

Constraint Acquisition via Partial Queries

Christian Bessiere¹
Nadjib Lazaar¹

Remi Coletta¹ Nina Narodytska⁴

Emmanuel Hebrard² Claude-Guy Quimper⁵

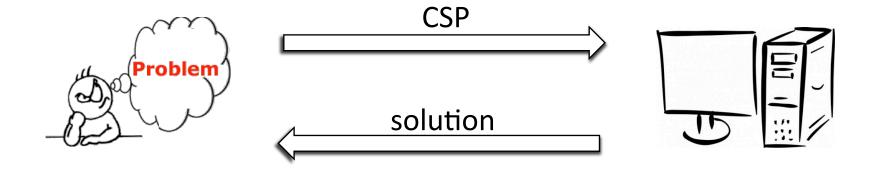
George Katsirelos³
⁵ Toby Walsh⁴

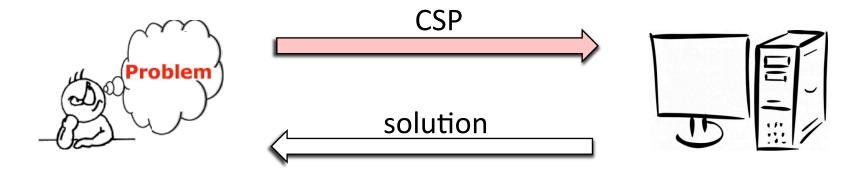
¹CNRS, U. Montpellier, France ²LAAS-CNRS, Toulouse, France

