Boosting Constraint Acquisition
via Generalization Queries'

Christian Bessiere? and Remi Coletta? and Abderrazak Daoudi?® and

Nadjib Lazaar?

Abstract. Constraint acquisition assists a non-expert user in model-
ing her problem as a constraint network. In existing constraint acqui-
sition systems the user is only asked to answer very basic questions.
The drawback is that when no background knowledge is provided,
the user may need to answer a great number of such questions to
learn all the constraints. In this paper, we introduce the concept of
generalization query based on an aggregation of variables into types.
We present a constraint generalization algorithm that can be plugged
into any constraint acquisition system. We propose several strategies
to make our approach more efficient in terms of number of queries.
Finally we experimentally compare the recent QUACQ system to an
extended version boosted by the use of our generalization functional-
ity. The results show that the extended version dramatically improves
the basic QUACQ.

1 INTRODUCTION

Constraint programming (CP) is used to model and solve combinato-
rial problems in many application areas, such as resource allocation
or scheduling. However, building a CP model requires some exper-
tise in constraint programming. This prevents the use of this technol-
ogy by a novice and thus this has a negative effect on the uptake of
constraint technology by non-experts.

Several techniques have been proposed for assisting the user in
the modeling task. In [10], Freuder and Wallace proposed the match-
maker agent, an interactive process where the user is able to provide
one of the constraints of her target problem each time the system
proposes a wrong solution. In [12], Lallouet et al. proposed a system
based on inductive logic programming that uses background knowl-
edge on the structure of the problem to learn a representation of the
problem correctly classifying the examples. In [4, 6], Bessiere et al.
made the assumption that the only thing the user is able to provide is
examples of solutions and non-solutions of the target problem. Based
on these examples, the Conacg.1 system learns a set of constraints
that correctly classifies all examples given so far. This type of learn-
ing is called passive learning. In [3], Beldiceanu and Simonis pro-
posed Model Seeker, another passive learning approach. Positive ex-
amples are provided by the user. The system arranges these examples
as a matrix and identifies constraints in the global constraints catalog
([2]) that are satisfied by rows or columns of all examples.

1 This work has been funded by the ANR project BR4CP (ANR-11-BS02-
008) and by the EU project ICON (FP7-284715).

2 University of Montpellier, France, email: {bessiere, coletta, daoudi, lazaar,
mechqrane } @lirmm.fr

3 LIMIARF/FSR, University Mohammed V Agdal, Rabat, Morocco, email:
bouyakhf@fsr.ac.ma

and Younes Mechqrane? and El Houssine Bouyakhf 3

By contrast, in an active learner like Conacgq.2, the system pro-
poses examples to the user to classify as solutions or non solutions
[7]. Such questions are called membership queries [1]. CONACQ in-
troduces two computational challenges. First, how does the system
generate a useful query? Second, how many queries are needed for
the system to converge to the target set of constraints? It has been
shown that the number of membership queries required to converge
to the target set of constraints can be exponentially large [8].

QUACQ is a recent active learner system that is able to ask the
user to classify partial queries [5]. Using partial queries and given a
negative example, QUACQ is able to find a constraint of the problem
the user has in mind in a number of queries logarithmic in the size
of the example. This key component of QUACQ allows it to always
converge on the target set of constraints in a polynomial number of
queries. However, even that good theoretical bound can be hard to
put in practice. For instance, QUACQ requires the user to classify
more than 8000 examples to get the complete Sudoku model.

In this paper, we propose a new technique to make constraint ac-
quisition more efficient in practice by using variable types. In real
problems, variables often represent components of the problem that
can be classified in various types. For instance, in a school time-
tabling problem, variables can represent teachers, students, rooms,
courses, or time-slots. Such types are often known by the user. To
deal with types of variables, we introduce a new kind of query,
namely, generalization query. We expect the user to be able to decide
if a learned constraint can be generalized to other scopes of variables
of the same type as those in the learned constraint. We propose an
algorithm, GENACQ for generalized acquisition, that asks such gen-
eralization queries each time a new constraint is learned. We propose
several strategies and heuristics to select the good candidate gener-
alization query. We plugged our generalization functionality into the
QUACAQ constraint acquisition system, leading to the G-QUACQ al-
gorithm. We experimentally evaluate the benefit of our technique on
several benchmark problems. The results show that G-QUACQ dra-
matically improves the basic QUACQ algorithm in terms of number
of queries.

