may con-
tain four kinds of knowledge elements: facts, existential rules, negative
constraints and conjunctive queries.

The main improvement in this version is the introduction of Web
notions (IRI and literal, following Turtle format) to ensure compatibil-
ity with Semantic Web languages.

1 Introduction

The dlgp format encodes existential rules (and other constructs that can
be seen as special kinds of existential rules: facts, negative constraints and
conjunctive queries). A basic logical notion is that of an atom, which is
composed of a predicate (or relation name) and arguments called terms.
Terms can be variables or constants. Predicates can be of any arity greater
or equal to one.

In their simplest form, predicates and terms are encoded by string iden-
tifiers built with letters from the Latin aphabet, digits and the wunder-
score character (). As usually in Datalog, variables begin with an up-
percase letter, while constants and predicates begin with a lowercase let-
ter. To make the dlgp format compatible with data from the Semantic
Web, more elaborate kinds of identifiers are mandatory. This new ver-
sion introduces the notions of IRI and literal, according to Turtle format
(http://www.w3.org/TR/turtle/). Specifically:

*Jean-Francois Baget, Alain Gutierrez, Michel Lecléere, Marie-Laure Mugnier, Swan
Rocher, Clément Sipieter.

a predicate or a constant can be denoted by an IRI in Turtle format,
which can be written in three forms: a relative IRI, an absolute IRI
or a prefixed name. Relative and absolute IRIs are strings of the form
<iri> (see the symbol IRIREF in Turtle grammar). A prefixed name
is a string prefixed by a namespace (see the symbol PrefixedName in
Turtle grammar); moreover, the classical Datalog format (a string be-
ginning with a lowercase letter) is allowed and understood as a relative
IRI;

a constant can also be a literal (see the symbol literal in Turtle gram-
mar).

For instance, here are different ways of writing a predicate:

pred (classical logic programming notation);

<pred> (a relative IRI, whose base is specified elsewhere);
<Pred> (a relative IRI as well, starting with an uppercase letter);
<http://exemple.org/pred> (an absolute IRI)

ex:pred (prefixed name); in this case the IRI associated with the prefix
ex has to be introduced by a specific annotation in the file header, e.g.,
@prefix ex: <http://exemple.org/>

All these forms are usable to encode a constant. Moreover, constants can
be described by literals, e.g., =5.1, true, "constant", or any other Turtle
literal. Note that the tokens true and false are interpreted as Boolean
literals and not as IRIs.

The special predicate = encodes equality between terms (e.g., X =Y).

Sets of such atoms are logically interpreted as conjunctions of atoms.
The following four kinds of knowledge elements are built upon sets of atoms:

facts : a fact is a set of atoms interpreted as an existentially closed
conjunction, i.e., of the form IXF[X], where X denote the set of
variables occurring in F; a fact can also be seen as an existential rule
with an empty body;

(pure) existential rules : an existential rule is an ordered pair of atom
sets (B, H) interpreted as VX (IYB[X,Y] — IZH[X, Z]), or, equiva-
lently, as VXVY (B[X,Y]| — 3ZH[X, Z]), where X, Y and Z denote
sets of variables (B is built on X and Y, while # is built on X and Z,
hence X denotes the set of variables shared by B and H);

negative constraints : a negative constraint is a set of atoms inter-
preted as the negation of the corresponding fact, i.e., =(IXC[X]);
equivalently, it can be seen as a rule with a head restricted to the
always-false symbol 1: VX (C[X] — 1);

e conjunctive queries : a conjunctive query is a set of atoms provided
with special variables (called the answer variables), interpreted as an
existentially quantified conjunction where answer variables are kept
free. It can also be seen as a rule of the form VXVY (B[X,Y] —
ans(X)), where ans is a special predicate and X is the set of answer
variables.

A dlgp document is any sequence of such elements. The file name has
extension .dlp or .dlgp. Characters are assumed to be encoded in UTF-8.
Analysis directives are introduced by the symbol @ and comments by the
symbol %.

2 Syntax of the dlgp format

In the following the syntax is specified by a grammar in BNF style: non-
terminal symbols are enclosed in angle brackets <>, terminal symbols are in
bold font, the | symbol indicates a choice, parts enclosed in square brackets
([)) are optional, choice; ..choice, indicates a choice within an interval; parts

enclosed in braces can be repeated from 0 to n times ({repeated-pattern}™)
or from 1 to n times ({repeated-pattern-at-least-once}+).