³INRA Toulouse, France

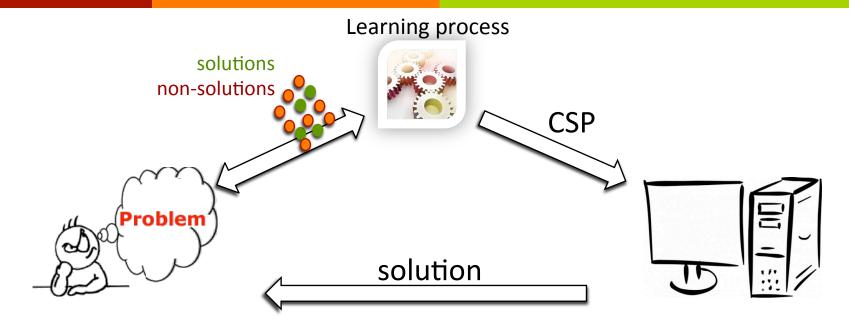
⁴NICTA, UNSW, Sydney, Australia

⁵U. Laval, Quebec City, Canada

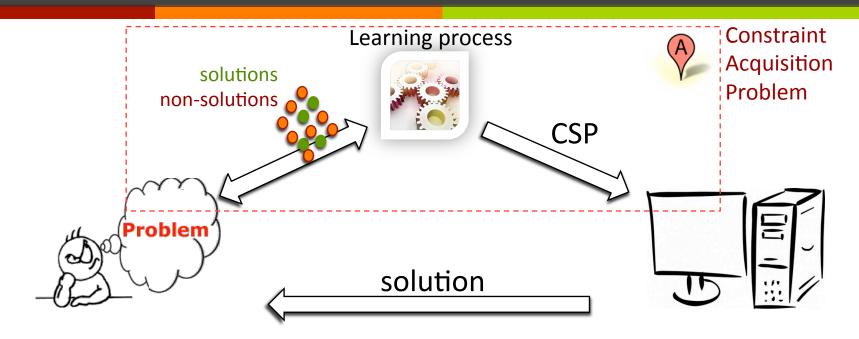




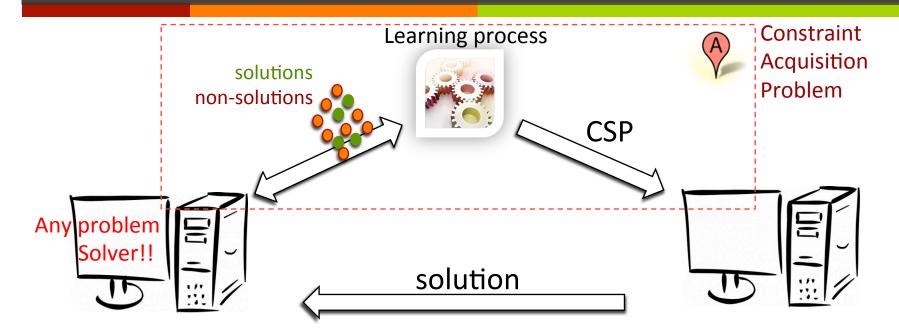
- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise
- Need: Simple way to build constraint model → Modeller-assistant



- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise
- Need: Simple way to build constraint model → Modeller-assistant
- How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)



- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise
- Need: Simple way to build constraint model → Modeller-assistant
- How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)



- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise
- Need: Simple way to build constraint model → Modeller-assistant
- How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)

Constraint Acquisition Problem

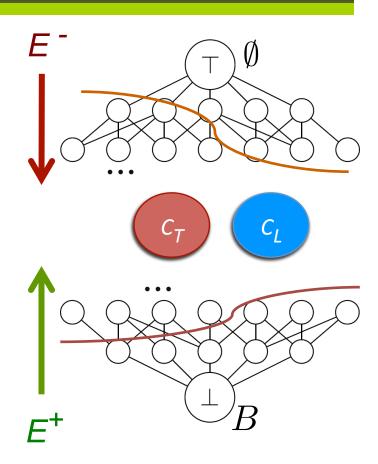
Inputs:

- (X, D): Vocabulary
- B: Bias (possible constraints)
- C_T : Target network
- (E^+, E^-) : positives and negatives

Output:

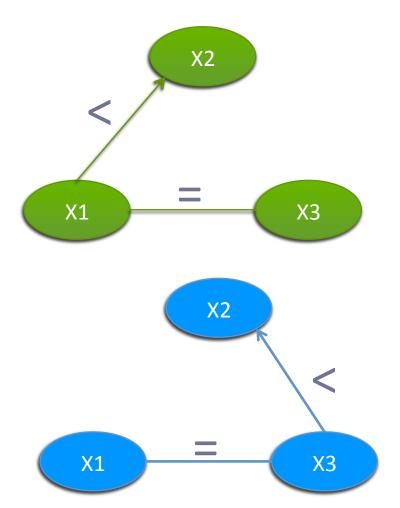
• C_L : Learnt network s.t.,

$$-C_L \subset B: C_L \equiv C_T$$



Example

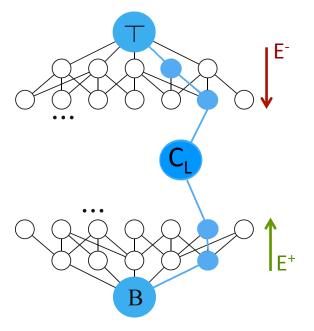
- $\bullet \ \Gamma = \{<,=\}$
- $\bullet B = \{x_i < x_j, x_i = x_j, \forall i, j\}$
- $C_T = \{x_1 = x_3, x_1 < x_2\}$
- $C_L = \{x_1 = x_3, x_3 < x_2\}$



State of the art

CONACQ

- SAT-Based constraint acquisition
- Bidirectional search
- → Conacq1.0 (passive learning) [Bessiere et al. ECML05]
- → Conacq2.0 (active learning) [Bessiere et al. IJCAI07]