The rest of the paper is organized as follows. Section 2 gives the
necessary definitions to understand the technical presentation. Sec-
tion 3 describes the generalization algorithm. In Section 4, several
strategies are presented to make our approach more efficient. Sec-
tion 5 presents the experimental results we obtained when compar-
ing G-QUACQ to the basic QUACQ and when comparing the differ-
ent strategies in G-QUACQ. Section 6 concludes the paper and gives
some directions for future research.

2 BACKGROUND

We introduce some useful notions in constraint programming and
concept learning. The common knowledge shared between a learner
that aims at solving the problem and the user who knows the prob-
lem is a vocabulary. This vocabulary is represented by a (finite) set
of variables X and domains D = {D(z1),...,D(zs)} over Z.
A constraint ¢ represents a relation rel(c) on a subset of variables
var(c) C X (called the scope of c) that specifies which assignments
of var(c) are allowed. Combinatorial problems are represented with
constraint networks. A constraint network is a set C of constraints on
the vocabulary (X, D). An example e is a (partial/complete) assign-
ment on a set of variables var(e) C X. e is rejected by a constraint
c(ie., e [~ ¢) iff var(c) C var(e) and the projection e[var(c)] of e
on var(c) is not in ¢. A complete assignment e of X is a solution of
Ciff for all ¢ € C, ¢ does not reject e. We denote by sol(C') the set
of solutions of C.

In addition to the vocabulary, the learner owns a language I' of
relations from which it can build constraints on specified sets of
variables. A constraint basis is a set B of constraints built from the
constraint language I on the vocabulary (X, D). Formally speaking,
B ={c| (var(c) C X) A (rel(c) e I)}.

In terms of machine learning, a concept is a Boolean function over
DX = II,,cx D(x;), that is, a map that assigns to each example
e € D* avalue in {0,1}. We call target concept the concept fr
that returns 1 for e if and only if e is a solution of the problem the
user has in mind. In a constraint programming context, the target
concept is represented by a farget network denoted by Cr. A query
Ask(e), with var(e) C X, is a classification question asked to the
user, where e is an assignment in D?%"(®) = I, coar(e) D(xi). A
set of constraints C' accepts an assignment e if and only if there does
not exist any constraint ¢ € C' rejecting e. The answer to Ask(e) is
yes if and only if C'r accepts e.

A type T; is a subset of variables defined by the user as having
a common property. A variable z is of type T; iff x € T;. A scope
var = (z1,..., k) of variables belongs to a sequence of types s =
(T, ...,Tx) (denoted by var € s) if and only if z; € T; for all
i € 1..k. Consider s = (T1, T», ..., Tx) and 8" = (11, T3, ..., T})
two sequences of types. We say that s’ covers s (denoted by s C s’)
iff T; C T foralli € 1..k. A relation r holds on a sequence of types
s if and only if (var,r) € Cr for all var € s. A sequence of types
s is maximal with respect to a relation r if and only if r holds on s
and there does not exist s’ covering s on which r holds.

3 GENACQ ALGORITHM

In this section we present GENACQ, a generalized acquisition algo-
rithm, The idea behind this algorithm is, given a constraint ¢ learned
on var(c), to generalize this constraint to sequences of types s cover-
ing var(c) by asking generalization queries AskGen(s,r). A gen-
eralization query AskGen(s,r) is answered yes by the user if and
only if for every sequence var of variables covered by s the relation
r holds on var in the target constraint network Cr.

