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* Question: How does the user write down the constraints of a problem?
* Limitations: modelling constraint networks require a fair expertise

* Need: Simple way to build constraint model =» Modeller-assistant
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Constraint Acquisition Problem

Inputs:
e (X, D) : Vocabulary
e B : Bias (possible constraints)
e (' : Target network

e (ET,E™) : positives and negatives

Output:

e (' Learnt network s.t.,

— Cp CcB:Cr,=Cr
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Example

o '={<, =}

o B = {xz < Tj,Ti = ijaViaj}

o Or ={x, =x3,21 < 22}

o Cp ={z1 = 23,723 < 12}

—
<




State of the art

CONACQ

.

A N N

SAT-Based constraint acquisition

Bidirectional search

Conacgl.0 (passive learning) [Bessiere et al. ECMLO5]
Conacg2.0 (active learning) [Bessiere et al. IJCAIO7]
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State of the art

CONACQ
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ModelSeeker [Beldiceanu and Simonis, CP12]
2 Apassive learning

? Based on global constraint catalog (more than 400)
7 Buttom-up search




QUACQ: Quick Acquisition

QUACQ [Bessiere et al. JCAI13]

72 Active learning approach
2 Bidirectional search

But it can be top-down search only if no positive
example

7 Based on partial queries to elucidate the scope

of the constraint to learn




Partial Queries

ask(2,8,4,2,6,5, 1, 6)
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ask(2,8,4,2,6,5,1, 6)=No



Partial Queries

ask(2, 8,4, 2,-,-,-,-)=No
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Complexity of QUACQ

The number of queries required to find the E-
target concept is In:

O(|Cr| - (log | X] + [T'])) ‘l’

The number of queries required to converge is

O(B]) T

E+
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Random

2 Under-constrained instance (X,D,C)=(50, 10, 12)
72 Phase transition instance (X,D,C)=(50, 10, 122)
2 |B|=7350builton T'={=,#,<,>,>,<}

Crl  #q  #qc g time
rand_50_10_12 12 196 34 24.04 0.23
rand_50_10_122 86 1074 94 13.90 0.14

Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



Some Results

Zebra puzzle
2 QUACQ behavior on different bias sizes
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Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



Some Results

Sudoku

A target network on 81 variables with 810 constraints

CL #q  #4qc q time

Sudoku 9 x 9 (810 8645 H&821 20.58 0.16

Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.



Conclusions

QUACQ: new constraint acquisition approach based on partial
gueries
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Active learning approach

Learning a constraint in a log scale of #queries

Queries are often much shorter than membership ones

Can follow a top-down search to learn a constraint network



QUACAQ as a solver

72 QUACQ does not require
positive examples

2 we can use it to solve an
instance

Ask more than yes/no questions

2 GENACQ for Generalization
Acquisition [ECAI14] (next talk!)

Perspectives

Solution!