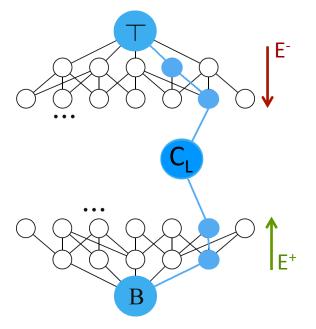


State of the art

CONACQ

- **♂** SAT-Based constraint acquisition
- Bidirectional search
- → Conacq1.0 (passive learning) [Bessiere et al. ECML05]
- → Conacq2.0 (active learning) [Bessiere et al. IJCAI07]

$$\mathcal{K} = \underbrace{(\neg x_1 \land \neg x_2 \land \neg x_3)}_{\mathbf{e}^+} \bigwedge \underbrace{(x_4 \lor x_5 \lor x_6 \lor x_7)}_{\mathbf{e}^-} \dots$$

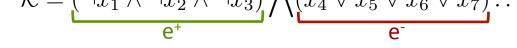


State of the art

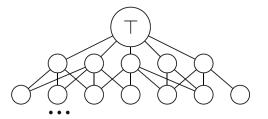
CONACQ

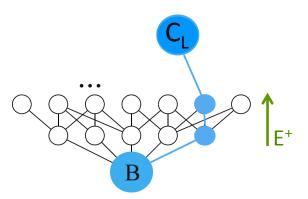
- SAT-Based constraint acquisition
- Bidirectional search
- Conacq1.0 (passive learning) [Bessiere et al. ECML05]
- 7 Conacq2.0 (active learning) [Bessiere et al. IJCAI07]

$$\mathcal{K} = \underbrace{(\neg x_1 \land \neg x_2 \land \neg x_3)}_{\mathbf{e}^+} \bigwedge \underbrace{(x_4 \lor x_5 \lor x_6 \lor x_7)}_{\mathbf{e}^-} \dots$$

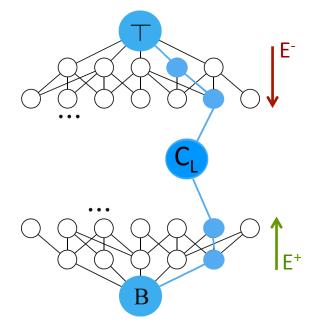


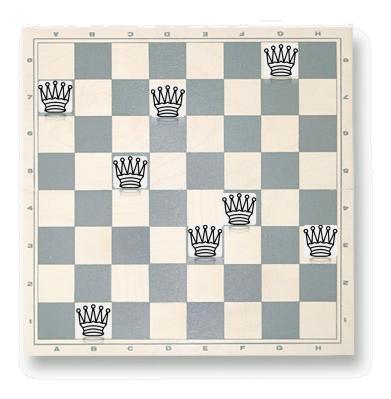
- ModelSeeker [Beldiceanu and Simonis, CP12]
 - A passive learning
 - Based on global constraint catalog (more than 400)
 - 7 Buttom-up search



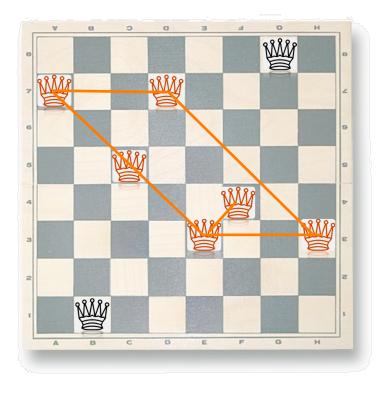


- **QUACQ** [Bessiere et al. IJCAI13]
 - Active learning approach
 - Bidirectional search
 - But it can be top-down search only if no positive example
 - Based on partial queries to elucidate the scope of the constraint to learn

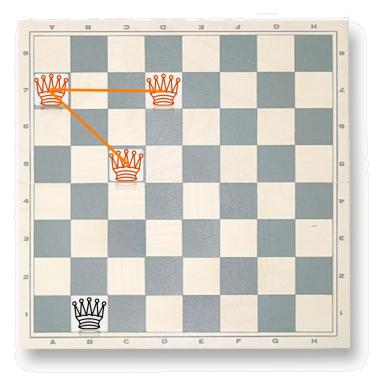




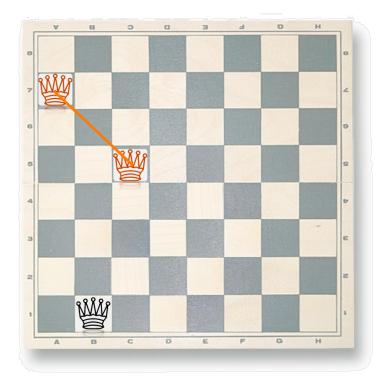
ask(2, 8, 4, 2, 6, 5, 1, 6)