3.1 Description of GENACQ

The algorithm GENACQ (see Algorithm 1) takes as input a target
constraint ¢ that has already been learned and a set NonTarget
of constraints that are known not to belong to the target network.
It also uses the global data structure Negative®), which is a set
of pairs (s,r) for which we know that r does not hold on all se-
quences of variables covered by s. ¢ and NonTarget can come

Algorithm 1: GENACQ (¢, NonTarget)

1 Table < {s | var(c) € s} \ {var(c)}
2G+ 0
3 #NoAnswers < 0
4 foreach s € T'able do
5 if 3(s’,r) € NegativeQ | rel(c) Cr A s’ C s then
6 | Table < Table \ {s}
7 if 3¢’ € NonTarget | rel(c') = rel(c) Avar(c') € s
8 then T'able < Table \ {s}
9 while T'able #) A #NoAnswers < cutoffNo do
10 pick s in T'able
11 if AskGen(s,rel(c)) = yes then
12 G+ GU{st\{seG|s Cs}
13 Table + Table \ {s" € Table | s' C s}
14 #NoAnswers < 0
else
15 Table + Table \ {s" € Table | s C s’}
16 NegativeQ < Negative@ U {(s,rel(c))}
17 #NoAnswers + +
18 return G;

from any constraint acquisition mechanism or as background knowl-
edge. Negative(is built incrementally by each call to GENACQ.
GENACQ also uses the set T'able as local data structure. T'able will
contain all sequences of types that are candidates for generalizing c.

In line 1, GENACQ initializes the set T'able to all possible se-
quences s of types that contain var(c). In line 2, GENACQ initializes
the set G to the empty set. G will contain the output of GENACQ, that
is, the set of maximal sequences from T'able on which rel(c) holds.
The counter # N oAnswers counts the number of consecutive times
generalization queries have been classified negative by the user. It is
initialized to zero (line 3). #NoAnswers is not used in the basic
version of GENACQ but it will be used in the version with cutoffs.
(In other words, the basic version uses cutoffNo = +oc in line 9).

The first loop in GENACQ (line 4) eliminates from T'able all
sequences s for which we already know the answer to the query
AskGen(s,rel(c)). In lines 5-6, GENACQ eliminates from T'able
all sequences s such that a relation r entailed by rel(c) is already
known not to hold on a sequence s’ covered by s (i.e., (s’,7) is in
Negative@). This is safe to remove such sequences because the ab-
sence of 7 on some scope in s implies the absence of rel(c) on
some scope in s (see Lemma 1). In lines 7-8, GENACQ eliminates
from T'able all sequences s such that we know from NonTarget
that there exists a scope var in s such that (var, rel(c)) ¢ Cr.

In the main loop of GENACQ (line 9), we pick a sequence s from
Table at each iteration and we ask a generalization query to the user
(line 11). If the user says yes, s is a sequence on which rel(c) holds.
We put s in G and remove from G all sequences covered by s, so as to
keep only the maximal ones (line 12). We also remove from T'able all
sequences s’ covered by s (line 13) to avoid asking redundant ques-
tions later. If the user says no, we remove from T'able all sequences
s’ that cover s (line 15) because we know they are no longer candi-
date for generalization of rel(c) and we store in Negative@ the fact
that (s, rel(c)) has been answered no. The loop finishes when T'able
is empty and we return G (line 18).

3.2 Completeness and Complexity

We analyze the completeness and complexity of GENACQ in terms
of number of generalization queries.

Lemma 1. If AskGen(s,r) = no then for any (s',r") such that
s C s’ and v’ C v, we have AskGen(s',r') = no.

Proof. Assume that AskGen(s,r) = no. Hence, there exists a se-
quence var € s such that (var,r) ¢ Cr. As s C s’ we have
var € s’ and then we know that (var,7) ¢ Cr. As v’ C r, we
also have (var,r’) ¢ Cr. As aresult, AskGen(s',r') =no. O

Lemma 2. If AskGen(s,r) = yes then for any s’ such that s' C s,
we have AskGen(s',r) = yes.

Proof. Assume that AskGen(s,r) = yes. As s’ C s, for all var €
s’ we have var € s and then we know that (var,r) € Cr. As a
result, AskGen(s',r) = yes. O

Proposition 1 (Completeness). When called with constraint c as in-
put, the algorithm GENACQ returns all maximal sequences of types
covering var(c) on which the relation rel(c) holds.

