
MAGPIE TUTORIAL

First steps with gem5

Abdoulaye Gamatié, Pierre-Yves Péneau
LIRMM / CNRS-UM, Montpellier

ComPAS Conference, June 2017, Sophia-Antipolis

Other contributors: S. Senni, T. Delobelle, Florent Bruguier, L. Torres, G. Sassatelli

Roadmap
•  Requirements for this tutorial

•  Preparing gem5 to simulate an application
•  Operating system configuration
•  Application compilation
•  Hard drive (disk image) preparation

• Automate the application execution

•  Shell scripts

• Accelerate execution with checkpoints

2

REQUIREMENTS FOR THIS
TUTORIAL

3

Connection to the remote server
• Open 2 terminals
• Connection to the remote server in each terminal

• MAGPIE configuration in one terminal only:

4

$ source $HOME/work/env.sh # Could takes few seconds
$ python --version (returns Python 2.7.12)

$ ssh etu-f_compas2017-XX@muse-login.hpc-lr.univ-montp2.fr

gem5 pre-setup
•  For those who are on their laptop with administrative

rights, download a script at this URL:

https://frama.link/compas17_nfs

•  Install the following package: sshfs

•  Execute this script on your own machine
•  Requires administrative rights to mount remote filesystem

(enter your remote access password 3 times)

5

GEM5 SETUP

6

Operating system configuration
• gem5 needs a compiled kernel and a disk image

with full operating system stuff

• Default kernels are provided in $M5_PATH/binaries

•  32 bits : vexpress.aarch32.ll_20131205.0-gem5
•  64 bits : vexpress.aarch64.20140821

• Disk image with complete Ubuntu system are also
given in $M5_PATH/disks
•  Ubuntu 11.04 32 bits : aarch32-ubuntu-natty-headless.img
•  Ubuntu 14.04 64 bits : aarch64-ubuntu-trusty-headless.img

7

Operating system configuration
•  Linux also needs a DTB file (Device Tree Blob/Binary)

• Contains hardware information required by Linux
•  Number of CPUs, frequency, DVFS information
•  Level of caches, size, line size
•  Bus frequency
•  Address range for devices
•  …

•  Located in $M5_PATH/binaries
•  Ex: vexpress.aarch32.ll_20131205.0-gem5.1cpu.dtb

8

Application cross-compilation
• MAGPIE is designed to work with ARM Instruction Set

Architecture (ISA)
•  Could be extended though

• Our machines are (mostly) x86

• We need a cross-compilation: generate ARM

assembly from another ISA (i.e., x86)

9

Application cross-compilation
• Cross-compiler available on remote machine (32-bits)

•  Note: this compiler is for ARM 32-bits only

•  Replace gcc by this one to produce ARM 32-bits
executables

• Always compile with -static flag
•  This gem5 version doesn’t support dynamic linking

10

$ arm-unknown-linux-gnueabi-gcc --version

Application cross-compilation
•  Example : $MAGPIE/app/hello_magpie.c

• Verification

•  This is also available on your local machine in /tmp/app

11

$ file $HOME/app/hello_magpie
ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), statically linked, for GNU/Linux 3.12.72,
not stripped

$ arm-unknown-linux-gnueabi-gcc –static –o
 $HOME/app/hello_magpie $MAGPIE/app/hello_magpie.c

Disk image modification
• Disk images are just ISO file : we can mount, read

and write into them

•  The following commands require administrative rights
•  That won’t work on this server

• We are just showing you how to proceed

12

Disk image modification
•  For this tutorial we use this disk image: linux-
aarch32-ael.img (32-bits)
•  Located in $HOME/disks on the remote server

•  Available on your local machine in /tmp/disks

This is the same file !

13

$ ls $HOME/disks
linux-aarch32-ael.img

$ ls /tmp/disks
linux-aarch32-ael.img

Disk image modification
• Mount the disk image:

• Copy the executable inside:

•  Finally, unmount and synchronize:

14

$ sudo mount –o loop,offset=32256 \
 /path/to/linux-aarch32-ael.img /mnt

$ sudo cp /path/to/hello_magpie /mnt/benchmark

$ sudo umount /mnt && sudo sync

gem5 setup conclusion
• Operating system:

•  in $M5_PATH/binaries
•  With DTB files

• Application is statically compiled for ARM-32 bits

• Disk image is in $M5_PATH/disks
•  And $HOME/disks
•  Application is copied to the disk image in /benchmark

15

AUTOMATE APPLICATION
EXECUTION

16

Automate application execution
• gem5 provides an interface to execute commands

inside the operating system: rcS files

•  Shell script automatically executed after the boot
phase

•  Example in $GEM5/configs/boot/hello.rcS

17

#!/bin/sh

echo "Hello World"
/sbin/m5 exit # Special instruction to exit gem5

Automate application execution
•  Open a new file in $HOME/app/hello_magpie.rcS

•  vi, vim, emacs or nano are installed

•  Our hello_magpie application is located in /benchmark
•  What would be the content of this file ?

•  This will be executed after booting

•  The simulation will automatically exit when finished

18

#!/bin/sh

cd /benchmark # Change directory
./hello_magpie # Launch application
/sbin/m5 exit # Special instruction to exit gem5

USE CHECKPOINTS

19

What’s a checkpoint ?
•  Booting Linux in gem5 could be very long

•  ~30 minutes with 1 core & fine-grained simulation
•  One way to mitigate this: checkpoints

• Checkpoints are snapshots of the system state
•  Taken with coarse-grained simulation
•  Restore from checkpoint with high level of details

20

Boot phase: irrelevant for
architectural exploration

Checkpoint
here

Coarse-grained simulation: t < 5 minutes to
take a snapshot Application execution:

fine-grained simulation for
a maximum accuracy

Taking a checkpoint
•  Restrictions when taking checkpoint and restoring

•  Use the same amount of main memory
•  Use the same disk image
•  Use the same number of cores

•  How to take a checkpoint for MAGPIE:

•  Use your disk image if possible: $HOME/disks/linux-
aarch32-ael.img

21

$ cd $GEM5
$./build/ARM/gem5.fast –ed $CHKPT/chkpt-1core-2GB \
 configs/example/fs.py \
 --script configs/boot/hack_back_ckpt.rcS \
 --disk-image $M5_PATH/disks/linux-aarch32-ael-filled.img \
 --dtb-filename vexpress.aarch32.ll_20131205.0-gem5.1cpu.dtb \
 --mem-size 2GB –-num-cpus 1

Output folder !

Taking a checkpoint
• gem5’s output:

• Checkpoint is located in $CHKPT/chkpt-1core-2GB

22

$ ls $CHKPT/chkpt-1core-2GB
[…]
cpt.2789663483500

gem5 Simulator System. http://gem5.org
[…]
**** REAL SIMULATION ****
[…]
Writing checkpoint
info: Entering event queue @ 2789663483500.
Starting simulation...
Exiting @ tick 2791525410000 because m5_exit
instruction encountered

CONCLUSION

23

Conclusion
•  Linux kernel is already compiled and ready

• Application has been cross-compiled for ARM-32

• Disk image has been modified and now contains our
application

•  The rcS file automates the execution of our
application

• A checkpoint has been taken to accelerate the
simulation

24