2.1 Comments

Comments are introduced by the symbol % outside Turtle tokens (i.e., out-
side <IRIREF> and <literal>, which may themselves contain the symbol
%). A comment ends at the end of the same line or at the end of the file.
Moreover, comments introduced by %% can be interpreted in a specific way.
Our parser generates an event when such a specific comment is read, which
can be exploited by event listeners.

2.2 Parsing Information

Please refer to Turtle syntax for building an absolute IRI from a relative
IRI (and @base directives) or from a prefixed name (and @prefix directives).
Note that the directive base may occur at most once. Similarly, it is not
possible to successively assign several IRIREF to the same prefix (@prefix
directive). These two directives may occur only in the head of the file.

A <l-ident> token is seen as a relative IRI, and the corresponding ab-
solute IRI is obtained by adding the IRI of the @base directive in front of
the <l-ident> token.

2.3 Elements used to define tokens

<uppercase-letter> ::= A.7Z

<lowercase-letter> ::= a..z

<digit> 1= 0.9

<underscore> 1= _

<letter> ::= <uppercase-letter> | <lowercase-letter>

<simple-char> ::= <letter> | <digit> | <underscore>

<PN_CHARS> see turtle grammar

<space> ::— #x20 /* #x20 = space character */
2.4 Tokens

<u-ident> ::= <uppercase-letter> {<simple-char>}*

<l-ident> = <lowercase-letter> {<simple-char> }*

<label> ::= {<PN_CHARS> | <space>}"

2.5 Global Grammar

<document> ::= <header> <body>
<header> ::= <base>| {<prefix>}" [<top>| [<una>|
<base> ::= @base <IRIREF>
<prefix> 1= @prefix <PNAME_NS> <IRIREF>
<top> = @top <l-ident> |
@top <IRIREF>
<una> = @una
<body> ::= {<statement>}* |
{<section> }*
<section> ::= @facts {<fact>}" |
@rules {<rule>}" |
@constraints {<constraint>}* |
@queries {<query>}"
<statement> ::= <fact> | <rule> | <constraint> | <query>
<fact> = | [<label>] | <conjunction>.
<rule> = | [<label>] | <head> :- <body>.
<head> ::= <conjunction>
<body> ::= <conjunction>
<constraint> ::= [[<label>] | ! :- <conjunction>.
<query> = | [<label>] | 7 [(<term-list>)] :- <conjunction>.
<conjunction> = <atom> {, <atom>}*
<atom> = <std-atom> | <equality>
<equality> ::= <term> = <term>
<std-atom> ::= <predicate>(<term-list>)
<term-list> ::= <term> {, <term>}*
<term> ::= <variable> | <constant>
<predicate> ::= <l-ident> | <IRIREF> | <PrefixedName>
<variable> 1= <u-ident>
<constant> ::= <l-ident> | <IRIREF> | <PrefixedName> | <literal>

The symbol @ is used to introduce several kinds of annotations:

e In the header:

— @base is a Turtle directive which defines a base to complement
relative IRIs. This annotation is not mandatory even if relative
IRIs are used in the document; a base IRI is then defined by the
context of the application;

— @prefix is a Turtle directive that defines a pair prefiz / names-
pace identifier used to build an IRI from a prefixed name (the
prefix is a string terminated by a colon and the namespace iden-
tifier is an <IRIREF>). The IRI is obtained by replacing the
prefix in the prefixed name by the IRI identifying the namespace

associated with that prefix. All the prefixes occurring in the doc-
ument must be defined by a @prefix annotation. All the prefixes
occurring in @prefix annotations must be pairwise distinct;

@top defines a predicate whose semantics is T (i.e., the knowl-
edge base satisfies the axiom Vx T (z), where T is replaced by this
predicate);

@una states that this knowledge base makes the Unique Name
Assumption, i.e., all constants are assumed to refer to distinct
objects.

e In the body:

— the directives @facts, @rules, @constraints, @queries can be

used to declare the nature of the elements that follow (respec-
tively: facts, rules, constraints and queries). Such a directive de-
fines a section that spans to the next annotation or to the end of
the file. The interest of this kind of directive is to inform sooner
the parser of the nature of the next statements. For instance,
without these directives, it is not possible to distinguish between
a fact and a rule before the sequence of atoms composing the fact
or the rule head has been completely analyzed. However, it may
be interesting to know that a fact is coming to process it more
efficiently, specially if large facts can be encountered. However,
such a directive is only an information to the parser, which can
choose to ignore it.

each element can be optionally preceded by a label enclosed in
square brackets. This name is any string composed of <PN_CHARS>
in Turtle format as well as the space character.