Proof. All sequences covering var(c) are put in T'able. A sequence
in T'able is either asked for generalization or removed from T'able
in lines 6, 8, 13, or 15. We know from Lemma 1 that a sequence
removed in line 6, 8, or 15 would necessarily lead to a no answer. We
know from Lemma 2 that a sequence removed in line 13 is subsumed
and less general than another one just added to G. O

Proposition 2. Given a learned constraint ¢ and its associated
Table, GENACQ uses O(|Table|) generalization queries to return
all maximal sequences of types covering var(c) on which the rela-
tion rel(c) holds.

Proof. For each query on s € Table asked by GENACQ, the size
of T'able strictly decreases regardless of the answer. As a result, the
total number of queries is bounded above by |T'able|. O

3.3 Illustrative Example

Let us take the Zebra problem to illustrate our generalization ap-
proach. The Lewis Carroll’s Zebra problem has a single solution.
The target network is formulated using 25 variables, partitioned in 5
types of 5 variables each. The types are thus color, nationality, drink,
cigaret, pet, and the trivial type X of all variables. There is a clique
of # constraints on all pairs of variables of the same non trivial type
and 14 additional constraints given in the description of the problem.

Figure 1 shows the variables of the Zebra problem and their types.
In this example, the constraint x2 # x5 has been learned between
the two color variables x> and xs. This constraint is given as input
of the GENACQ algorithm. GENACQ computes the T'able of all se-
quences of types covering the scope (z2, x5). Table = {(z2, color),
(z2, X), (color, x5), (color, color), (color, X), (X, zs5), (X, color)
(X, X)}. Suppose we pick s = (X, z5) at line 10 of GENACQ. Ac-
cording to the user’s answer (no in this case), the T'able is reduced
to Table = {(x2,color),(xz2,X), (color,xs), (color, color),
(color, X)}. As next iteration, let us pick s = (color, color).
The user will answer yes because there is indeed a clique of #
on the color variables. Hence, (color,color) is added to G and
the T'able is reduced to Table = {(x2,X), (color, X)}. If we
pick (x2,X), the user answers no and we reduce the Table to
the empty set and return G = {(color, color)}, which means that

Figure 1.

Variables and types for the Zebra problem.

the constraint 2 # x5 can be generalized to all pairs of variables
in the sequence (color, color), that is, (x; # z;) € Cr for all
(i, ;) € (color, color).

3.4 Using Generalization in QUACQ

GENACQ is a generic technique that can be plugged into any con-
straint acquisition system. In this section we present G-QUACQ, a
constraint acquisition algorithm obtained by plugging GENACQ into
QUACQ, the constraint acquisition system presented in [5],

G-QUACQ is presented in Algorithm 2. We do not give the code
of functions FindScope and FindC as we use them exactly as
they appear in [5]. But let us say a few words on how they work.
Given sets of variables S and S2, FindScope(e, S1, 52, false)
returns the subset of S> that, together with S; forms the scope of
a constraint in the basis of possible constraints B that rejects e. In-
spired from a technique used in QUICKXPLAIN [11], FindScope
requires a number of queries logarithmic in |S2| and linear in the
size of the final scope returned. The function FindC takes as param-
eter the negative example e and the scope returned by FindScope.
It returns a constraint from Cr with the given scope that rejects e.
For any assignment e, x5 (e) denotes the set of all constraints in B
rejecting e.

Algorithm 2: G-QUACQ

1 Cp + 0, NonTarget + 0;
2 while true do

3 if sol(Cr) = 0 then return”collapse”

4 choose e in DX accepted by C'1, and rejected by B
5 if e = nil then return “convergence on C',”

6 if Ask(e) = yes then

7 B <« B\ kg(e)

8 NonTarget + NonTarget U kp(e)

9 else

10 ¢+ FindC(e,FindScope(e, 0, X, false))
11 if ¢ = nil then return “collapse”

12 else

13 G < GENACQ(c, NonTarget)

14 foreach s € G do

15 L Cr «+ CprU{(var,rel(c)) | var € s}

G-QUACQ has a structure very similar to QUACQ. It initializes
the set NonT arget and the network C7, it will learn to the empty set

