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Constraint Acquisition Systems

21 CONACQ

2 Conacql.O (passive learning) [Bessiere et al. ECMLO5]
? Conacq2.0 (active learning) [Bessiere et al. IJCAI07]

7 ModelSeeker [Beldiceanu and Simonis, CP12]
72  Apassive learning
7 Based on global constraint catalog (more than 400)

z -
Buttom-up search Membership quel‘v

ask([2,8,4,2,6,5,1,6])=No




Constraint Acquisition Systems

21 CONACQ

2 Conacql.O (passive learning) [Bessiere et al. ECMLO5]
? Conacq2.0 (active learning) [Bessiere et al. IJCAI07]

7 ModelSeeker [Beldiceanu and Simonis, CP12]
72  Apassive learning
7 Based on global constraint catalog (more than 400)

7  Buttom- h i
uttom-up searc Membership query

ask([5,8,4,1,7,2,6,3])=Yes




QUACQ: Quick Acquisition [Bessiere et al. 13]

71 Active learning approach i

71 Based on partial queries to elucidate the scope of the
constraint to learn
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QUACQ: Quick Acquisition [Bessiere et al. 13]

Active learning approach i

Based on partial queries to elucidate the scope of the
constraint to learn

QUACQ does not require complete positive examples
—> we can use it to solve an instance



QUACQ: Quick Acquisition [Bessiere et al. 13]

Active learning approach i

Based on partial queries to elucidate the scope of the
constraint to learn

QUACQ does not require complete positive examples

—> we can use it to solve an instance
p

Limitation:

* QUACQ promotes learning and it can find a solution by chance!
J

-
Question:

* In a constraint acquisition context, can we promote solving?

J
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e Limitations: modelling constraint networks require a fair expertise
* Question: Can we solve a problem without modelling it?



Ask&Solve

Objective:
7 Solving a problem without having a constraint network

describing it

? Find the best tradeoff between learning and solving to

converge as soon as possible on a solution

How:

e
e

e

Asking (partial) queries

Extend a scope on which we know at least one assignment
accepted by the target network C;

Learn a culprit constraint at each negative example, to prune
the search space (QUACQ-like process)



Ask&Solve

Example (4-queens) Wy
0
learn e= X Cst = {ql # ¢2} 7
learn R Cst=CstU{q2 # ql + 1}
extend v
learn X Cst =CstU{ql # q3}

extend v
learn X Cst=CstU{q3 # q4}

Solution! 2 4 1 3 v



Experiments

A comparative study with
72 Baseline 1: QUACQ&Solve

? Baseline 2: Branch&Learn [Bessiere et al. 12]

is a backtrack search based on elicitation (asking queries at each
node)

Use of CONACQ at each node
2 Baseline 3: Backtrack-E

If the query is classified as positive we reduce the version space

Negative, we learn a constraint using the QUACQ principle



Experiments

#Csts  #queries time\queries

o QUACQ&SOLVE 111 548 0.21
5 BACKTRACK-E 46 432 0.16
:‘; BRANCH&LEARN = 389 76.01

ASK&SOLVE 21 179 0.35
. QUACQ&SOLVE 58 623 0.02
5 BACKTRACK-E 51 H28 0.06
N BRANCH&LEARN = — —

ASK&SOLVE 60 509 0.02
o, QUACQ&SOLVE 18 157 0.01
g BACKTRACK-E 15 119 0.01
é BRANCH& LEARN — 109 0.61

ASK&SOLVE 14 103 0.01




Zebra problem

Ask&Solve behavior
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How can we reduce the Area Under the Curve (#queries)?

=» Strategies (restart policies / variable ordering heuristics)



Restart policies

FC-restart (fixed cutoff)
Geometric-restart [Walsh. 99]

Luby-restart [Luby et al. 93]



Variable ordering heuristics

Random: At each restart event, we reorder the variables randomly

Lexicographic (lex):

restart
1,22, 3 —» L1,T2,T3,T4 ...

Reverse-lex (r-lex):

restart restart
L1,y —> L2,T1,T3, T4 —» L4,T3,T1 ...

Continuous-lex (c-lex):

restart restart
L1,X2,X3 — 7 L3, T4 ——2 T4,T5,T6 - - -



Results (with strategies)

RESTART VAR-ORDER #Csts #queries time\queries

none LEX 21 179 0.35
RANDOM 48 435 0.24

0 LEX 21 174 0.34

a R-LEX 30 232 0.30
C-LEX 28 203 0.35

- = RANDOM 50 527 0.27
= *05'3 LEX 21 202 0.33
% S R-LEX 21 166 0.28
G C-LEX 21 162 0.31
RANDOM 45 402 0.31

,§’ LEX 21 161 0.34

- R-LEX 21 160 0.33

C-LEX 11 158 0.32




Results (with strategies)

RESTART VAR-ORDER #Csts #queries time\queries

none LEX 60 509 0.02
RANDOM 57 560 0.05

® LEX 63 558 0.02

a R-LEX 53 452 0.05
C-LEX 59 459 0.03

= RANDOM 59 503 0.02

3 *05'3 LEX 60 482 0.05
2 9 R-LEX 48 346 0.03
N © C-LEX 59 381 0.04
RANDOM 57 484 0.05

,§’ LEX 60 537 0.03

14 R-LEX 41 356 0.03

C-LEX 57 465 0.02




Results (with strategies)

RESTART VAR-ORDER #C'sts #queries time\queries

none LEX 14 103 0.01
RANDOM 16 106 0.01

0 LEX 13 108 0.01

s R-LEX 11 88 0.02
C-LEX 12 82 0.01

= RANDOM 16 99 0.02

> E LEX 12 77 0.01
Fsg o R-LEX 8 37 0.02
a © C-LEX 15 64 0.01
RANDOM 16 123 0.01

,§’ LEX 12 86 0.01

= R-LEX 9 62 0.02

C-LEX 11 83 0.01




Conclusion

QUACQ can be used as a solver but it promotes learning

We present Ask&Solve, an elicitation based solver that
promotes solving

72 Solving without the need of a constraint network

Ask&Solve can be boosted using restart policies and variable
orderings

=>» Decrease even more the number of queries by plugging other

techniques (ModelSeeker, Complexe queries...) @




