MAGRPIE TUTORIAL

First steps with gemb

Abdoulaye Gamatié, Pierre-Yves Péneau
LIRMM / CNRS-UM, Montpellier

ComPAS Conference, June 2017, Sophia-Antipolis

Other contributors: S. Senni, T. Delobelle, Florent Bruguier, L. Torres, G. Sassatelli

é%\jf‘“fff’qh
N &,
(7 L%
3 CCONTINLILINA
g\ L =) | , - d B
N &
2, 8
Yoep gyt

Roadmap

- Requirements for this tutorial

- Preparing gemy to simulate an application
- Operating system configuration
- Application compilation
- Hard drive (disk image) preparation

- Automate the application execution
- Shell scripts

- Accelerate execution with checkpoints

REQUIREMENTS FOR THIS
TUTORIAL

Connection to the remofte server

- Open 2 terminals
- Connection to the remote server in each terminagl

$ ssh etu-f compas2017-XX@muse-login.hpc-lr.univ-montp2.fr

- MAGPIE configuration in one terminal only:

$ source $HOME/work/env.sh # Could takes few seconds
$ python --version (returns Python 2.7.12)

gems pre-setup

- For those who are on their laptop with administrative
rights, download a script at this URL:

hitps://frama.link/compas17_nfs

- Install the following package: sshfs

- Execute this script on your own machine

- Requires administrative rights fo mount remote filesystem
(enter your remote access password 3 fimes)

GEMS SETUP

Operating system configuration

- gemb needs a compiled kernel and a disk image
with full operating system stuff

- Default kernels are provided in $M5_ PATH/binaries
- 32 bifs : vexpress.aarch32.11 20131205.0-gem5
- 64 bits : vexpress.aarch64.20140821

- Disk image with complete Ubuntu system are also
given in $M5_ PATH/disks
- Ubuntu 11.04 32 bits : aarch32-ubuntu-natty-headless.img
- Ubuntu 14.04 64 bits : aarch64-ubuntu-trusty-headless.img

Operating system configuration

- Linux also needs a DTB file (Device Tree Blob/Binary)

- Contains hardware information required by Linux
- Number of CPUs, frequency, DVFS information
- Level of caches, size, line size
- Bus frequency
- Address range for devices

- Located in $M5 PATH/binaries
- EX: vexpress.aarch32.11 20131205.0-gem5.1lcpu.dtb

Application cross-compilation

- MAGPIE is designed to work with ARM Instruction Set
Architecture (ISA)

- Could be extended though

- Our machines are (mostly) x86

- We need a cross-compilation: generate ARM
assembly from another ISA (i.e., x86)

Application cross-compilation

- Cross-compiler available on remote machine (32-bits)

S arm-unknown-linux-gnueabi-gcc --version
- Note: this compiler is for ARM 32-bits only

- Replace gee by this one to produce ARM 32-bits
executables

- Always compile with =static flag
- This gem5 version doesn’t support dynamic linking

Application cross-compilation

- Example : SMAGPIE/app/hello magpie.c

S arm-unknown-linux-gnueabi-gcc —static -o
SHOME/app/hello magpie $MAGPIE/app/hello magpie.c

- Verification

$ file SHOME/app/hello magpie

ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), statically linked, for GNU/Linux 3.12.72,
not stripped

- This is also available on your local machine in /tmp/app

Disk Image modification

- Disk images are just ISO file : we can mount, read
and write into them

- The following commands require administrative rights
- That won't work on this server

- We are just showing you how to proceed

Disk Image modification

- For this tutorial we use this disk image: 1inux-
aarch32-ael.img (32-bits)

- Located in SHOME/disks on the remote server

S 1ls SHOME/disks
linux-aarch32-ael.img

- Available on your local machine in /tmp/disks

$ 1ls /tmp/disks
linux-aarch32-ael.img

This is the same file !

Disk Image modification

- Mount the disk image:

$ sudo mount —o loop,offset=32256 \
/path/to/linux-aarch32-ael.img /mnt

- Copy the executable inside:

$ sudo cp /path/to/hello magpie /mnt/benchmark

- Finally, unmount and synchronize:

$ sudo umount /mnt && sudo sync

gemb setup conclusion

- Operating system:
- iNn $M5 PATH/binaries
- With DTB files

- Application is statically compiled for ARM-32 bits

- Disk image is in $M5 PATH/disks
- And SHOME/disks
- Application is copied to the disk image in /benchmark

AUTOMAITE APPLICATION
EXECUTION

Automarte application execution

- gemb provides an inferface to execute commands
inside the operating system: rcs files

- Shell script automatically executed after the boot
phase

- Example in SGEM5/configs/boot/hello.rcS

#!/bin/sh

echo "Hello World"
/sbin/m5 exit # Special instruction to exit gem5

Automate application execution

- Open a new file in SHOME/app/hello magpie.rcS
- Vi, vim, emacs or nano are installed

- Our hello magpie applicationis located in /benchmark
- What would be the content of this file ¢

#!/bin/sh

cd /benchmark # Change directory

./hello magpie # Launch application

/sbin/m5 exit # Special instruction to exit gem5

- This will be executed after booting

- The simulation will automatically exit when finished

USE CHECKPOINTS

. R
What's a checkpoint ¢

- Booting Linux in gemb could be very long
- ~30 minutes with 1 core & fine-grained simulation
- One way to mitigate this: checkpoints

- Checkpoints are snapshots of the system state
- Taken with coarse-grained simulation
- Restore from checkpoint with high level of details

Boot phase: irrelevant for Checkpoint
architectural exploration here
>

(\
\ }

Coarse-grained simulation: t < 5 minutes to Y

take a snapshot Application execution:
fine-grained simulation for

a maximum accuracy

Taking a checkpoint

- Restrictions when taking checkpoint and restoring
- Use the same amount of main memory
- Use the same disk image

- Use the same number of cores
Output folder !

- How to take a checkpoint for MAGPIE: /

cd S$SGEM5
./build/ARM/gem5.fast|—ed $CHKPT/chkpt-lcore-2GB \
configs/example/fs.py \
--script configs/boot/hack back ckpt.rcS \
\
\

W -\n»

—-disk-image $M5 PATH/disks/linux-aarch32-ael-filled.img
--dtb-filename vexpress.aarch32.11 20131205.0-gem5.1lcpu.dtb
—--mem-size 2GB —-num-cpus 1

- Use your disk image if possible: $SHOME/disks/linux-
aarch32-ael.img

Taking a checkpoint

- gemd’s output:

gem5 Simulator System. http://gem5.org

[.]
*%%% REAL SIMULATION *%%%

[...]
Writing checkpoint
info: Entering event queue @ 2789663483500.

Starting simulation...
Exiting @ tick 2791525410000 because m5 exit

instruction encountered

- Checkpoint is located in SCHKPT/chkpt-1lcore-2GB

S 1ls SCHKPT/chkpt-lcore-2GB

[-]
cpt.2789663483500

CONCLUSION

Conclusion

- Linux kernel is already compiled and ready
- Application has been cross-compiled for ARM-32

- Disk image has been modified and now contains our
application

- The rcs file automates the execution of our
application

- A checkpoint has been taken to accelerate the
simulation