(line 1). If C'r, is unsatisfiable (line 3), the space of possible networks
collapses because there does not exist any subset of the given basis
B that is able to correctly classify the examples already asked of the
user. In line 4, QUACQ computes a complete assignment e satisfying
C'1, but violating at least one constraint from B. If such an example
does not exist (line 5), then all constraints in B are implied by Cp,,
and we have converged. If we have not converged, we propose the
example e to the user, who will answer by yes or no (line 6). If the
answer is yes, we can remove from B the set kg (e) of all constraints
in B that reject e (line 7) and we add all these ruled out constraints
to the set NonT arget to be used in GENACQ (line 8). If the answer
is no, we are sure that e violates at least one constraint of the target
network C'r. We then call the function FindScope to discover the
scope of one of these violated constraints. FindC will select which
one with the given scope is violated by e (line 10). If no constraint is
returned (line 11), this is again a condition for collapsing as we could
not find in B a constraint rejecting one of the negative examples.
Otherwise, we know that the constraint c returned by F indC belongs
to the target network C'r. This is here that the algorithm differs from
QUACQ as we call GENACQ to find all the maximal sequences of
types covering var(c) on which rel(c) holds. They are returned in
G (line 13). Then, for every sequence of variables var belonging to
one of by these sequences in G, we add the constraint (var, rel(c))
to the learned network C', (line 14).

4 STRATEGIES

GENACQ learns the maximal sequences of types on which a con-
straint can be generalized. The order in which sequences are picked
from T'able in line 10 of Algorithm 1 is not specified by the algo-
rithm. As shown on the following example, different orderings can
lead more or less quickly to the good (maximal) sequences on which
a relation r holds. Let us come back to our example on the Zebra
problem (Section 3.3). In the way we developped the example, we
needed only 3 generalization queries to empty the set T'able and con-
verge on the maximal sequence (color, color) on which # holds:

1. AskGen((X,zs),#) = no

2. AskGen((color, color),#) = yes

3. AskGen((x2,X),#) = no
Using another ordering, GENACQ needs 8 generalization queries:

1. AskGen((X, X),#) = no
. AskGen((X, color),#) = no
. AskGen((color, X),#) = no
. AskGen((X,xs5),#) = no
. AskGen((z2, X),#) = no
. AskGen((x2, color), #) = yes
. AskGen((color, zs),#) = yes
. AskGen((color, color), #) = yes

If we want to reduce the number of generalization queries, we may
wonder which strategy to use. In this section we propose two tech-
niques. The first idea is to pick sequences in the set T'able following
an order given by a heuristic that will try to minimize the number of
queries. The second idea is to put a cutoff on the number consecutive
negative queries we accept to face, leading to a non complete general-
ization startegy: the output of GENACQ will no longer be guaranteed
to be the maximal sequences.

0 O Ui W N

4.1 Query Selection Heuristics

We propose some query selection heuristics to decide which se-
quence to pick next from T'able. We first propose optimistic heuris-

tics, which try to take the best from positive answers:

e max_CST: This heuristic selects a sequence s maximizing the
number of possible constraints (var, r) in the basis such that var
is in s and r is the relation we try to generalize. The intuition is
that if the user answers yes, the generalization will be maximal in
terms of number of constraints.

e max _VAR: This heuristic selects a sequence s involving a max-
imum number of variables, that is, maximizing ||{J;, T|. The
intuition is that if the user answers yes, the generalization will in-
volve many variables.

Dually, we propose pessimistic heuristics, which try to take the
best from negative answers:

e min CST: This heuristic selects a sequence s minimizing the
number of possible constraints (var, r) in the basis such that var
is in s and r is the relation we try to generalize. The intuition is to
maximize the chances to receive a yes answer. If, despite this, the
user answers no, a great number of sequences are removed from
Table (see Lemma 1).

e min _VAR: This heuristic selects a sequence s involving a mini-
mum number of variables, that is, minimizing | J es T |. The in-
tuition is to maximize the chances of a yes answer while focusing
on smaller sets of variables than min_CST. Again, a no answer
leads to a great number of sequences removed from T'able.

As a baseline for comparison, we define a random selector.

e random: It picks randomly a sequence s in T'able.