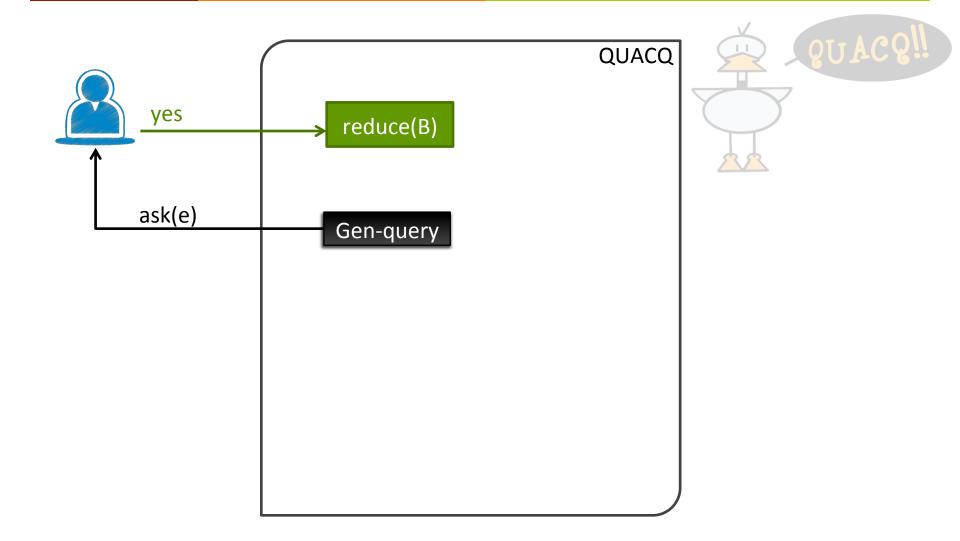
ask(2, 8, 4, 2, 6, 5, 1, 6) = No

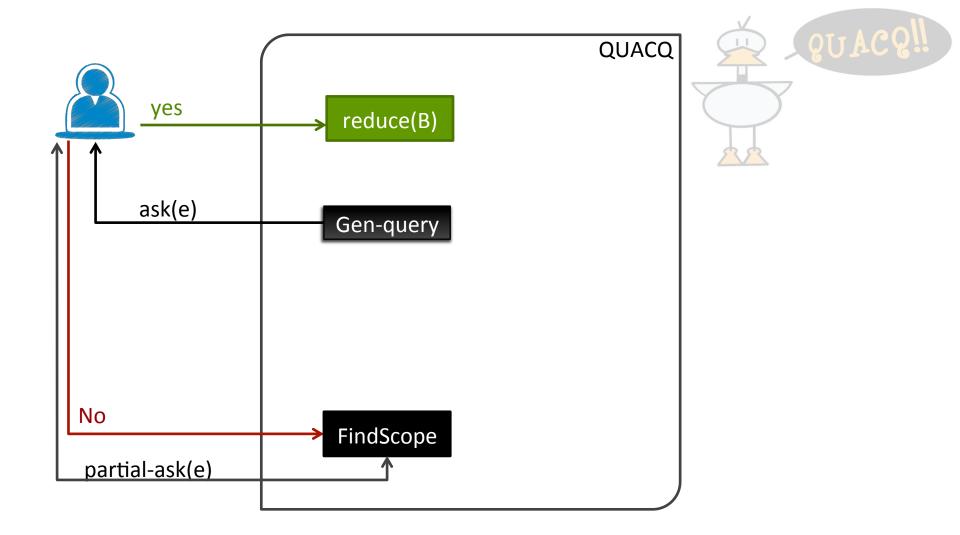


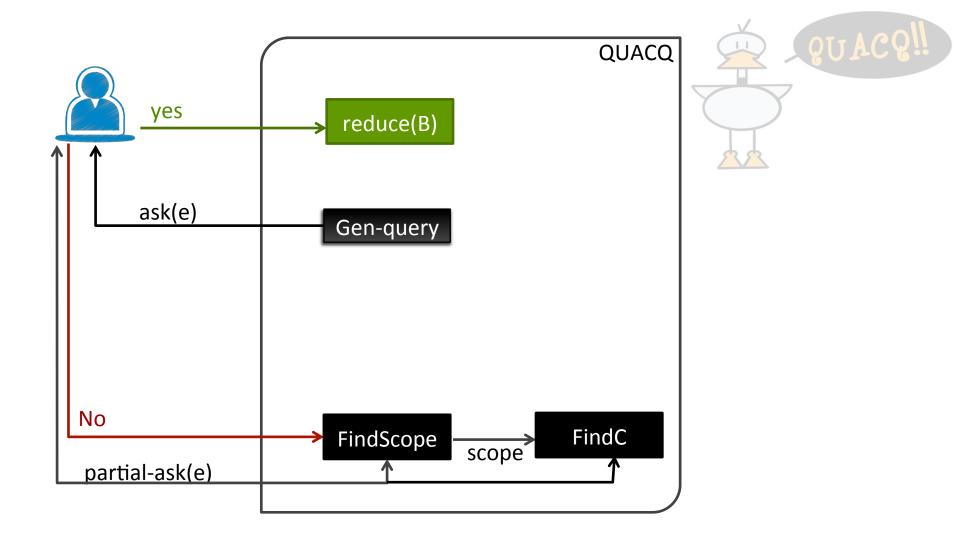
$$ask(2, 8, 4, 2, -, -, -, -) = No$$

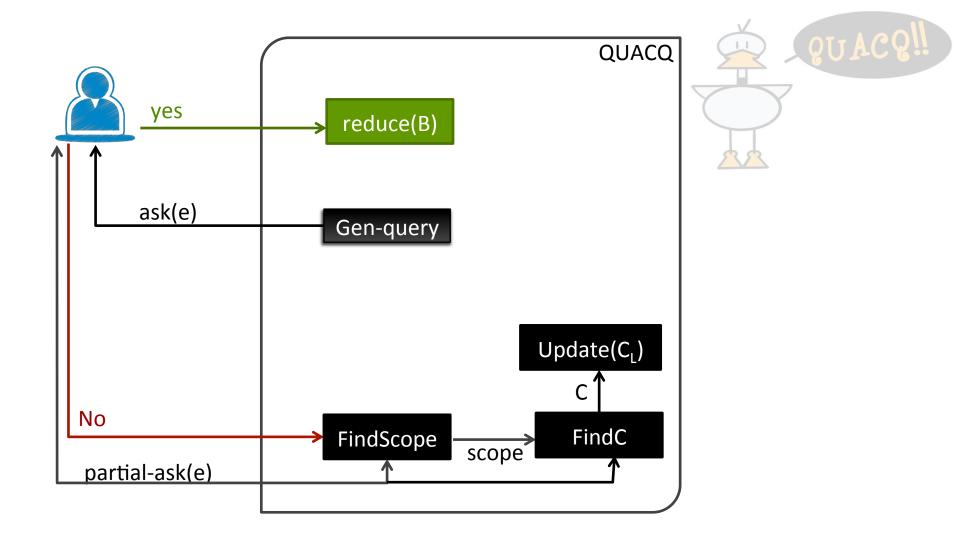


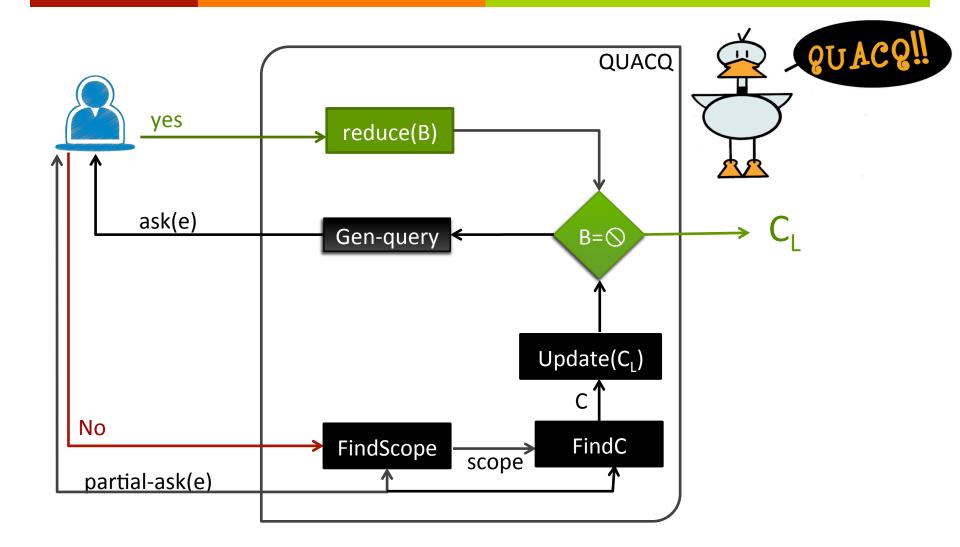
$$ask(2, 8, 4, -, -, -, -) = No$$











Complexity of QUACQ

The number of queries required to find the target concept is in:

■ The number of queries required to converge is in:

Random

- **→** Under-constrained instance (X,D,C)=(50, 10, 12)
- → Phase transition instance (X,D,C)=(50, 10, 122)