To encode other kinds of information about the knowledge base, it is
recommended to use specific comments introduced by %%.

Note on the scope of variable identifiers. While the scope of a con-
stant or a predicate identifier is the whole document, the scope of a variable
is local to a <statement>. Thus two different facts, rules or constraints
actually do not share any variable (more precisely, variables with the same
name in different statements are each bound by their own quantifier).

Example:

pX,a), qX,Y).

q(X,b).

is logically interpreted as 3X3IY (p(X,a) A ¢(X,Y)) A IXq(X,b)

while:

pX,a), q9X,Y), q(X,b).
is logically interpreted as 3X3Y (p(X,a) A q(X,Y) Aq(X,b)).

3 Differences with dlgp 1.0

The only incompatiblity with Version 1.0 is the impossibility to use a quoted
string to denote a predicate. Now, predicates have to be <l-ident>, <IRIREF>
or <PrefixedName>. Constants have been extended: they may also be
<IRIREF >, <PrefixedName> or any <literal> (not only integer, float et
quoted string).

4 Examples (dlgp 1.0, compatible with dlgp 2.0)

A syntactically correct but not human-friendly file:

[f1] p(X),r(X,b),q(b).
[f2]t(X,a), s(a,z).

[c1] ' - r(X,X)

% This is a comment

[q117(X) :- p(X),r(X,2), t(a,Z).
[ri]lrX,V):-p(X) , t(X,2).

[constraint_2]! :- X = X.
[£3] q(a),r(a,X), % This is another comment
t(a,z).

s(X,Y),s(Y,2)
q(X),t(X,2).

s(Z) :-a=b,X=Y.
t(X,a), r(Y¥,z).
[rA 11p(X) :—-qX).
1:-p(X),q(X).

?7 - pX.

The same logical content organized in a more readable way:

% facts

[£f1] p(X), rX,b), qb).
[£f2] t(X,a), s(a,z).

[£3] q(a), r(a,X), t(a,z).
t(X,a), r(Y,z).

% constraints

[c1] ' - r(X,X).
[constraint_2] ! :- X=X.
- p(X), qX).

% rules

[r1] r(X,Y) :- p(X), t(X,2).
s(X,Y), s(¥,2) :- q(X),t(X,2).
s(Z) :- a=b, X=V.

[rA_1] p(X) :- q(X).

% queries

[q1] 7 X)) :- p(X), rX,2), t(a,2).
?7 - pX.

Again the same logical content while using annotations (directives) instead
of simple comments to distinguish between the different kinds of knowledge:

Q@Facts

[f1] p(X), rX,b), q).

[f2] t(X,a), s(a,z).

[£3] q(a), r(a,X), t(a,z).
t(X,a), r(¥,z).

@Constraints

[c1] ' - r(X,X).
[contrainte 2] ! :- X=X.

I - p(X), q(X).

ORules

[r1] r(X,Y) :- p(X), t(X,2).
s(X,Y), s(Y,2) :- qX),t(X,2).
s(Z) :- a=b, X=Y.

[rA_1] p(X) :- q(X).

QQueries

[qi] 7 X) - p(X), rX,2), t(a,Z).
?7 - p(X).

5 Examples (dlgp 2.0)

This example illustrates the use of IRIs and literals. Note also that spaces
are now allowed in labels.

@base <http://www.example.org/>

Oprefix ex: <http://www.example.org/>

@prefix inria-team: <https://team.inria.fr/>
Oprefix xsd: <http://www.w3.org/2001/XMLSchema#>

@facts

% use of @base
[f 1] <Pred>(1.5).

% use of @prefix
[f 2] ex:Pred("1.5"""xsd:decimal).

% absolute IRIs
[f 3] <http://www.example.org/Pred>
("1.5"""<http://www.w3.0org/2001/XMLSchemat#tdecimal>) .

% use of @base for the predicate and @prefix for the argument
[f 4] team(inria-team:graphik).

The three first facts have the same interpretation.