4.2 Using Cutoffs

The idea here is to exit GENACQ before having proved the maxi-
mality of the sequences returned. We put a threshold cutoffNo on
the number of consecutive negative answers to avoid using queries
to check unpromising sequences. The hope is that GENACQ will
return near-maximal sequences of types despite not proving maxi-
mality. This cutoff strategy is implemented by setting the variable
cutoffNo to a predefined value. In lines 14 and 17 of GENACQ, a
counter of consecutive negative answers is respectively reset and in-
cremented depending on the answer from the user. In line 9, that
counter is compared to cutoffNo to decide to exit or not.

5 EXPERIMENTATIONS

We made some experiments to evaluate the impact of using our gen-
eralization functionality GENACQ in the QUACQ constraint acquisi-
tion system. We implemented GENACQ and plugged it in QUACQ,
leading to the G-QUACQ version. We first present the benchmark
problems we used for our experiments. Then, we report the results of
several experiments. The first one compares the performance of G-
QUACQ to the basic QUACQ. The second reports experiments eval-
vating the different strategies we proposed (query selection heuris-
tics and cutoffs) on G-QUACQ. The third evaluates the performance
of our generalization approach when our knowledge of the types of
variables is incomplete.

5.1 Benchmark Problems

Zebra problem. As introduced in section 3.3, the Lewis Carroll’s
Zebra problem is formulated using 5 types of 5 variables each, with

5 cliques of # constraints and 14 additional constraints given in the
description of the problem. We fed QUACQ and G-QUACQ with a
basis B of 4450 unary and binary constraints taken from a language
with 24 basic arithmetic and distance constraints.

Sudoku. The Sudoku model is expressed using 81 variables with
domains of size 9, and 810 # binary constraints on rows, columns
and squares. In this problem, the types are the 9 rows, 9 columns and
9 squares, of 9 variables each. We fed QUACQ and G-QUACQ with a
basis B of 6480 binary constraints from the language I' = {=, #}.
Latin Square. The Latin square problem consists of an n X n table
in which each element occurs once in every row and column. For this
problem, we use 25 variables with domains of size 5 and 100 binary
constraints on rows and columns. Rows and columns are the types
of variables (10 types). We fed QUACQ and G-QUACQ with a basis
of constraints based on the language I' = {=, #}.

Radio Link Frequency Assignment Problem. The RLFAP prob-
lem is to provide communication channels from limited spectral re-
sources [9]. Here we build a simplified version of RLFAP that con-
sists in distributing all the frequencies available on the base sta-
tions of the network. The constraint model has 25 variables with do-
mains of size 25 and 125 binary constraints. We have five stations of
five terminals (transmitters/receivers), which form five types. We fed
QUACQ and G-QUACQ with a basis of 1800 binary constraints taken
from a language of 6 arithmetic and distance constraints

Purdey. Like Zebra, this problem has a single solution. Four families
have stopped by Purdeys general store, each to buy a different item
and paying differently. Under a set of additional constraints given
in the description, the problem is how can we match family with
the item they bought and how they paid for it. The target network
of Purdey has 12 variables with domains of size 4 and 30 binary
constraints. Here we have three types of variables, which are family,
bought and paid, each of them contains four variables.

5.2 Results

For all our experiments we report, the total number #Ask of
standard queries asked by the basic QUACQ, the total number
#AskGen of generalization queries, and the numbers #no and
#yes of negative and positive generalization queries, respectively,
where #AskGen = #mno + #yes. The time overhead of using
G-QUACQ rather than QUACQ is not reported. Computing a gener-
alization query takes a few milliseconds.

Our first experiment compares QUACQ and G-QUACQ in its base-
line version, G-QUACQ +rand, on our benchmark problems. Table 1
reports the results. We observe that the number of queries asked by
G-QUACQ is dramatically reduced compared to QUACQ. This is es-
pecially true on problems with many types involving many variables,
such as Sudoku or Latin square. G-QUACQ acquires the Sudoku with
260 standard queries plus 166 generalization queries, when QUACQ
acquires it in 8645 standard queries.

Table 1. QUACQ vs G-QUACQ.