- **7** |B|= 7350 built on $\Gamma = \{=, \neq, <, \geq, >, \leq\}$

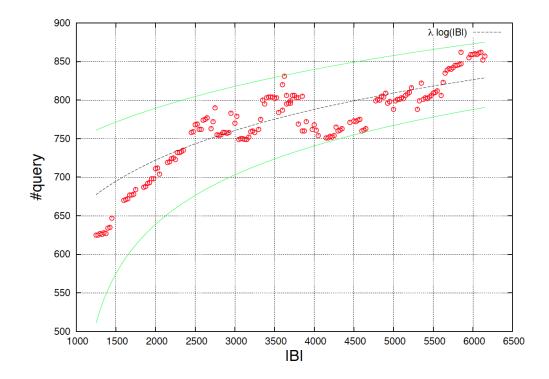
Random

- **→** Under-constrained instance (X,D,C)=(50, 10, 12)
- → Phase transition instance (X,D,C)=(50, 10, 122)
- **7** |B|= 7350 built on $\Gamma = \{=, \neq, <, \geq, >, \leq\}$

	$ C_L $	#q	$\#q_c$	$ar{q}$	time
rand_50_10_12	12	196	34	24.04	0.23
rand_50_10_122	86	1074	94	13.90	0.14

Zebra puzzle

QUACQ behavior on different bias sizes



Sudoku

A target network on 81 variables with 810 constraints

	$ C_L $	#q	$\#q_c$	$ar{q}$	time
Sudoku 9 × 9	810	8645	821	20.58	0.16

Conclusions

- QUACQ: new constraint acquisition approach based on partial queries
 - Active learning approach
 - **◄** Learning a constraint in a log scale of #queries
 - Queries are often much shorter than membership ones
 - Can follow a top-down search to learn a constraint network

Perspectives

- QUACQ as a solver
 - QUACQ does not require positive examples
 - we can use it to solve an instance

- Ask more than yes/no questions
 - **♂** GENACQ for Generalization Acquisition [ECAI14] (next talk!)