QUACQ G-QUACQ +random

H#Ask | #Ask #AskGen

Zebra 638 257 67
Sudoku 8645 260 166
Latin square 1129 117 60
RFLAP 1653 151 37
Purdey 173 82 31

Let us now focus on the behavior of our different heuristics in G-
QUACQ. Table 2(top) reports the results obtained with G-QUACQ
using min_VAR, min_CST, max_VAR, and max_CST to acquire the
Sudoku model. (Other problems showed similar trends.) The results
clearly show that max_VAR, and max_CST are very bad heuris-
tics. They are worse than the baseline random. On the contrary,
min_VAR and min_CST significantly outperform random. They re-
spectively require 90 and 132 generalization queries instead of 166
for random. Notice that they all ask the same number of standard
queries (260) as they all find the same maximal sets of sequences for
each learned constraint.

Table 2. G-QUACQ with heuristics and cutoff strategy on Sudoku.

cutoff | #Ask | #AskGen F#yes #no

random 166 42 124
min_VAR 90 21 69
min CST 400 260 132 63 69
max VAR 263 63 200
max CST 247 21 226
3 75 21 54

min VAR 2 260 57 21 36
1 39 21 18

3 626 238 112 126

min CST 2 679 231 132 99
1 837 213 153 60

At the bottom of Table 2 we compare the behavior of our two
best heuristics (min_VAR and min_CST) when combined with the
cutoff strategy. We tried all values of the cutoff from 1 to 3. A first
observation is that min_VAR remains the best whatever the value of
the cutoff is. Interestingly, even with a cutoff equal to 1, min VAR
requires the same number of standard queries as the versions of G-
QUACQ without cutoff. This means that using min_VAR as selec-
tion heuristic in T'able, G-QUACQ is able to return the maximal se-
quences despite being stopped after the first negative generalization
answer. We also observe that the number of generalization queries
with min_VAR decreases when the cutoff becomes smaller (from 90
to 39 when the cutoff goes from +oo to 1). By looking at the last
two columns we see that this is the number #no of negative answers
which decreases. The good performance of min_VAR + cutoff=1 can
thus be explained by the fact that min_VAR selects first queries that
cover a minimum number of variables, which increases the chances
to have a yes answer. Finally, we observe that the heuristic min_CST
does not have the same nice characteristics as min_VAR. The smaller
the cutoff, the more standard queries are needed, not compensating
for the saving in number of generalization queries (from 260 to 837
standard queries for min_CST when the cutoff goes from +o0 to 1).
This means that with min_CST, when the cutoff becomes too small,
GENACQ does not return the maximal sequences of types where the
learned constraint holds.

In Table 3, we report the performance of G-QUACQ with random,
min_VAR and min_VAR +cutoff=1 on all the other problems. We see
that min_VAR +cutoff=1 significantly improves the performance of
G-QUACQ on all problems. As in the case of Sudoku, we observe
that min_VAR +cutoff=1 does not lead to an increase in the number
of standard queries. This means that on all these problems min_VAR
+cutoff=1 always returns the maximal sequences while asking less
generalization queries with negative answers.

From these experiments we see that G-QUACQ with min_VAR
+cutoff=1 leads to tremendous savings in number of queries com-
pared to QUACQ: 257+23 instead of 638 on Zebra, 260+39 instead

Table 3. G-QUACQ with random, min_VAR, and cutoff=1 on Zebra,

Latin square, RLFAP, and Purdey.

| #Ask | #AskGen #yes #no
Zebra
Random 67 10 57
min VAR 257 48 5 43
min_VAR +cutoff=1 23 5 18
Latin square
Random 60 16 44
min VAR 117 34 10 24
min_VAR +cutoff=1 20 10 10
RLFAP
Random 37 16 21
min VAR 151 41 14 27
min_VAR +cutoff=1 22 14 8
Purdey
Random 31 5 26
min VAR 82 24 3 21
min_VAR +cutoff=1 12 3 9

of 8645 on Sudoku, 117+20 instead of 1129 on Latin square, 151422
instead of 1653 on RLFAP, 82+12 instead of 173 on Purdey.

In our last experiment, we show the effect on the performance of
G-QUACQ of a lack of knowledge on some variable types. We took
again our 5 benchmark problems in which we have varied the amount
of types known by the algorithm. This simulates a situation where the
user does not know that some variables are from the same type. For
instance, in Sudoku, the user could not have noticed that variables are
arranged in columns. Figure 2 shows the number of standard queries
and generalization queries asked by G-QUACQ with min_VAR +cut-
off=1 to learn the RLFAP model when fed with an increasingly more
accurate knowledge of types. We observe that as soon as a small per-
centage of types is known (20%), G-QUACQ reduces drastically its
number of queries. Table 4 gives the same information for all other
problems.

6 CONCLUSION

We have proposed a new technique to make constraint acquisition
more efficient by using information on the types of components the
variables in the problem represent. We have introduced generaliza-
tion queries, a new kind of query asked to the user to generalize a

#Ask 3 #AskGen ——

1800 ' ! ! ! ! !
1600 | : : H ; ; n
1400 - : : : : : 4
1200 | ﬁ ﬁ ﬁ ﬁ : 1
1000 : ' ' 7

800 | - : : : i

600 |- E : : b

400 | ' : : =

200 - ‘:‘ !:‘ : &
6 /=
20 40 60 100

80

#query

% provided types

Figure 2. G-QUACQ on RLFAP when the percentage of provided types

increases.

Table 4. G-QUACQ when the percentage of provided types increases.

| %oftypes #Ask #AskGen

0 638 0

20 619 12

40 529 20

Zebra 60 417 27
80 332 40

100 257 48

0 8645 0

33 3583 232

Sudoku 9 x 9 66 610 60
100 260 39

0 1129 0

Latin Square 50 469 49
100 117 20

0 173 0

33 111 8

Purdey 66 100 10
100 82 12

constraint to other scopes of variables of the same type where this
constraint possibly applies. Our new technique, GENACQ, can be
called to generalize each new constraint that is learned by any con-
straint acquisition system. We have proposed several heuristics and
strategies to select the good candidate generalization query. We have
plugged GENACQ into the QUACQ constraint acquisition system,
leading to the G-QUACQ algorithm. We have experimentally eval-
uated the benefit of our approach on several benchmark problems,
with and without complete knowledge on the types of variables. The
results show that G-QUACQ dramatically improves the basic QUACQ
algorithm in terms of number of queries.

REFERENCES

[1] Dana Angluin, ‘Queries and concept learning.’, Machine Learning,
319-342, (1987).

[2] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Pe-
tit, ‘Global constraint catalogue: Past, present and future’, Constraints,
12(1), 21-62, (2007).

[3] Nicolas Beldiceanu and Helmut Simonis, ‘A model seeker: Extracting
global constraint models from positive examples.’, in CP, pp. 141-157,
(2012).

[4] Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry
O’Sullivan, ‘Leveraging the learning power of examples in automated
constraint acquisition’, in CP, pp. 123-137, (2004).

[5] Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsire-
los, Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, and Toby
Walsh, ‘Constraint acquisition via partial queries’, in IJCAI, (2013).

[6] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry
O’Sullivan, ‘A sat-based version space algorithm for acquiring con-
straint satisfaction problems’, in ECML, pp. 23-34, (2005).

[7] Christian Bessiere, Remi Coletta, Barry O’Sullivan, and Mathias
Paulin, ‘Query-driven constraint acquisition.’, in IJCAI, pp. 50-55,
(2007).

[8] Christian Bessiere and Frédéric Koriche, ‘Non learnability of constraint
networks with membership queries’, Technical report, Coconut, Mont-
pellier, France, (February, 2012).

[9] Bertrand Cabon, Simon de Givry, Lionel Lobjois, Thomas Schiex, and
Joost P. Warners, ‘Radio link frequency assignment’, Constraints, 4(1),
79-89, (1999).

[10] Eugene C. Freuder and Richard J. Wallace, ‘Suggestion strategies for
constraint-based matchmaker agents’, International Journal on Artifi-
cial Intelligence Tools, 11(1), 3—18, (2002).

[11] Ulrich Junker, ‘Quickxplain: Preferred explanations and relaxations for
over-constrained problems’, in AAAI pp. 167-172, (2004).

[12] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain,
‘On learning constraint problems.’, in ICTAI, pp. 45-52, (2010).

